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Abstract

Let G be a graph whose edges are each assigned one of the m-colours
1, 2, . . . ,m, and let Γ be a subgroup of Sm. The operation of switching at
a vertex x with respect to π ∈ Γ permutes the colours of the edges inci-
dent with x according to π. There is a well-developed theory of switching
when Γ is abelian. Much less is known for non-abelian groups. In this
paper we consider switching with respect to non-abelian groups including
symmetric, alternating and dihedral groups. We first consider the ques-
tion of whether there is a sequence of switches using elements of Γ that
transforms an m-edge-coloured graph Ĝ to an m-edge coloured graph Ĥ.
Necessary and sufficient conditions for the existence of such a sequence
are given for each of the groups being considered. We then consider the
question of whether an m-edge coloured graph can be switched using el-
ements of Γ so that the transformed m-edge coloured graph has a vertex
k-colouring, or a homomorphism to a fixedm-edge coloured graph Ĥ. For
the groups mentioned we establish dichotomy theorems for the complex-
ity of these decision problems. These are the first dichotomy theorems to
be established for colouring or homomorphism problems and switching
with respect to any group other than S2.
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1 Introduction and Definitions

An m-edge-coloured graph is an ordered pair Ĝ = (G, σ), where G is a graph and
σ : E(H) → {1, 2, . . . ,m} is its signature. The graph G is the underlying graph of
Ĝ. The vertices of Ĝ are the vertices of G. The edges of Ĝ are coloured edges of
G, that is, edges e ∈ E(G) together with their signature (or colour) σ(e). We use
Ei(Ĝ) to denote the set of edges of Ĝ with colour i. An m-edge-coloured graph is
monochromatic of colour j if all of its edges have colour j.

An m-edge coloured graph is called simple if its underlying graph is simple.
Throughout this work we assume that all m-edge coloured graphs under consid-
eration are simple, even though some of the results hold in a more general context.

Let Ĝ be an m-edge-coloured graph and let Γ be a subgroup of Sm. For x ∈ V
and π ∈ Γ, the operation of switching at x with respect to π transforms Ĝ into the
m-edge-coloured graph Ĝ(x,π) that has the same underlying graph as Ĝ and with the
colours of the edges incident with x permuted according to π, that is, if σ(Ĝ)(xy) = i,
then σ(Ĝ(x,π))(xy) = π(i).

Let S = (x1, π1), (x2, π2), . . . , (xt, πt) be a sequence of elements of V (Ĝ) × Γ.
Recursively define

ĜS = Ĝ(x1,π1),(x2,π2),...,(xt,πt) =
(

Ĝ(x1,π1)
)(x2,π2),...,(xt,πt)

.

We call the sequence S a Γ-switching sequence, and say that it transforms Ĝ into
ĜS . Two m-edge-coloured graphs Ĝ and Ĥ are called Γ-switch equivalent when there
exists a Γ-switching sequence S such that ĜS = Ĥ. In other words, Ĝ and Ĥ are Γ-
switch equivalent when there exists a Γ-switching sequence that transforms Ĝ into an
m-edge coloured graph that is equal to Ĥ. It is easy to see that Γ-switch equivalence
defines an equivalence relation on the set of all m-edge coloured graphs on a fixed
vertex set. The equivalence class of the m-edge-coloured graph Ĝ is denoted by [Ĝ]Γ.

Switching 2-edge coloured graphs with respect to S2 first appears in the work
of Abelson and Rosenberg in the context of behavioural science [1]. Switching 2-
edge coloured graphs in which the colours are {+1,−1} is integral to the study of
signed graphs. These are different from 2-edge coloured graphs because the product
of colours on each cycle is invariant under switching, which leads to the fundamental
concept of balance of a cycle. Signed graphs have been extensively studied by Za-
slavsky; for example see [13, 14]. The related concept of pushing vertices in oriented
graphs is considered in [8]. Switching m-edge coloured graphs with respect to cyclic
groups was first studied by Brewster and Graves [2]. Their results are extended to
all abelian groups in [9].

After noting some preliminary information, in the first part of this paper we
consider the question of when two m-edge-coloured graphs Ĝ and Ĥ are Γ-switch
equivalent when Γ is a symmetric, alternating or dihedral group. In each case we
give necessary and sufficient conditions for two m-edge coloured graphs Ĝ and Ĥ to
be Γ-switch equivalent. We believe these to be the first results on switch equivalence
with respect to non-abelian groups. This follows previous work in this area that
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characterised switch equivalence for 2-edge-coloured graphs, for abelian groups and
for a related concept in oriented graphs (see [2, 8, 9, 11]).

In the last part of the paper we consider colourings and homomorphisms of m-
edge coloured graphs. Recall that a k-colouring of a graph G is a function c : V (G) →
{1, 2, . . . , k} such that if xy ∈ E(G), then c(x) 6= c(y). A homomorphism from a
graph G to a graph H is a function f : V (G) → V (H) such that if xy ∈ E(G), then
f(x)f(y) ∈ E(H).

Suppose there is a homomorphism, f , of the graph G to a graph H on k vertices.
If the vertices of H are regarded as colours, then f is an assignment of these colours
to the vertices of G such that adjacent vertices in G are assigned adjacent (hence
different) colours. Thus a k-colouring of a graph G can equivalently be defined as
a homomorphism of G to some graph H on k vertices. Defining a k-colouring in
this way allows the idea of a (vertex) k-colouring to be extended to m-edge-coloured
graphs, oriented graphs, and other types of graphs [10, 12].

Let Ĝ and Ĥ be m-edge-coloured graphs. A homomorphism of Ĝ to Ĥ is a
function f : V (Ĝ) → V (Ĥ) such that, for all i ∈ {1, 2, . . . ,m}, if xy ∈ Ei(Ĝ) then
f(x)f(y) ∈ Ei(Ĥ). For an integer k ≥ 1, a vertex k-colouring of an m-edge-coloured
graph G is a homomorphism of G to some m-edge-coloured graph on k vertices.

Let Γ be a subgroup of Sm. An m-edge-coloured graph G has a Γ-switchable ho-

momorphism to an m-edge-coloured graph H if some Ĝ′ ∈ [Ĝ]Γ has a homomorphism
to Ĥ, that is, if Ĝ can be Γ-switched so that the transformed graph has a homomor-
phism to Ĥ. For an integer k ≥ 1, an m-edge-coloured graph Ĝ has a Γ-switchable
k-colouring if it has a Γ-switchable homomorphism to some m-edge-coloured graph
on k vertices.

We are interested in the complexity of deciding whether a given m-edge coloured
graph Ĝ can be switched so it has a vertex k-colouring or a homomorphism to
a fixed m-edge coloured graph Ĥ. We are able to give dichotomy theorems for
these problems with respect to the groups we consider. A dichotomy theorem for
Γ-switchable k-colouring when Γ is abelian appears in [9]. Kidner has proved that
for all groups Γ the problem of deciding whether an m-edge coloured graph Ĝ has a
Γ-switchable k-colouring is solvable in polynomial time when k ≤ 2 and is NP-hard
when k ≥ 3 [7] (also see [4, 9]). The dichotomy theorems for the homomorphism
problem generalize the fundamental result of Hell and Nešetřil, and the dichotomy
theorem for S2 switchable homomorphism due to Brewster et al. [3] Related results
for oriented graphs appear in [8].

We now describe a way to algorithmically determine whether twom-edge coloured
graphs, Ĝ and Ĥ, on the same vertex set, V , are Γ-switch equivalent with respect
to an arbitrary group Γ. One can construct an auxiliary graph with vertex set equal

to the set of all (m+ 1)(
|V |
2
) m-edge coloured graphs on V . There is an edge from F

to F ′ when there exists a vertex x of F and π ∈ Γ such that F (x,π) = F ′. Two m-
edge coloured graphs are Γ-switch equivalent if and only if they belong to the same
component of this auxiliary graph. Determining whether Ĝ and Ĥ are Γ-switch
equivalent using this procedure involves considering Γ-switching sequences of length
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at most (m+ 1)(
|V |
2
).

We can further restrict the length of such sequences when Γ is abelian. Sup-
pose Γ is abelian. Then the same transformed graph arises from any rearrange-
ment of a given Γ-switching sequence. Since there is a rearrangement so that the
switches at each vertex occur consecutively, and the result of switching with respect
to (x, α1), (x, α2), . . . , (x, αk) is the same as the result of switching with respect to
(x, α1α2 . . . αk), it suffices to consider Γ-switching sequences in which there is at most
one switch at each vertex. Such a sequence has length at most |V |.

To see that the order of switches can matter when Γ is non-abelian, consider
a 3-edge-coloured graph Ĝ, the group Γ = S3, and an edge xy of colour 1. Let
α = (1 2) and β = (2 3). For the switching sequence S = (x, α)(y, β)(x, α−1) we
have σ(ĜS)(xy) = 3, whereas for the switching sequence S ′ = (x, α)(x, α−1)(y, β) we
have σ(GS′

)(xy) = 1.

2 Properties Ti,j and Tj

Consider a pair of m-edge-coloured graphs Ĝ and Ĥ such that G = H and the edge
colours in Ĝ and Ĥ differ only on a single edge. That is, consider Ĝ = (G, σG),
(Ĥ, σH) such that G = H and there exists e ∈ E and i, j ∈ 1, 2, . . . ,m with i 6= j
such that σG(e) = i, σH(e) = j and σG(f) = σH(f) for all f 6= e. Whether Ĝ and Ĥ
are switch equivalent with respect to some group Γ ⊆ Sm depends on whether there
is a sequence of switches whose only impact on the colours of the edges of Ĝ is to
change the colour of a single edge from i to j.

Proposition 2.1. Let Ĝ be an m-edge-coloured graph, where m ≥ 3, and let i, j ∈
{1, 2, . . . ,m} be such that i 6= j. If xy ∈ Ei(Ĝ), then there exists Ĝ′ ∈ [Ĝ]Sm

such

that xy ∈ Ej(Ĝ
′) and Ĝ− xy = Ĝ′ − xy.

Proof. Let α = (i j). Since m ≥ 3, for any k ∈ {1, 2, . . . ,m} \ {i, j} there exists
β = (j k). Consider the Sm-switching sequence (x, α), (y, β), (x, α), (y, β). We claim
this sequence transforms Ĝ into Ĝ′.

The only edges that change colour in the transformation are incident with x or
y. It is given that the edge xy has colour i in Ĝ. After the first, second, third and
fourth switch, the edge xy has colour j, k, k, j, respectively, in the transformed graph.
Any edge e incident with x and not y changes from its colour, ce, to α(ce) and then
back to ce. Similarly, any edge incident with y has the same colour as in G after
switching. The result follows.

Let Γ be a subgroup of Sm. For i, j ∈ {1, 2 . . . ,m}, we say Γ has property Ti,j

when there exist permutations α, β ∈ Γ such that α maps i to j and fixes some
element k, and β maps j to k.

By applying the technique in the proof of the proposition above, we notice that if
Γ has property Ti,j for a fixed pair (i, j), then Γ-switching can be used to transform
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an m-edge coloured graph into one where every edge that had colour i now has
colour j.

Proposition 2.2. Let Γ be a subgroup of Sm with property Ti,j. If Ĝ is an m-edge-

coloured graph, where m ≥ 3, and xy ∈ Ei(Ĝ), then there exists Ĝ′ ∈ [Ĝ]Γ such that

xy ∈ Ej(G
′) and Ĝ− xy = Ĝ′ − xy.

Proof. The switching sequence (x, α), (y, β), (x, α−1), (y, β−1) transforms Ĝ to Ĝ′.

Let Γ be a subgroup of Sm. For j ∈ {1, 2 . . . ,m}, we say Γ has property Tj when
Γ has property Ti,j for every i ∈ {1, 2 . . . ,m} \ j. If Γ has property Tj then for any

edge xy in an m-edge coloured graph Ĝ there exists a Γ-switching sequence such that
xy is of colour j, and the colour of every other edge of Ĝ is unchanged. It follows
that Ĝ can be transformed to be monochromatic of colour j by changing the colour
of one edge at a time.

Lemma 2.3. Let Γ be a subgroup of Sm with property Tj. For any m-edge coloured

graph Ĝ there exists a switching sequence S such that ĜS is monochromatic of

colour j.

Theorem 2.4. Let Γ be a subgroup of Sm with property Tj. Two m-edge-coloured

graphs Ĝ and Ĥ are Γ-switch equivalent if and only if G = H.

Proof. By definition, two m-edge coloured graphs which are Γ-switch equivalent have
the same underlying graph.

Now suppose G = H. By Lemma 2.3, both Ĝ and Ĥ are Γ-switch equivalent
to an m-edge-coloured graph that is monochromatic of colour j. Since Γ-switch
equivalence is an equivalence relation, Ĝ and Ĥ are Γ-switch equivalent.

By Theorem 2.4, to check Γ-switch equivalence for a group Γ with property Tj

it suffices to check for equality in the underlying graph. By observation, for m ≥ 3,
Sm has property T1 and for all m ≥ 4, Am has property T1.

Corollary 2.5. For m ≥ 3, two m-edge-coloured graphs Ĝ and Ĥ are Sm-switch

equivalent if and only if G = H.

Corollary 2.6. For m ≥ 4, two m-edge-coloured graphs Ĝ and Ĥ are Am-switch

equivalent if and only if G = H.

3 The Dihedral Group

Form ≥ 3 we denote byDm the group of permutations of {1, 2, . . . ,m} corresponding
to symmetries of the regularm-gon with vertices 1, 2, . . . ,m in cyclic order. The cases
m odd and m even are different. We consider the case of odd m first.
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Proposition 3.1. For any odd integer m ≥ 3 and any j ∈ {1, 2, . . . ,m}, the group

Dm has property Tj.

Proof. Let j ∈ {1, 2, . . . ,m}. To prove Dm has property Tj it suffices to prove Dm

has property Ti,j for all i ∈ {1, 2, . . . ,m} \ j.

Since m is odd, either the least residue of i − j modulo m is even, or the least
residue of j − i modulo m is even. Without loss of generality, the latter holds.
Then there exists k ∈ {1, 2, . . . ,m − 1} such that j − i ≡ 2k (mod m), so that
j − k ≡ k + i (mod m), that is, k is the midpoint of the even-length path joining
i and j. Let α be the permutation of {1, 2, . . . ,m} which corresponds to flipping
the m-gon over while fixing vertex k. Then α maps i to j and fixes k, so Dm has
property Ti,j This completes the proof.

Corollary 3.2. For odd m ≥ 3, two m-edge-coloured graphs Ĝ and Ĥ are Dm-switch

equivalent if and only if G = H.

We now consider the case of switching with respect to Dm when m is even. The
following basic facts from group theory will be used.

Observation 3.3. Suppose m ≥ 2 is even. Let E = {2, 4, . . . ,m} and O =
{1, 3, . . . ,m− 1}. Then,

1. {O, E} is a block system for the action of Dm on {1, 2, . . . ,m};

2. Stabilizer(E) = Stabilizer(O) is a normal subgroup of Dm;

3. Dm/Stabilizer(E) ∼= Dm/Stabilizer(O) ∼= S2;

4. Stabilizer(E) has Property Tj for all j ∈ E ; and

5. Stabilizer(O) has Property Tj for all j ∈ O.

Let Ĝ = (G, σ) be an m-edge-coloured graph, where m ≥ 2 is an even integer.
The 2-edge-coloured graph Ĝ2 is obtained from G by assigning each edge e colour 1
if σ(e) ∈ O, and colour 2 if σ(e) ∈ E . Notice that this is equivalent to regarding the
edge colours of Ĝ2 to be E and O, with the colour of an edge of Ĝ2 being the name
of the block containing the colour of the corresponding edge in Ĝ. The colours of
the edges of Ĝ2 are naturally permuted by Dm/Stabilizer(E) ∼= S2.

Theorem 3.4. Let Ĝ and Ĥ be m-edge-coloured graphs, where m ≥ 2 is an even

integer. Then Ĝ and Ĥ are switch equivalent with respect to Dm if and only if Ĝ2

and Ĥ2 are switch equivalent with respect to S2.

Proof. Suppose Ĝ and Ĥ are switch equivalent with respect to Dm. Then there is a
Dm-switching sequence S = (x1, π1), (x2, π2), . . . , (xt, πt) that transforms Ĝ to Ĥ. By
Observation 3.3, each permutation πi ∈ Dm either maps E to E and O to O, or maps
E to O and vice-versa. Let S ′ be the subsequence of S consisting of the permutations
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that map E to O. Replacing each of the permutations in this subsequence by the
transposition (1 2) gives an S2-switching sequence that transforms Ĝ2 to Ĥ2.

Now suppose Ĝ2 and Ĥ2 are switch equivalent with respect to S2. Then, G2 = H2.
Without loss of generality, assume G2 = H2. Let A = (x1, σ1), (x2, σ2), . . . , (xp, σp)

be an S2-switching sequence that transforms Ĝ2 to Ĥ2. Replacing each permutation
σi ∈ S2 by the m-cycle (1 2 · · · m) ∈ Dm gives a Dm-switching sequence that
transforms G to a graph G′ in which the colour of edge belongs to the same block
as the corresponding edge G. Since Stabilizer(E) has Property Tj for all j ∈ E , and
Stabilizer(O) has Property Tj for all j ∈ O, the m-edge-coloured graph G′ is Dm-
switch equivalent to H (as in the proof of Proposition 2.2, edges other than the one
whose colour is intended to change switches from their colour then back again).

Zaslavsky proved that the 2-edge-coloured graphs Ĝ and Ĥ with the same un-
derlying graph are switch equivalent with respect to S2 if and only if they have the
same collection of cycles for which the number of edges whose colour is in E2 is odd
[13]. Together with Theorem 3.4, this yields a similar result for Dm, where m ≥ 2 is
even.

Corollary 3.5. Suppose m ≥ 2 is even. Two m-edge-coloured graphs Ĝ and Ĥ with

the same underlying graph are switch equivalent with respect to Dm if and only if

they have the same collection of cycles for which the number of edges whose colour

is in E is odd.

4 Colourings and Homomorphisms

Our goal in this section is to present analogues of Theorems 4.1 and 4.2 below for
Γ-switchable colourings and homomorphisms when Γ is a group with property Tj for
some j ∈ {1, 2, . . . ,m}, or an even order dihedral group. Theorems such as these are
known as dichotomy theorems because they exhibit a dichotomy for the complexity
of a particular decision problem.

Theorem 4.1 ([5]). For an integer k ≥ 1, the problem of deciding whether a given

graph G has a k-colouring is solvable in polynomial time when k ≤ 2, and is NP-

complete if k ≥ 3.

Theorem 4.2 ([6]). If H is a fixed graph then the problem of deciding whether a

given graph G has a homomorphism to H is solvable in polynomial time if H is

bipartite, and is NP-complete if H is not bipartite.

It follows from the definition of Γ-switchable homomorphism that if there exists a
Γ-switchable homomorphism of an m-edge-coloured graph Ĝ to an m-edge-coloured
graph Ĥ, then there is a homomorphism from G to H. To see that the converse is
false, let Γ = S2, let Ĝ be the 2-edge coloured K3 with two edges of colour 1 and
one edge of colour 2 and let Ĥ be the 2-edge coloured K3 with two edges of colour 2
and one edge of colour 1. There is a homomorphism of G to H but no S2-switchable
homomorphism of Ĝ to Ĥ.
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The following theorem from [9] is useful because it transforms the problem of
deciding whether there is a Γ-switchable homomorphism of Ĝ to Ĥ to the problem
of deciding the existence of a homomorphism (with no switching) to any m-edge
coloured graph Γ switch equivalent to H.

Theorem 4.3 ([9]). Let Ĝ and Ĥ be m-edge-coloured graphs and let Γ be a subgroup

of Sm. Then there is a Γ-switchable homomorphism of Ĝ to Ĥ if and only if, for all

Ĥ ′ ∈ [Ĥ]Γ there exists Ĝ′ ∈ [Ĝ]Γ such that there is a homomorphism of Ĝ′ to Ĥ ′.

Theorem 4.4. Let Γ be a subgroup of Sm that has Property Tj for some j ∈
{1, 2, . . . ,m}, and let k ≥ 1 be an integer. If k ≤ 2 then the problem of decid-

ing whether a given m-edge-coloured graph has a Γ-switchable k-colouring is solvable

in polynomial time. If k ≥ 3 then the problem of deciding whether a given m-edge-

coloured graph has a Γ-switchable k-colouring is NP-complete.

Proof. By Corollary 2.5 every m-edge-coloured graph F̂ is Γ-switch equivalent to an
m-edge-coloured graph F̂ ′ that is monochromatic of colour j. Thus by Theorem 4.3
there is a Γ-switchable homomorphism of Ĝ to an m-edge-coloured graph Ĥ on k
vertices if and only if there is a homomorphism of Ĝ′ to Ĥ ′, if and only if there is a
homomorphism of G to H, if and only if G has a k-colouring. The result now follows
from from Theorem 4.1.

The proof of the corresponding result for Γ-switchable homomorphisms proceeds
similarly, and is thus omitted.

Theorem 4.5. Let Γ be a subgroup of Sm that has Property Tj for some j ∈

{1, 2, . . . ,m}. Let Ĥ be a fixed m-edge-coloured graph. If Ĥ is bipartite, then the

problem of deciding whether a given m-edge-coloured graph has a Γ-switchable homo-

morphism to Ĥ is solvable in polynomial time. If Ĥ is not bipartite then the problem

of deciding whether a given m-edge-coloured graph has a Γ-switchable homomorphism

to Ĥ is NP-complete.

Proof. By Corollary 2.5, the m-edge-coloured graphs Ĝ and Ĥ are Γ-switch equiv-
alent to m-edge-coloured graphs Ĝ′ and Ĥ ′, which are monochromatic of colour j.
It follows from Theorem 4.3 that there is a Γ-switchable homomorphism of Ĝ to
Ĥ if and only if there is a homomorphism of Ĝ′ to Ĥ ′, if and only if there is a
homomorphism of G to H. The result now follows from Theorem 4.2.

We have found dichotomy theorems for the complexity of the Γ-switchable k-
colouring problem and the problem of deciding whether there exists a Γ-switchable
homomorphism to a fixed m-edge coloured graph Ĥ when Γ is one of Sm,m ≥ 3;
Am,m ≥ 4; Dm,m ≥ 2 and odd; any other group with property Tj for some j.
Finally, we consider dihedral groups of even order. The following theorem will be
useful.
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Theorem 4.6 ([3]). Let Ĥ be a 2-edge-coloured graph. If there is an S2-switchable

homomorphism of Ĥ to a monochromatic K2, then the problem of deciding whether a

given 2-edge-coloured graph Ĝ has an S2-switchable homomorphism to Ĥ is solvable

in polynomial time. If there is no S2-switchable homomorphism of Ĥ to a monochro-

matic K2, then the problem of deciding whether a given 2-edge-coloured graph Ĝ has

an S2-switchable homomorphism to Ĥ is NP-complete.

As an aside, we note that it is easy to test whether a 2-edge coloured graph has a
S2-switchable homomorphism to a monochromatic K2. By [2] such an S2-switchable
homomorphism exists if and only if there is a homomorphism (without switching) of
H to a 4-cycle where the edge colours alternate. The latter condition can be tested
in polynomial time. Without loss of generality H is connected. By symmetry the
image of any vertex can be chosen without loss of generality. Since each vertex is
adjacent with exactly one edge of each colour, there is only one choice to extend the
mapping to a neighbouring vertex. Successively doing so either leads to the desired
homomorphism or to a contradiction in which some vertex is forced to have two
different images.

Theorem 4.7. Let k ≥ 1 be an integer, and let m ≥ 2 be an even integer. The

problem of deciding whether a given m-edge-coloured graph has a Dm-switchable k-
colouring is solvable in polynomial time if k ≤ 2 and is NP-complete if k ≥ 3.

Proof. Let Ĝ be an m-edge coloured graph. It is clear that Ĝ has a Dm-switchable
1-colouring if and only if it has no edges.

Suppose k = 2. By definition, Ĝ has a Dm-switchable 2-colouring if and only if
there exists j such that it has a Dm-switchable homomorphism to a K2 of colour j.
Thus, by Theorem 4.3, Ĝ has a Dm-switchable 2-colouring if and only if it is bipartite
and there exists Ĝ′ ∈ [Ĝ]Dm

such that Ĝ′ is monochromatic of colour j.

Without loss of generality j is odd. By Theorem 3.4 the m-edge coloured graph
Ĝ′ exists if and only if Ĝ2 (as in Theorem 3.4) is S2-switch equivalent to Ĝ′

2. Since
Ĝ′

2 is bipartite and switchable homomorphisms compose [9], this is equivalent to Ĝ2

having an S2-switchable homomorphism to a K2 of colour 1, which is decidable in
polynomial time by Theorem 4.6.

Now suppose k ≥ 3. The transformation is from the problem of deciding whether
a given graph G has a k-colouring. Suppose a graph G is given. We claim that G has
a k-colouring if and only if the m-edge-coloured graph Ĝ, whose underlying graph
is G, and is monochromatic of colour j has a Dm-switchable k-colouring. Clearly Ĝ
can be constructed in polynomial time.

Suppose Ĝ has a Dm-switchable k-colouring. By definition, such a mapping gives
a k-colouring of G. Suppose G has a k-colouring. Then there is a homomorphism
of G to Kk. Therefore there is a homomorphism of Ĝ to a copy of Kk which is
monochromatic of colour j. Thus Ĝ has a Dm-switchable k-colouring.

It now follows that Dm-switchable k-colouring is NP-complete.

The proof of the following lemma is very similar to the proof of Theorem 3.4.
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Lemma 4.8. Let Ĝ and Ĥ be m-edge coloured graphs, and m ≥ 2 be an even integer.

There is a Dm-switchable homomorphism of Ĝ to Ĥ if and only if there is an S2-

switchable homomorphism of Ĝ2 to Ĥ2.

Proof. Suppose first that there is a Dm-switchable homomorphism of Ĝ to Ĥ. Then
there is a Dm-switching sequence S = (x1, π1), (x2, π2), . . . , (xt, πt) that transforms
Ĝ to Ĝ′ ∈ [Ĝ]Dm

for which there is a homomorphism of Ĝ′ to Ĥ. By Observation 3.3,
each permutation πi ∈ Dm either maps E to E and O to O, or maps E to O and vice-
versa. Let S ′ be the subsequence of S consisting of the permutations that map E to
O. Replacing each of the permutations in this subsequence by the transposition (1 2)
gives an S2-switching sequence that transforms Ĝ2 to a 2-edge coloured graph Ĝ′

2

that has a homomorphism to Ĥ2. Therefore there is an S2-switchable homomorphism
of Ĝ2 to Ĥ2.

Suppose there is an S2-switchable homomorphism of Ĝ2 to Ĥ2. We claim that Ĝ
and Ĥ are Dm-switch equivalent to Ĝ2 and Ĥ2, respectively. Since Stabilizer(E) has
property Tj for all j ∈ E , any edge of Ĝ whose colour is in E can be Dm-switched to
have colour 2. As in the proof of Proposition 2.2, edges other than the one whose
colour is intended to change switch from their colour then back again. Similarly,
any edge of Ĝ whose colour is in O can be Dm-switched to have colour 1. Thus Ĝ
is Dm-switch equivalent to Ĝ2. Similarly Ĥ is Dm-switch equivalent to Ĥ2, and the
claim is proved.

The same function that gives a homomorphism of the 2-edge coloured graph Ĝ2

to the 2-edge coloured graph Ĥ2 is also a homomorphism of the m-edge coloured
graph Ĝ2 to the m-edge coloured graph Ĥ2. It now follows from Theorem 4.3 that
there is a Dm-switchable homomorphism of Ĝ to Ĥ.

Theorem 4.9. Let Ĥ be an m-edge coloured graph, and m ≥ 2 be an even integer. If

there is a homomorphism of Ĥ2 to a monochromatic K2, then the problem of deciding

whether a given m-edge-coloured graph Ĝ has a Dm-switchable homomorphism to Ĥ is

solvable in polynomial time. If there is no homomorphism of Ĥ2 to a monochromatic

K2, the problem of deciding whether a given m-edge-coloured graph Ĝ has a Dm-

switchable homomorphism to Ĥ is NP-complete.

Proof. Let Ĥ be an m-edge coloured graph, and m ≥ 2 be an even integer.

Suppose first there is a homomorphism of Ĥ2 to a monochromaticK2. Let Ĝ be an
m-edge coloured graph. Then, by Theorem 4.6, it can be decided in polynomial time
whether Ĝ2 has a Ŝ2-switchable homomorphism to Ĥ2. Since Ĝ2 can be constructed
in polynomial time, Lemma 4.8 implies it can be decided in polynomial time whether
Ĝ has a Dm-switchable homomorphism to Ĥ.

Now suppose there is no homomorphism of the 2-edge coloured graph Ĥ2 to
a monochromatic K2. We show the problem of deciding whether a given m-edge
coloured graph has a Dm-switchable homomorphism to H is NP-complete. The
transformation is from the problem of deciding whether a given 2-edge coloured graph
F̂ has an S2-switchable homomorphism to Ĥ2, which is NP-complete by Theorem 4.6.
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Suppose such a 2-edge-coloured graph F̂ is given. The transformed instance of
the problem is the m-edge coloured graph F̂ ′ in which every edge has the same colour
as in F̂ . Then F̂ ′

2 = F̂ , and the result follows from Lemma 4.8.

5 Concluding Remarks

Zaslavsky’s original work on switching defined switch equivalence in the same manner
as herein. One may consider a more general version, switch isomorphism, in which Ĝ
and Ĥ are considered as equivalent when there is a switching sequence S such that
ĜS is isomorphic to Ĥ. For any group Γ, two m-edge-coloured graphs that are both
monochromatic of colour j are Γ-switch isomorphic if and only if their underlying
graphs are isomorphic. And so, deciding whether two m-edge coloured graphs are
equivalent under this model is at least as hard as deciding if they are isomorphic.

For an abelian group Γ and an m-edge coloured graph Ĝ there is a graph PΓ(Ĝ)
such that Ĝ and Ĥ are Γ-switch isomorphic if and only if PΓ(Ĝ) ∼= PΓ(Ĥ). However,
under Zaslavsky’s original definition of switch equivalence, Ĝ and Ĥ are Γ-switch
equivalent if and only if PΓ(Ĝ) and PΓ(Ĥ) are equal after first being converted to a
canonical form [9]. No similar result is known to hold when Γ is non-abelian.
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