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Abstract

The rainbow Turán number, a natural extension of the well studied tra-
ditional Turán number, was introduced in 2007 by Keevash, Mubayi,
Sudakov and Verstraẗe. The rainbow Turán number of a graph H,
ex⋆(n,H), is the largest number of edges for an n vertex graph G which
can be properly edge-colored with no rainbow H subgraph. We explore
the reduction method for finding upper bounds on rainbow Turán num-
bers, and use this to inform results for the rainbow Turán numbers of
double stars, caterpillars, and perfect binary trees. In addition, we define
k-unique colorings and the related k-unique Turán numbers. We provide
preliminary results on this new variant on the classic problem.

1 Introduction

The forbidden subgraph problem is perhaps the prototypical question in extremal
graph theory. How do we maximize the number of edges in an n-vertex graph, while
forbidding some fixed subgraph?

The earliest famous instance of this sort of problem dates to 1907; now known
as Mantel’s Theorem, this gives the largest possible number of edges in an n-vertex
graph that does not contain any triangles [13]1. In the 1940’s Turán generalized
Mantel’s result to forbidding any particular complete graph, rather than just the
triangle. For a fixed graph F , the Turán number, ex(n, F )2, is the largest number of
edges of any graph G on n vertices which is F -free. In this context, we refer to F as
the forbidden subgraph and H as the host graph. Throughout, we will use |H| and
‖H‖ to denote the number of vertices and edges in H, respectively.

1It is worth noting that although Mantel is typically given credit for this reference, the history
is somewhat more complicated. Mantel submitted the problem to Nieuwe Opgaven, where it was
distributed loose-leaf to the members of the Royal Dutch Mathematical Society. Eventually, this
was reprinted in a digest version, along with a solution due to Wythoff (although it is further noted
in this version that solutions were also submitted by H. Gouwentak, W. Mantel, J. Teixeira de
Mattos, and Dr. F. Schuh, but only Wythoff’s proof appears).

2From this point forward we will refer to this as the traditional Turán number.
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The Erdős-Stone[3] theorem states that ex(n, F ) = 1
χ(F )−1

(

n
2

)

+ o(n2), where

χ(F ) is the chromatic number of the forbidden subgraph F . As the theorem gives
degenerate results for graphs whose chromatic number is two, much of the research
into traditional Turán numbers is centered around bipartite graphs. While many
results address specific bipartite graphs or specific families of bipartite graphs, there
is still little known for bipartite graphs as a whole (for an exhaustive survey, see [7]).

In this paper we consider two closely-related variants of the traditional Turán
problem. The first, whose systemic study was formalized in 2007 by Keevash,
Mubayi, Sudakov, and Verstraëte, adds in a proper edge coloring of the host graph
and requires that the forbidden subgraph be “rainbow”—every edge colored a dis-
tinct color. The rainbow Turán number of a graph F , denoted ex⋆(n, F ), is the
largest possible number of edges among those n-vertex graphs which can be properly
edge-colored in a way that contains no rainbow F subgraph. There are two impor-
tant aspects to this seemingly simple definition. First, there must exist a graph with
n vertices and ex⋆(n, F ) edges which admits at least one proper edge coloring that
does not contain a rainbow F subgraph. Additionally, every proper edge coloring of
every graph with n vertices and at least ex⋆(n, F )+1 edges must contain a rainbow F

subgraph. Of particular use to us in this context is the chromatic index of G, written
χ′(G); this is the fewest number of colors possible among all proper edge-colorings
of G. The most famous bound on this well studied graph invariant is due to Vizing
[15] who showed that χ′(G) is at most one larger than the maximum degree of any
vertex in G, ∆(G). Since any coloring trivially uses at least ∆(G) colors, this shows
that χ′(G) ∈ {∆(G),∆(G) + 1}.

The second variation (introduced in this paper) considers the case where a specific
number of edges in F must be assigned distinct colors. Given graphs G,F , a natural
number k, and a proper edge coloring φ : E(G) → N, we say that G contains an
exactly k-unique copy of F if there are exactly k edges whose color appears exactly
once on F . Similarly, G contains a k-unique copy of F when there are at least k

edges whose color appears exactly once on F . We define a new parameterized family
of extremal functions, which run from the traditional Turán number to the rainbow
Turán number. Given a forbidden graph F and a natural number k, the k-unique

Turán number exk(n, F ) is the largest number of edges in an n vertex graph which
has some proper edge coloring that contains no k-unique F .3

In this paper we consider the rainbow Turán problem and the k-unique Turán
problem for families of small trees. In particular, we focus on the family of double
stars— for any r, s ∈ N, the double star DSr,s is the tree formed by taking a single
edge yx and appending r leaves to y and s leaves to x. It is worth noting that all
trees of diameter 3 are double stars and vice versa.

3We note that throughout, we will be interested in non-exact colorings— that is, k-unique as
opposed to exactly k-unique. A larger number of uniquely colored edges will be good for us. We
also emphasize that throughout, we mean edge-colorings when we refer to colorings.
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Figure 1: DSr,s

2 Previous Results

In [12], the authors introduced the rainbow Turán problem, and further conjectured
that ex⋆(n,C2k) = O(n1+1/k). In 2013, Das, Lee, and Sudakov showed ex⋆(n,C2k) =

O(n1+
(1+ǫk)lnk

k ) with ǫk → 0 as k → ∞ in [2]. O. Janzer proved the conjecture in
its entirety (in and in fact a much stronger result) to cover all theta graphs in [9].
A 2016 paper by Johnston, Palmer and Sarkar [10] disproved a conjecture on paths
from [12] showing that ex⋆(n, Pl) ≤ ⌈3l−2

2
⌉n, and provided exact results for some

particular l. Shortly after, the authors of [5] improved this bound to ex⋆(n, Pl) <
(

9(l−1)
7

+ 2
)

n. A lower bound for the rainbow Turán number of paths was given in

[11] as ex⋆(n, Pk) ≥ k
2
n + O(1). The same paper provided bounds on the rainbow

Turán number of caterpillars and brooms, as well as an exact result for a specific
family or brooms.

3 Summary Of Results

From [12] we have that the rainbow Turán number satisfies the inequality

ex(n, F ) ≤ ex⋆(n, F ) ≤ ex(n,H) + o(n2).

In conjunction with the Erdős-Stone theorem, this result gives the asympotic rainbow
Turán density

ex⋆(n,F )

(n2)
. Because of this, we restrict our consideration of rainbow

Turán numbers to bipartite graphs, where the Erdős-Stone theorem tells us only
that ex⋆(n,H) = o(n2). In particular, we present results for the family of double
stars as defined in Section 1. Additionally, we present results on k-unique Turán
numbers. These are of particular interest due to the fact that we have the following
chain of inequalities for any graph F :

ex(n, F ) = ex0(n, F ) ≤ ex1(n, F ) ≤ · · · ≤ ex‖H‖(n, F ) = ex⋆(n, F )

Part of the motivation for the k-unique Turán number is that they could allow us to
improve existing lower bounds for the rainbow Turán numbers by finding k-unique
Turán numbers and increasing the value of k.
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In order to consider k-unique Turán numbers, we begin by determining which
exactly k-unique values are possible for particular graphs. With that in mind, we
define the k-spectrum of a graph F , Spec(F ), as the set of k for which F admits
an exactly k-unique-coloring. We say that a graph has full spectrum if Spec(F ) =
{0, 1, . . . , ‖F‖−2, ‖F‖}. We note suspicious omission of ‖F‖−1 from this list—note
that having (‖F‖−1) uniquely colored edges is impossible, since this leaves one edge
whose color can neither be unique nor match the color of any other edges.

Theorem 4.1 gives some criteria for some graphs which have a complete k-
spectrum. Then, in Corollary 4.2 and Corollary 4.3 we present a complete descrip-
tion of the k-spectrum of cycles and paths respectively. We conclude our focus on
k-spectrum with Lemma 4.4 which describes the k-spectrum for all double stars. We
have just seen that Theorem 4.5 presents an upper bound for exk(n,DSr,s) when
DSr,s admits an exactly k-unique coloring; then, Lemma 4.6 extends the result to
cover exk(n,DSr,s) when DSr,s does not admit an exact k-unique coloring.

The upper bound in Lemma 4.5 is achieved through a combination of a reduction
method, inspired by the method in [12], and the Erdős-Sós Conjecture [4]. Proposed
in 1963 by Vera Sós, the Erdős-Sós Conjecture is based on the observation that the
traditional Turán number is the same for paths and stars.

Conjecture 3.1. For any tree T with t edges, ex(n, T ) ≤ (t−1)n
2

.

In the early 2000’s, Ajtai, Komlós, Simonovits, and Szemerédi announced a proof
of the conjecture; this has not yet appeared. There have been specific cases of the
Erdős-Sós Conjecture for which results have been published. Of particular note is
a result by McLennan [14] which proves the Erdős-Sós conjecture for trees with
diameter at most 4. The double star, short brooms, and caterpillars fall under the
above diameter constraint.

Theorem 4.7 uses the same methods to give an upper and lower bound bound on
ex⋆(n,DSr,s). In Theorems 4.11, 4.8, and 4.10 we use the previous upper bound, but
construct graphs which provide better lower bounds for the rainbow Turán numbers
of DS2,2 and DS1,2k+1. Our result in Theorem 4.11 matches a result of Johnston and
Rombach in [11], however we use a different method to achieve the matching upper
bound.

In Theorem 4.12, 4.13, and 4.14 we extend our reduction method to cover cater-
pillars and k-ary trees. In general, these trees do not fall under the result from [14].
In this case, we assume the Erdős-Sós Conjecture is true for all trees and proceed
by creating an algorithm to augment the caterpillars and k-ary trees respectively in
order to reduce the rainbow Turán problem into a traditional Turán problem.

4 Proofs

Theorem 4.1. Let F be a graph with a proper edge coloring with color classes

L1, . . . , Lr, ordered so that |L1| ≥ |L2| ≥ · · · ≥ |Lr|. If |L1| ≥ 3 and |Lr| ≥ 2,
then F has full spectrum, that is Spec(F ) = {0, 1, . . . , ‖F‖ − 2, ‖F‖}.
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Proof. Let F be a graph with a proper edge-coloring with color classes L1, . . . , Lr

with |Li| = li, ordered so that l1 ≥ l2 ≥ · · · ≥ lr and let l1 ≥ 3 and lr ≥ 2. Label
the edges of F by ei,j with 1 ≤ j ≤ li such that Li = {ei,1, . . . , ei,li}. Define a new
proper edge coloring φR : E(F ) → ‖F‖ where each edge is assigned a distinct color,
with the restriction that φR(ei,1) = i.

Under φR, each edge of F has a distinct color, so ‖F‖ ∈ Spec(F ). Recoloring
e1,2 to color 1 gives a (‖F‖ − 2)-unique coloring, as these edges become the only
edges with matching colors. Recoloring the additional edges e1,j to color 1 will
decrease the number of distinctly colored edges by one because e1,1 is no longer
the only edge in its color class. Doing so sequentially gives k-unique colorings for
(‖F‖ − l1) ≤ k ≤ (‖F‖ − 3), and so each of those values must belong in Spec(F ).

We know l1 ≥ 3, but it is possible that li = 2 for all i > 1. Additionally, if we
simply recolor ei,2 with color i, the number of distinctly colored edges will decrease
by two as it did for e1,2 and L1. The following color-switching operation addresses
both of these problems simultaneously.

Start with the coloring in which each of the l1 edges e1,j are color 1 and all
remaining edges in F are colored by φR. Then simultaneously recolor e1,l1 to color
φR(e1,l1) and e2,2 to color 2. By assigning e1,l1 a distinct color for this step, a (‖F‖−
l1− 1)-unique coloring is constructed. To construct a (‖F‖− l1− 2)-unique coloring,
change the color of e1,l1 back to color 1. If l2 > 2, each remaining edge e2,j can
be reassigned to color 2 one at a time. As before, this process constructs κ-unique
colorings of F with (‖F‖− l1− 3) ≤ k ≤ (‖F‖− l1− l2). If l2 = 2, there are no more
edges e2,j .

Repeating this color switching process using e1,l1 and ei,2 for all 2 ≤ i ≤ r

constructs a set of colorings that show Spec(F ) is complete. �

Corollary 4.2. Every cycle Ck with k ≥ 6 has full spectrum. For cycles with less

than 6 vertices, we have Spec(C5) = {1, 3, 5}, Spec(C4) = {0, 2, 4}, and Spec(C3) =
{3}.

Proof. The result for Ck with k ≥ 6 follows directly from Theorem 4.1. For Ck with
k < 6, we proceed by cases. Every proper edge coloring of C3 is equivalent to the
rainbow coloring, so Spec(C3) = {3}.

Every proper edge coloring of C4 which uses two colors is equivalent. Further,
each color class has cardinality two, so no edges are assigned a unique color and
so 0 ∈ Spec(C4). In each proper edge coloring using three colors, there is a single
color class with cardinality two and two color classes with cardinality one. For every
proper edge coloring on C4 with three colors, there are exactly two edges assigned a
distinct color, and 2 ∈ Spec(C4). Finally, we consider the edge coloring in which each
edge is assigned a distinct color. There are only 4 edges, so we have 4 ∈ Spec(C4).
Then Spec(C4) = {0, 2, 4}.

The odd cycle C5 has a chromatic index of three, so we need not consider edge
colorings using fewer than 3 colors. In each proper edge coloring of C5 using three
colors, we have two color classes of cardinality two and one color class with cardinality
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one. These colorings each assign a single edge to a unique color, so 1 ∈ Spec(C5).
In proper edge colorings using precisely 4 colors, there is a single color class with
cardinality two and three color classes with cardinality one. Thus 3 ∈ Spec(C5). The
coloring which assigns each edge a distinct color uses 5 colors, and thus 5 ∈ Spec(C5).
Then, we find that Spec(C5) = {1, 3, 5}. �

Corollary 4.3. Every path Pk of length k with k ≥ 5 has full spectrum. For paths of

length less than 5, we have Spec(P4) = {0, 2, 4}, Spec(P3) = {1, 3}, Spec(P2) = {2},
and Spec(P1) = {1}.

Proof. The result for Pk with k ≥ 5 follows directly from Theorem 4.1. For Pk with
k < 5 we proceed by cases. P1 and P2 each have a single proper edge coloring (up
to a renaming of the colors), and they both assign each edge a distinct color, so
Spec(P1) = {1} and Spec(P2) = {2}.

For P3, we can trivially find a coloring with one color class of cardinality two and
one color class with cardinality one. Thus 1 ∈ Spec(P3). Now we consider the edge
coloring which assigns each edge to a distinct color. This gives 3 ∈ Spec(P3), and
thus Spec(P3) = {1, 3}.

There are three kinds of non-equivalent proper edge colorings of P4. Every proper
edge coloring of P4 which uses exactly two colors is equivalent, all with two color
classes with cardinality two. In each, no edge is assigned to a distinct color so 0 ∈
Spec(P4). For P4 with precisely three colors, there are two non-equivalent proper edge
colorings. In each there are two color classes with cardinality one and one color class
with cardinality two. Thus 2 ∈ Spec(P4). Finally, the edge coloring which assigns
each edge a distinct color gives 4 ∈ Spec(P4), and we have Spec(P4) = {0, 2, 4}. �

Lemma 4.4. For a double star DSr,s with r ≤ s we have

Spec(DSr,s) = {s− r + 1 + 2l : 0 ≤ l ≤ r}.

Proof. Since yx is incident to every other edge, its color cannot appear on any other
edge of DSr,s. Let j be the number of edges in DSr,s that have a distinct color
under any proper edge coloring; we note we trivially have j = s− r+ 1. We refer to
edges incident to x or y but not both as pendants, since these will play the role of
the leaves in our double star. In any proper edge coloring of DSr,s, repeated colors
must appear as pairs of pendants, one each from y and x. We call two pendants
that share a color partners. Then, the number of repeated colors is at most r. If
every color that appears on y also appears on a pendant from x, the remaining s− r

pendants from x are distinctly colored (giving us j = s − r + 1 distinctly colored
edges from these pendants and the dominating edge). Now, by recoloring l pendants
of y with colors not appearing elsewhere in the graph, we obtain a coloring with
j + 2l distinctly colored edges since each y pendant and its partner x pendant now
have distinct colors (since y has only r pendants, we require that l ≤ r). �
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Theorem 4.5. For a double star DSr,s with r ≤ s which admits an exactly (j +2l)-
unique-coloring, we have

(s+ l − 1)n

2
+ o(n) ≤ exj+2l(n,DSr,s) ≤

(r + s+ l)n

2

where j = s− r + 1 and 0 ≤ l ≤ r.

Proof. From Lemma 4.4, we have DSr,s colored with s+l−1 colors is (j+2l)-unique.
By Vizing’s theorem, we know that a graph G with ∆(G) = s+ l−1 can be properly
edge colored with s+ l colors. When (s+ ℓ− 1)n is even, we let G be a (s+ ℓ− 1)-
regular graph; in the case that (s+ℓ−1)n is odd, we let G be a graph with maximum
degree (s + ℓ − 1) and as many edges as possible. Then G can be properly colored

so there is no rainbow DSr,s subgraph. This gives
(s+ℓ−1)n

2
+ o(n) ≤ exj+2ℓ(n,DSr,s).

By the Erdős-Sós Conjecture, a graph with (r+s+ℓ)n
2

edges must contain a copy of
DSr,s+ℓ. As noted in the proof of the previous lemma, any repeated colors in DSr,s+ℓ

must appear as pairs of pendants incident to y and x. Then there are j+2ℓ distinctly
colored edges in any proper edge coloring of DSr,s+ℓ when j = s− r+1. There must
be a (j+2ℓ)-unique copy of DSr,s in a properly edge colored DSr,s+ℓ, and the upper
bound is achieved. �

The reduction method, as illustrated in the proof of the upper bound in Theo-
rem 4.5, begins with an observation from [12] that rainbow Turán problems can be
reduced to traditional Turán problems. Consider P3, the path on 3 edges. As shown
in Figure 2, there is a proper edge coloring of P3 that is not rainbow.

Figure 2: P3 has a proper edge coloring that is not rainbow.

However, if we add one edge, as illustrated in Figure 3, the resulting graph
contains a rainbow P3 subgraph. We call the new graph, in this case, DSr,s1,2, the
augmented graph. Although only one proper edge coloring of the augmented graph
is shown, there is a rainbow P3 in every proper edge coloring of DSr,s1,2.

Figure 3: DSr,s1,2 always contains a rainbow P3

Forbidding the augmented graph forbids rainbow P3 as well as some additional
edges. Likewise, a graph containing a DSr,s1,2 always has a rainbow P3 subgraph.
Then, the traditional Turán number of the augmented graph is an upper bound on
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the rainbow Turán number of P3. In general, we refer to the forbidden graph as F
(or T when the forbidden graph is specifically a tree), and an augmented graph that
necessarily contains a rainbow F as F ′ (or T ′).

The main idea of the method used to find upper bounds for ex⋆(n, T ) is the
combination of the reduction method as described above in conjunction with the
bound from the Erdős-Sós Conjecture in 3.1.

Lemma 4.6. Let k be given and set k′ to be the smallest k′ ≥ k for which k′ ∈
Spec(F ). Then exk′(n, F ) = exk(n, F ).

Proof. Consider the largest graph on n vertices G which can be colored to avoid a k-
unique copy of F . Since no exactly k′′-unique coloring is possible with k < k′′ < k′

(since such values of k′′ are not in the spectrum), this k-unique copy must have at
least k′ unique colors. �

Theorem 4.7. For all double stars DSr,s with r ≤ s, we have

(s+ r − 1)n

2
+ o(1) ≤ ex⋆(n,DSr,s) ≤

(s+ 2r)n

2
.

Proof. As we saw in the proof of Theorem 4.5, any properly edge colored DSr,s+r

must contain a rainbow DSr,s. Therefore the Erdős-Sós bound for ex(n,DSr,s) gives
the following upper bound:

ex⋆(n,DSr,s) ≤ ex(n,DSr,s+r) ≤
(s+ 2r)n

2
.

The lower bound is shown by a simple application of Vizing’s theorem, as in Theorem
4.5. In order for every proper edge coloring of some graph G to force a rainbow copy
of DSr,s, it is necessary that every proper coloring of G uses at least s + r + 1
colors. By Vizing’s theorem, a graph with ∆(G) + 1 = s+ r can be properly colored
with s + r colors to avoid a rainbow DSr,s subgraph. This gives a lower bound of

ex⋆(n,DSr,s) ≥
(s+r−1)n

2
+ o(1). �

Theorem 4.8. Let φ : E(K6) → [5] be an edge coloring of K6 where every vertex is

adjacent to exactly one edge of each color. Then φ is rainbow DS2,2-free.

Proof. Let φ : E(K6) → [5] be an edge coloring of K6 where every vertex is adjacent
to exactly one edge of each color, and suppose that K6 with φ contains a rainbow
DS2,2. Without loss of generality, choose any vertex to act as y in a DS2,2. Under φ,
this vertex must be adjacent to five different colored edges. In Figure 4 below, the
center vertex is y, and the solid black edges are assigned colors 1 through 5.

We arbitrarily select a vertex adjacent to y to be x and choose which vertices
will be its leaves as shown by the vertex labels in Figure 4. In order for this DS2,2

to have each edge assigned to a distinct color, edges xx1 and xx2 (shown below
with big dashes) must be assigned colors 5 and 2 respectively. The remaining edges
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x

y1 y2

x2x1

y

1

2

3 4

5

Figure 4: DS2,2 embedded in K6.

adjacent to x, specifically xy1 and xy2 (shown below with small dashed edges) must
be assigned colors 4 and 3 respectively.

Then we consider how colors can be assigned to the uncolored edges incident
to vertex x1 (shown in grey). The three colors 1, 3, and 4 have not met vertex
x1. However neither edge x1y1 nor x1y2 may be assigned color 3 or 4. This is a
contradiction, since in φ every vertex is incident to an edge of every color. Thus
there is no rainbow DS2,2 in K6 with edge coloring φ. �

Theorem 4.9. Any proper edge coloring of K6 which is not rainbow contains an

exactly 3-unique DS2,2.

Proof. Consider any proper edge coloring φ : E(K6) → N which is not rainbow.
Then two edges must assigned to the same color. Label the vertices such that v1v2
and v4v5 are one of these pairs as in Figure 5.

v6

v3

v1

v2

v5

v4

Figure 5: DS2,2 embedded in K6 with repeated edge color.

Let v1v4 be the dominating edge of a double star. From the two remaining vertices
v3 and v6, one must be a leaf incident to v1 and one must be a leaf incident to v4.
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Note the C4: v1v6v4v3. Regardless of how φ assigns colors to these four edges, since
the coloring is proper we are able to choose our two leaves so the edges have distinct
colors, thus creating an exactly 3-unique DS2,2 subgraph. �

Theorem 4.10. For the double star DS2,2, we have the following inequality:

5n

2
≤ ex⋆(n,DS2,2) ≤

6n

2
.

Proof. The lower bound follows by using disjoint K6’s (and possibly one smaller
clique when n 6∼= 0 mod 6) colored as given in Theorem 4.8. For the upper bound, we
apply the result from Theorem 4.7. Since r = s = 2, we find ex⋆(n,DS2,2) ≤

6n
2
. �

Theorem 4.11. For DS1,2s+1 for any s ∈ N,

ex⋆(n,DS1,2s+1) =
(2s+ 3)n

2
+ o(1).

Proof. The upper bound is an application of Theorem 4.7 which gives

ex⋆(n,DS1,2s+1) ≤
(2s+ 3)n

2
.

We prove the lower bound by showing that it is possible to properly edge color K2s+4

in a way that avoids a rainbow DS1,2s+1; the extremal construction then comes
from disjoint copies of this (along with possibly one smaller clique, according to
divisibility). Note that |K2s+4| = |DS1,2s+1|. Further, since 2s + 4 is even, K2s+4

admits an edge coloring with 2s + 3 colors in which each vertex meets each color
exactly once. We call this edge coloring φ. Assume K2s+4 with φ contains a rainbow
DS1,2s+1. Up to renaming the colors, this DS1,2s+1 appears as in Figure 6, with
backbone xy and edge colors as labeled (without loss of generality).

x

y

1

2

3

4

2k + 3

...

Figure 6: DS1,s2+1 embedded in K2s+4.
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However, the dotted edge between x and a shared neighbor of y is then incident
to edges of colors 1, 2, . . . , 2k + 3; as φ only uses 2k + 3 colors, it is impossible to
properly color this edge and so such a coloring φ cannot exist. From this, we have
that ex⋆(n,DS1,2s+1) ≥

(2s+3)n
2

+ o(1) with equality when (2s+ 3) divides n. �

A broom Bk,r is a path on k vertices with r leaves appended to one endpoint.
Every graph in Theorem 4.11 is also a broom. However, there is a more general
family of graphs, caterpillars Cc1,...,ck , consisting of a path on k vertices labeled
x1, . . . xk with ci pendants attached at vertex xi. This means every broom Bk,r is
also a caterpillar C0,...,0,r, where r appears in the kth position. With this in mind, the
following theorem also applies to all brooms, although Theorem 4.11 gives a better
result when k = 3.

x2x1 xkx3

y2

y1

yr

...

. . .
x2x1 xkx3

yk,1 yk,ck

. . .

. . .

y1,1 y1,c1 y2,1 y2,c2 y3,1 y3,c3

. . .. . .. . .

Figure 7: Broom Bk,r (left) and caterpillar Cc1,...ck (right)

Theorem 4.12. Let c1, . . . , ck be non-negative integers. Then, contingent on the

Erdős-Sós conjecture, we have

ex⋆(n,Cc1,...ck) ≤ [3c1 + 2c2 + c3 + 3 +
k

∑

j=3

Pj(Lj + 1)]
n

2

where Pj = Pj−1

∑j−2
i=4 (ci + 1), P1 = c1, and Lj = j − 1 +

∑j
i=1 ci.

Proof. We label the pendant vertices of Cc1,...,ck such that the children of xi are
vi,j for 1 ≤ j ≤ ci. We will construct an augmented caterpillar Cc′1,...,c

′

k
which

contains a rainbow Cc1,...,ck under every proper edge-coloring. In order to do this,
we first describe such a rainbow-forcing augmented graph for caterpillars with three
backbone vertices, and then explain how to iteratively add to this graph in order
to find our longer rainbow caterpillars. As we do so, we will need to add enough
new neighbors to the previous backbone end that we can avoid all previously seen
colors. Then, we add so many children to each of these that whichever is selected to
play the role of xk+1 can have ck+1 distinctly colored children while still avoiding all
previously seen colors.

In the case of Cc1,c2,c3 , the two backbone edges will be assigned distinct colors
under any proper edge coloring. The pendants adjacent to x1 will all be assigned
distinct colors as well, and by adding an extra pendant, we can ensure that there will
be at least c1 edges which do not share a color with either of the backbone edge. Then
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c′1 = c1 + 1 in Cc′1,c
′

2,c
′

3
. The pendant edges adjacent to x2 will all be assigned colors

distinct from each other and distinct from both backbone edges. In order to ensure
that there are c2 of them which do not share a color with the pendants adjacent to
x1 we add another c1 pendants. Thus c′2 = c2 + c1. Finally we consider the pendant
edges adjacent to x3. There are c3 of them in Cc1,c2,c3 , and they will all be assigned
colors distinct from each other and distinct from the edge x2x3. To guarantee that
there are c3 of them which do not share a color with the other backbone edges or
any of the other pendant edges, we can simply add c1 + c2 +1 extra pendants. Then
c′3 = c1 + c2 + c3 + 1. This new graph, Cc′1,...,c

′

k
, has 3c1 + 2c2 + c3 + 4 edges in total.

When k = 3, the augmented graph that must contain a rainbow Cc1,c2,c3 subgraph
is still a caterpillar. For higher values of k, this will no longer be the case. As we
generalize this method to cover larger k, we refer to the augmented graph of Cc1,...,ck

as C ′
c1,...,ck

.

We think of Cc1,...,ck with k = 4 as a copy of Cc1,c2,c3 , augmented by an extra
backbone edge (and its children). Similarly, we view C ′

c1,...,c4
as an augmentation of

Cc′1,c
′

2,c
′

3
. In order to ensure that there is an edge in the c′· graph which can act as the

image of the new backbone edge x3x4 in the rainbow subgraph, we add c1 + c2 + 1
more edges adjacent to x3, for a total of c1 + c2 + 2 non-pendant edges separate
from x2x3. Each of these edges will get c1 + c2 + c3 + 3 new pendant edges adjacent
to them. This is large enough to ensure that as we find our rainbow subgraph we
can choose an edge to serve as x3x4 and still have the necessary c4 pendants while
avoiding colors already in our subgraph (since there are at most c1+ c2+ c3+3 such
colors to avoid).

We continue in this way for higher values of k; the next added backbone branches
will be adjacent to xk−1 and not any of the vk−1,j, and we add enough children to
avoid the colors in all previous edges in our rainbow subgraph. With this in mind,
the previous argument for Cc1,...,c4 generalizes into the following parts: Pj the number
of backbone vertices which can act as xj in a rainbow subgraph, and Lj the number
of leaves adjacent to each of the Pj parent vertices. The sum of all ci up to and
including j plus (j − 1) non-adjacent backbone edges is the number of leaves at
level j. Then there must be Lj = j − 1 +

∑j
i=1 ci pendants adjacent to each parent

vertex. Since the backbone branches at every new vertex, we multiply the number
of previous parents by the sum of all previous children to determine the number of
parent vertices at each level. Then Pj = Pj−1

∑j−2
i=4 (ci + 1). In this case we start

branching at i = 4 since we use the argument for Cc1,c2,c3 before then. Thus the total

number of edges in C ′
c1,...,ck

is 3c1 + 2c2 + c3 + 5 +
[

∑k
j=3 Pj(Lj + 1)

]

. Applying the

bound from the Erdős-Sós Conjecture gives the result stated in the theorem. �

Let a k-ary tree be a rooted tree with every non-leaf vertex having exactly k

children, and let a perfect k-ary tree be a k-ary tree with all leaves at the same
depth, or distance from the rooted vertex. Then a perfect binary tree with a depth
of 2 has one vertex of degree 2, two vertices with degree 3, and 4 leaves. We use
T (k, d) to denote a perfect k-ary tree with depth d. Applying our reduction method
to T (k, d) gives the following results.
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Theorem 4.13. For a perfect binary tree with depth d,

ex⋆(n, T (2, d)) ≤
(

d
∑

j=2

[2

j
∏

i=2

(2i − 3)] + 1
)n

2
.

Proof. Summing the 2i vertices at each level of the tree, we find a total of
∑d

i=0 2
i =

2d+1− 1 vertices in T (2, d), and thus 2d+1− 2 edges. We label the vertices and edges
in T (2, d) according to the following system, an example of which is shown in Figure
8. The vertices are labeled vi,j , for 1 ≤ j ≤ 2i, where i is the distance to the root
vertex, and with vertices vi+1,2j and vi+1,2j−1 as the children of vi,j. We will identify
edges using the indices of the endpoint furthest from v0,1; e.g. edge v1,2v2,4 would
be labeled e2,4. In the vein of the reduction method used earlier, we will construct
a tree T ′(2, d) which contains a rainbow T (2, d) subgraph under every proper edge
coloring. For clarity, we do this first for T (2, 2) and then T (2, d).

v0,1

v1,1 v1,2

v2,1v2,2 v2,3 v2,4

e1,1

e2,3

Figure 8: Perfect binary tree T (2, 2)

In T (2, 2), e1,1 and e1,2 will be assigned distinct colors under any proper edge
coloring. We need to ensure that we can always find a pair of pendants for each of
v1,1 and v1,2 whose colors are different from those already in our rainbow subgraph.
Without loss of generality, we focus on the children of v1,1. The two associated edges
(e2,1 and e2,2) will always be assigned colors distinct from each other, and distinct
from e1,1. In order to ensure there will be two edges with colors distinct from the rest
of the leaves, we append two more leaves to the corresponding vertex in T ′(2, 2). The
addition of one more leaf ensures that there is also an edge with a color unique from
e1,2. Then the total number of leaves adjacent to v1,1 in T ′(2, 2) is the total number
of leaves in T (2, 2) plus the number of edges in the subtree above it (minus one);
in general, when considering T (k, d), we will find T (2, d − 1) − 1 leaves. This gives
2d+1 − 3 leaves attached to each parent vertex. Since there are two vertices at depth
one, the total number of leaves in T ′(2, 2) is 10. Including the edges e1,1 and e1,2,
there are 12 edges in T ′(2, 2). Applying the bound from the Erdős-Sós Conjecture
to T ′(2, 2) gives ex⋆(n, T (2, 2)) ≤ ex(n, T ′(2, 2)) ≤ 11n

2
, which is the bound claimed

in the theorem.



V. BEDNAR AND N. BUSHAW/AUSTRALAS. J. COMBIN. 91 (2) (2025), 266–281 279

The argument above generalizes neatly to cover all T (2, d). Having appended
2d+1 − 3 leaf edges each vj−1,j guarantees that even if the colors of the other 2d − 2
leaves and the colors of the 2d−1 non-adjacent edges in the the T (2, d−1) subgraph
are all repeated, there are still two edges with distinct colors adjacent to vd−1,j. The
number of parents of leaves in T ′(2, d) is the same as the number of leaves in
T ′(2, d − 1). Continuing in this way, we find the number of vertices at depth d − 2
in T ′(2, d) is the same as the number of leaves in T ′(2, d − 2). As in the previous
example, at depth 1 there are two single edges which will always be assigned distinct
colors. This gives 2

∏k
i=2(2

i − 3) as the total number of leaves in T ′(k, d). The

sum (2 +
∑d

j=2(number of leaves in T ′(2, j)) provides the total number of edges in
T ′(2, d). Applying the bound from the Erdős-Sós Conjecture to this number gives
ex⋆(n, T (2, d)) ≤ ex(n, T ′(2, d)) ≤ (

∑d
j=2[2

∏j
i=2(2

i − 3)] + 1)n
2
. �

Theorem 4.14. For a perfect k-ary tree with depth d,

ex⋆(n, T (k, d)) ≤
(

k − 1 +
d

∑

j=2

[

k

j
∏

i=2

(ki +
ki − 1

k − 1
− 2)

]

)n

2
.

Proof. Generalizing the geometric series in Theorem 4.13 shows the number of ver-
tices in T (k, d) is kd+1−1

k−1
, and number of edges is kd+1

k−1
− 1. Following the same

argument as in Theorem 4.13, each vertex vd−1,j in T ′(k, d) must be adjacent to

kd + kd−1
k−1

− 2 leaves to guarantee there are enough to choose k many pendants with
distinct colors in a rainbow T (k, d) subgraph. The number of parents of leaves in
T ′(k, d) is the same as the number of leaves in T ′(k, d − 1). This process gives

k
∏j

i=2(k
i + ki−1

k−1
− 2) as the total number of leaves in T ′(k, d). Each vertex vi,j ex-

cept for v0,1 is associated with exactly one edge ei,j. Then counting the number of

vertices at each depth i ≥ 2 gives
∑d

j=2[k
∏j

i=2(k
i + ki−1

k−1
− 2)], which is the same as

the number of edges in T ′(k, d)− v0,1. By adding k more edges to account for those
adjacent to vertex v0,1, we find the total number of edges in T ′(k, d). Applying the
bound from the Erdős-Sós Conjecture to this edge count gives an upper bound of

ex⋆(n, T (k, d)) ≤ ex(n, T ′(k, d) ≤ (k − 1 +
d

∑

j=2

[k

j
∏

i=2

(ki +
ki − 1

k − 1
− 2)])

n

2
.

�

5 Conclusion

As we see in Theorem 4.10 and Theorem 4.11, when using the reduction method in
combination with the Erdős-Sós Conjecture gives us a tree with a few edges more
than the original forbidden subgraph, but which guarantees a rainbow copy of the
forbidden graph, then we get upper and lower bounds which are quite close. At
first glance it seems as though the small diameter of such graphs results in good
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upper bounds, but consider DS20,20. In order to guarantee a rainbow subgraph, 20
edges must be appended to the original, and the upper bound achieved through
the reduction method and Erdős-Sós Conjecture is seemingly further than what we
expect the true value to be. On the contrary for the graph DS1,39, which has the
same diameter and number of edges as DS20,20, the methods here give matching
upper and lower bounds on ex⋆(n,DS1,39). This implies a more complicated set of
criteria for which this combination method provides good bounds; more investigation
is needed.

There are many trees not covered by the methods in this paper. Subdivided stars,
and others with a simple branching structure should also lend themselves nicely to the
reduction method as outlined in this paper. In particular, the Erdős-Sós Conjecture
has been proved for subdivided stars in [6], and so these are a natural next step.

In general, there may be ways to improve the reduction method to give better
results for those trees with large size or diameter. For example, if we know that
a host graph has a certain connectivity then how does that impact the rainbow
subgraphs it may contain? Aside from just the connectivity, knowing more about the
properties/invariants of the extremal graphs for specified forbidden subgraphs may
provide a method to reduce the number of added edges needed when implementing
the reduction method. Further, we may wish to use augmented graphs which are
not trees, if the forbidden subgraph F already contains a cycle. Here, Erdős-Sós
does not apply, and the extremal numbers for such graphs are much larger (either
by Erdős-Stone [3], in the case of odd cycles, or by Bondy-Simonovits [1] in the case
of even cycles. It is not clear how this affects the reduction method described in this
paper.

This manuscript only gives a brief introduction into the k-unique Turán num-
bers. There is a lot more work that can be done here. Additionally, we define the
generalized k-unique Turán problems, as a natural extension of generalized rainbow
Turán problems as defined in [8]. What is the maximum number of copies of F in
a properly edge-colored graph on n vertices without a k-unique copy of F? It is
important to note that using the reduction method for the k-unique Turán numbers
may provide useful information about this, but only for upper bounds. Progress on
lower bounds will require different methods, and improvement of the lower bounds
for k-unique Turán numbers provide one such approach.
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