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Abstract

In this paper, we study minimal (with respect to inclusion) zero forc-
ing sets. We first study the maximum size of a minimal zero forcing set
Z(G), and relate it to the zero forcing number Z(G). Surprisingly, we
show that the equality Z(G) = Z(G) is preserved by deleting a univer-
sal vertex, but not by adding a universal vertex. We also characterize
graphs with extreme values of Z(G) and explore the gap between Z(G)
and Z(G). Finally, we investigate when a graph can have polynomially
or exponentially many distinct minimal zero forcing sets.

1 Introduction

Given a simple undirected graph G = (V,E), each of whose vertices is colored blue
or white, the zero forcing color change rule says that at each timestep, a blue vertex
with exactly one white neighbor causes that neighbor to become blue. If S ⊂ V is a
set of blue vertices in G, the closure of S, denoted cl(S), is the set of blue vertices
obtained after the color change rule is applied until no more white vertices can be
turned blue. A set S is a zero forcing set if cl(S) = V ; the zero forcing number of
G, denoted Z(G), is the minimum cardinality of a zero forcing set.

Zero forcing was introduced in [3] as a bound on the minimum rank over all
symmetric matrices whose entries have the same off-diagonal zero-nonzero pattern
as the adjacency matrix of a graph G. This minimum rank problem is a special
case of the matrix completion problem which has numerous theoretical and practical
applications (such as the million-dollar Netflix challenge [22]). Zero forcing is also
related to other processes that arise from the observation that knowing the values

ISSN: 2202-3518 c©The author(s). Released under the CC BY 4.0 International License



B. BRIMKOV AND J. CARLSON/AUSTRALAS. J. COMBIN. 90 (3) (2024), 363–377 364

of all-but-one variables in a linear equation causes the last remaining variable to be
known. In particular, processes that are equivalent or very similar to zero forcing
were independently introduced in quantum physics (quantum control theory [13]),
theoretical computer science (fast-mixed searching [25]), electrical engineering (PMU
placement [12, 21]), and combinatorial optimization (target set selection problem
[2, 8, 15]). Zero forcing has also found a variety of uses in physics, logic circuits,
coding theory, and in modeling the spread of diseases and information in social
networks; see [5, 13, 14, 23] and the bibliographies therein.

In this paper, we study minimal (rather than minimum) zero forcing sets. Specif-
ically, we investigate the maximum size of a minimal zero forcing set, and relate it to
the zero forcing number. Maximum minimal sets and minimum maximal sets have
been studied in the context of many other graph parameters, including independent
sets (see [18, 20]), dominating sets (see [6, 7]), matchings (see [16, 17]), and vertex
covers (see [9, 26]). Studying minimal zero forcing sets can lead to a better under-
standing of the zero forcing process, e.g., in the context of zero forcing polynomials
[10] and zero forcing reconfiguration graphs [19]. We also study when a graph can
have polynomially or exponentially many distinct minimal zero forcing sets.

This paper is organized as follows. In the remainder of this section, we recall
some graph theoretic notions, specifically those related to zero forcing. In Section 2,
we investigate the maximum size of a minimal zero forcing set and its relation to the
zero forcing number. In Section 3, we study the effect of various graph properties on
the number of minimal zero forcing sets. We conclude with some final remarks and
open questions in Section 4.

1.1 Preliminaries

A simple graph G = (V,E) consists of a vertex set V and an edge set E of two-
element subsets of V . The order of G is denoted by n = |V |. Two vertices v, w ∈ V
are adjacent, or neighbors, if {v, w} ∈ E; this is denoted v ∼ w. The neighborhood
of v ∈ V is the set of all vertices which are adjacent to v, denoted N(v); the closed
neighborhood of v, denoted N [v], is the set N(v)∪{v}. The degree of v ∈ V is defined
as deg(v) = |N(v)|. The minimum degree of G is denoted δ(G) and the maximum
degree is denoted ∆(G). A leaf is a vertex of degree 1 and a universal vertex is a
vertex of degree |V | − 1, i.e., a vertex that is adjacent to all other vertices. Given
S ⊂ V , the induced subgraph G[S] is the subgraph of G whose vertex set is S and
whose edge set consists of all edges of G which have both endpoints in S.

The complete graph on n vertices is denoted by Kn, the cycle on n vertices is
denoted by Cn, and the empty graph on n vertices is denoted by Kn. A tree is a
connected acyclic graph. A branchpoint of a tree is a vertex of degree at least 3. A
tree with a single branchpoint is called a spider. The branchpoint v of a spider is
also called the center vertex, and the legs of a spider G with branchpoint v are the
connected components of G − v. The length of a leg of a spider is the number of
vertices in the leg. The graph Sa1,...,ak is a spider whose legs have lengths a1, . . . , ak.
The corona of graphs G and H, denoted G ◦ H, is the graph obtained as follows:
for each vertex v ∈ V (G), add a new copy of H and make v adjacent to all vertices
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in that copy of H. The Cartesian product of graphs G and H, denoted G�H, has
vertex set V (G)×V (H) and two vertices (u1, v1) and (u2, v2) are adjacent whenever
u1 = u2 and v1v2 ∈ E(H) or v1 = v2 and u1u2 ∈ E(G). The join of disjoint graphs G
and H, denoted G∨H, is the graph obtained by adding an edge between every vertex
of G and every vertex of H. The wheel on n vertices is defined as Wn = Cn−1 ∨K1

and the star on n vertices is defined as Sn = Kn−1 ∨K1.
A connected component of G is called trivial if it consists of a single vertex;

otherwise it is called nontrivial. The disjoint union of graphs G1 and G2 is denoted

G1∪̇G2, and kG =
⋃̇k

i=1G. An isomorphism between graphs G and H is a bijection
f : V (G) → V (H) such that vertices u and v are adjacent in G if and only if f(u)
and f(v) are adjacent in H. If graphs G and H are isomorphic, we will write G ∼= H.
An automorphism is an isomorphism from G to itself. A graph G is vertex transitive
if for any two vertices v1 and v2 of G, there is some automorphism f : G → G such
that f(v1) = v2. For other graph theoretic terminology and definitions, we refer the
reader to [24].

A fort of a graph G = (V,E) is a non-empty set F ⊂ V such that no vertex
outside F is adjacent to exactly one vertex in F . It was shown in [11] that every
zero forcing set of a graph intersects every fort of the graph. The set of all forts of
G is denoted as B(G); when there is no scope for confusion, dependence on G will
be omitted. For a zero forcing set S ⊂ V (G), an ordered list of forces that can be
performed in sequence to color V (G) blue is called a chronological list of forces of
S. Given an arbitrary subset S ⊂ V (G), a set of forces that can be performed (in
some order) to color cl(S) blue is called a set of forces of S. For a set of forces, F ,
of S ⊂ V (G), the terminus of F is the set of vertices in V (G) that do not perform a
force in F . Given a subset S ⊂ V (G), the terminus of an arbitrary set of forces of S
is called a reversal of S. It can be observed that every reversal of a zero forcing set
S is also a zero forcing set of the same size as S. The maximum size of a minimal
zero forcing set of G is denoted Z(G).

Throughout the paper, we will use the following standard asymptotic notation.
Given real-valued functions f(x) and g(x) defined on an unbounded interval of real
numbers, with g(x) being strictly positive for large enough values of x, we say that
f(x) = O(g(x)) if there exists a positive real number M and a real number x0 such
that |f(x)| ≤ Mg(x) for all x ≥ x0. Moreover, we say that f(x) = Ω(g(x)) if and
only if g(x) = O(f(x)).

2 Maximum minimal zero forcing sets

In this section, we explore Z(G), the maximum size of a minimal zero forcing set
of G, and consider the possible sizes of minimal zero forcing sets in the graph. It
follows from the definition of Z that for any graph G on n vertices, Z(G) ≤ n. We
begin by characterizing the extremal values of Z(G).

Observation 2.1. Let G be a graph on n vertices. Then Z(G) = n if and only if G
is the empty graph Kn.
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The first nontrivial extremal value to consider is Z(G) = n− 1.

Proposition 2.2. Let G be a graph on n vertices. Then Z(G) = n − 1 if and only
if G ∼= Km∪̇kK1 where k is an integer and m = n− k ≥ 2.

Proof. Let G be a graph with Z(G) = n − 1 and suppose G 6∼= Km∪̇kK1 where
k ≥ 2 is an integer and m = n − k. Suppose first that G has multiple nontrivial
components. In this case, a minimal zero forcing set of G cannot contain all vertices
from some nontrivial component of G. Thus, each minimal zero forcing set contains
at most n−2 vertices, so Z(G) ≤ n−2, a contradiction. Now, suppose G has a single
nontrivial component C. By the assumption that G 6∼= Km∪̇kK1, it follows that C
is not a clique. This means that there must be two non-adjacent vertices u and v in
C. Let S be a minimal zero forcing set of G of size n− 1. Then, S must contain all
isolated vertices of G, and therefore it contains all-but-one of the vertices of C.

Suppose one of u and v, say u, is not in S. Let w be a neighbor of v. Then,
S \ {w} is also a zero forcing set; this contradicts the minimality of S. Thus, both u
and v have to be in S which means there is some other vertex w /∈ {u, v} that is not
in S. If w is not a dominating vertex of C, then there is a vertex q not adjacent to
w. Let p be a neighbor of q. Then, S \ {p} is also a zero forcing set of G. If w is a
dominating vertex, then S \ {v} is also a zero forcing set of G, since u can force w,
and then w can force v. Thus, if Z(G) = n− 1, G must be isomorphic to Km∪̇kK1.
Conversely, if G ∼= Km∪̇kK1, it can be verified directly that Z(G) = n− 1.

Next, we consider low values of Z(G). Since for any graph G, Z(G) ≥ Z(G), we turn
our attention to characterizing Z(G) = Z(G).

Proposition 2.3. Let G be a graph. Then, Z(G) = Z(G) if and only if every zero
forcing set of G contains a minimum zero forcing set.

Proof. Suppose Z(G) = Z(G) and suppose there exists a zero forcing set S of G that
does not contain a minimum zero forcing set. Let S ′ be a minimal zero forcing set
contained in S. Then, Z(G) ≥ |S ′| > Z(G), a contradiction. Conversely, if every zero
forcing set contains a minimum zero forcing set, then every minimal zero forcing set
must also contain a minimum zero forcing set and must therefore be a minimum zero
forcing set.

The condition of Proposition 2.3 can be readily verified for some families of graphs,
especially those with high symmetry. A few such families are given in the following
corollary.

Corollary 2.4. If G is a cycle, empty graph, star, wheel, complete graph, or complete
bipartite graph, then Z(G) = Z(G).

Below are two more families of graphs that satisfy Z(G) = Z(G).

Proposition 2.5. For any integers a, b ≥ 3, Z(Ka ∨Kb) = Z(Ka ∨Kb) and Z(Ka ∨
Cb) = Z(Ka ∨ Cb).
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Proof. In Ka ∨Kb, each pair of vertices in Ka and each pair of vertices in Kb form
a fort. Thus, any zero forcing set of Ka ∨Kb must contain at least a− 1 vertices of
Ka and at least b− 1 vertices of Kb. Moreover, each set consisting of exactly a− 1
vertices of Ka and exactly b− 1 vertices of Kb is a minimum zero forcing set. Thus,
by Proposition 2.3, Z(Ka ∨Kb) = Z(Ka ∨Kb).

By [4, Theorem 5.3.1] (restated in [1, Lemma 4.3]), Z(Ka ∨ Cb) = min{a +
Z(Cb), b+ Z(Ka)} = min{a+ 2, b+a−1} = a+ 2. Let S be an arbitrary zero forcing
set of Ka∨Cb. Note that S must contain at least a−1 vertices of Ka, since each pair
of vertices in Ka is a fort. Suppose S contains exactly a − 1 vertices of Ka. Then,
the first force cannot be performed by a vertex of Ka, since each vertex of Ka will
have at least two white neighbors. In order for a vertex of Cb to perform the first
force, it and its two neighbors in Cb must be in S. However, a set consisting of a− 1
vertices of Ka and 3 consecutive vertices of Cb is a minimum zero forcing set, so S
contains a minimum zero forcing set.

Now, suppose S contains a vertices of Ka. Then, unless b = 3, the first force still
cannot be performed by a vertex of Ka, since each vertex of Ka will have at least
two white neighbors. In order for a vertex of Cb to perform the first force, it and
one of its neighbors in Cb must be in S. However, a set consisting of a vertices of Ka

and 2 consecutive vertices of Cb is a minimum zero forcing set, so again S contains
a minimum zero forcing set. Finally, if b = 3, then Ka ∨ Cb is a complete graph. In
all cases, by Proposition 2.3, Z(Ka ∨ Cb) = Z(Ka ∨ Cb).

In families of graphs without high symmetry, it can be difficult to determine whether
every zero forcing set contains a minimum zero forcing set. Therefore, despite the
complete characterization of Z(G) = Z(G) in Proposition 2.3, the structure of these
graphs is still unclear.

To obtain more insight about graphs with Z(G) = Z(G), we can look for graph
operations that preserve this equality. From Corollary 2.4 and Proposition 2.5, it
seems like the operation of adding a universal vertex is a good candidate for preserv-
ing Z(G) = Z(G). In particular, adding any number of universal vertices to cycles,
wheels, empty graphs, stars, complete graphs, and graphs of the form Ka ∨Kb and
Ka ∨ Cb always produces another graph satisfying Z(G) = Z(G). However, the fol-
lowing result shows that there are graphs where adding a universal vertex does not
preserve the property Z(G) = Z(G).

Theorem 2.6. There are infinitely many graphs G such that Z(G) = Z(G) and
Z(G ∨K1) > Z(G ∨K1).

Proof. For each integer n ≥ 7, let Gn be the graph on n vertices illustrated in
Figure 2.1. Note that Z(Gn) ≥ δ(Gn) ≥ 2. Since {1, 2, 3} is a zero forcing set of
Gn and no subset S ⊂ V (Gn) with |S| = 2 is a zero forcing set, Z(Gn) = 3. Let
H = Gn ∨K1. Since G = Gn has no isolated vertices, Z(H) = Z(G) + 1 = 4 by [1,
Lemma 4.3]. Note that {1, 3, 4, 5, 6} is a minimal zero forcing set of H which implies
that Z(H) ≥ 5 > 4 = Z(H).
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1 2 3 4 5 6

Figure 2.1: A graph Gn on n ≥ 7 vertices with Z(Gn) = Z(Gn) and Z(Gn ∨K1) >
Z(Gn ∨K1).

It remains to show that Z(G) = Z(G) = 3. Suppose that B ⊂ V (G) is a minimal
zero forcing set of G with |B| ≥ 4. Let v be the first vertex in B to perform a force
which means that v and all-but-one of its neighbors are in B. If v = 1, then B
contains one of {1, 2, 3, 5}, {1, 2, 3, n}, {1, 2, 5, n}, and {1, 3, 5, n} as a subset. These
sets are zero forcing sets of G that properly contain the following zero forcing sets
respectively: {1, 2, 3}, {1, 2, 3}, {1, 2, n}, {1, 3, n}.

Similarly, if v = 2, then B contains one of {1, 2, 3}, {1, 2, 4}, and {2, 3, 4} as a
subset (call this subset X). Since |B| ≥ 4, X is a proper subset of B; moreover, X is
a zero forcing set. If v = 3, then B contains one of {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 3, 4, 5},
and {2, 3, 4, 5} as a subset. Each of these sets are zero forcing sets of G that properly
contain another zero forcing set (namely, {1, 2, 3} or {3, 4, 5}). Note that due to the
symmetry of G, the cases where v = 4 and v = 5 are analogous to v = 2 and v = 1,
respectively.

Finally, if v ∈ {6, ..., n}, then B must contain a pair of vertices {x, y} from the
following list: {5, 6}, {6, 7}, . . . , {n − 1, n}, {n, 1}. Recall that |B| ≥ 4. Since the
vertices 1, 5, 6, 7, . . . , n are in the closure of {x, y} and B is a minimal zero forcing set,
B\{x, y} contains at least two vertices from {2, 3, 4}. Thus, B properly contains one
of {x, y, 2}, {x, y, 3}, and {x, y, 4} which are each zero forcing sets of G. Therefore,
in all cases, B is not a minimal zero forcing set of G which implies that Z(G) ≤ 3.
Since Z(G) ≥ Z(G) = 3, it follows that Z(G) = 3.

Although adding a universal vertex does not always preserve Z(G) = Z(G), the
following result shows that deleting a universal vertex (if one exists) does in fact
preserve Z(G) = Z(G).

Theorem 2.7. Let G be a graph with a universal vertex v. If Z(G) = Z(G), then
Z(G− v) = Z(G− v).

Proof. We proceed by proving the contrapositive: if Z(G) 6= Z(G), then Z(G∨K1) 6=
Z(G ∨ K1). Suppose G is a graph with Z(G) 6= Z(G) and let H = G ∨ K1 where
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V (K1) = {v}. Since Z(G) 6= Z(G), by Proposition 2.3, G has a zero forcing set
B ⊂ V (G) that does not contain a minimum zero forcing set of G. Let B′ ⊂ B be
a minimal zero forcing set of G, where |B′| > Z(G). Note that B′ ∪ {v} is a zero
forcing set of H.

Assume that G has no isolated vertices. Then, Z(H) = Z(G) + 1, which means
that |B′ ∪{v}| = |B′|+ 1 > Z(G) + 1 = Z(H). Since B′ is a minimal zero forcing set
of G, deleting vertices in B′ from B′ ∪ {v} does not create a zero forcing set of H.
Also, since G has no isolated vertices and B′ is a minimal zero forcing set of G, B′

must be a proper subset of V (G) and every vertex in B′ must have a neighbor in G
that is not in B′. Therefore, B′ is not a zero forcing set of H. Thus, B′ ∪ {v} is a
minimal zero forcing set of H and Z(H) > Z(H).

Next, assume that G has exactly one isolated vertex u. Then, Z(H) = Z(G) and
B′ contains u. Since u ∈ B′, B′ is a zero forcing set of H because u can force v which
allows B′ to force the remaining vertices in V (G). Since B′ is a minimal zero forcing
set of G, every vertex in B′\{u} has a neighbor in G that is not in B′. Thus, deleting
u from B′ does not create a zero forcing set of H. Now let x ∈ B′ \ {u}. To see that
B′ \{x} is not a zero forcing set of H, note that the component C of G that contains
x has no isolated vertices. So by the previous case, (B′ ∩ V (C)) ∪ {v} is not a zero
forcing set of H[V (C)∪{v}]. This means that the vertices in (V (C)\B′)∪{x} contain
a fort. Therefore, B′ is a minimal zero forcing set of H. Since, |B′| > Z(G) = Z(H),
Z(H) > Z(H).

Finally, assume that G has at least two isolated vertices u and w. In this case,
Z(H) = Z(G) − 1. Note that u,w ∈ B′ and let B′′ = B′ \ {w}. To see that
B′′ is a zero forcing set of H, observe that u can force v, (B′ \ {w}) ∪ {v} is a
zero forcing set of H − w, and once V (H) \ {w} is blue, v can force w. Also,
|B′′| = |B′| − 1 > Z(G) − 1 = Z(H). It remains to show that B′′ is a minimal zero
forcing set of H. First note that every pair P = {a, b} of isolated vertices in G is
a fort of H because no vertex in H is adjacent to exactly one vertex in P . Thus,
deleting an isolated vertex of G from B′′ does not create a zero forcing set of H.
Similar to the previous cases, if x ∈ B′′ is not an isolated vertex of G and C is the
component of G that contains x, then (V (C) \B′′)∪ {x} contains a fort. Therefore,
B′′ is a minimal zero forcing set of H which means Z(H) > Z(H).

Theorems 2.6 and 2.7 provide some interesting insight into the structure of the
graphs that satisfy Z(G) = Z(G). For instance, we can define the poset (G,�) where
G is the set of graphs with Z(G) = Z(G) and for each G,H ∈ G, G � H if and only
if H ∼= G∨K1. The poset (G,�) could be a useful way to study the property Z = Z.
For example, consider the lengths of various chains in (G,�). We have found many
examples of infinitely long chains in this poset. The following graphs are minimal
elements of such chains: K1, Kn, and Cn. On the other hand, since the graph Gn

in Figure 2.1 has no universal vertex, Theorem 2.6 also demonstrates that there
are infinitely many chains in (G,�) that only contain one graph each (namely, Gn).
Interestingly, we have not found a finite chain in (G,�) with more than one graph
and we leave this question open. Note also that there are graphs with Z(G) > Z(G)
that are not obtained through addition of universal vertices — for example, path
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graphs, grid graphs, and spiders with legs of length at least 4.
While it is difficult to give a full structural description of the graphs with Z(G) =

Z(G), maximum minimal zero forcing sets can be described in terms of forts. Recall
that a fort of a graph G is a subset S ⊂ V (G) such that no vertex in V (G) \ S has
exactly one neighbor in S. If B(G) is the collection of all forts of G, a cover of B(G)
is a set S that intersects each fort in B(G). A minimal cover of B(G) is a cover that
does not contain another cover as a proper subset.

Proposition 2.8. A set S is a minimal zero forcing set of a graph G = (V,E) if
and only if S is a minimal cover of B(G).

Proof. Let S be a minimal zero forcing set of G. It was shown in [11] that every zero
forcing set intersects every fort, so S is a cover of B(G). For the sake of contradiction,
assume that S ′ is proper subset of S that covers B(G). If S ′ is not a zero forcing
set, then cl(S ′) 6= V . If any vertex u ∈ cl(S ′) is adjacent to exactly one vertex
v ∈ V \cl(S ′), then u could force v, contradicting the definition of cl(S ′). Thus,
V \cl(S ′) is a fort, and it does not contain any vertex of S ′, which contradicts S ′

being a cover. Therefore, S ′ is a zero forcing set of G. However, this contradicts the
assumption that S is a minimal zero forcing set.

Conversely, let S be a minimal cover of B(G). It was shown in [11] that S is
a zero forcing set of G. Suppose for contradiction that S contains a smaller zero
forcing set S ′ as a proper subset. If S ′ is not a cover of B(G), then there exists a fort
F which does not contain any element of S ′. In order for the first vertex v of F to
be forced, at some timestep v must be the only neighbor of some blue vertex outside
F . However, since F is a fort, any vertex outside F which is adjacent to v is also
adjacent to another white vertex in F . Thus, v cannot be forced, which contradicts
S ′ being a zero forcing set. Therefore, S ′ is a cover of G. However, this contradicts
the assumption that S is a minimal cover.

When studying the structure of minimal zero forcing sets, it is useful to consider how
minimal zero forcing sets intersect. The following proposition concerns vertices that
appear in every minimal zero forcing set of a given graph.

Proposition 2.9. Let G = (V,E) be a graph and v ∈ V . Every minimal zero forcing
set of G contains v if and only if v is an isolated vertex.

Proof. Clearly, since isolated vertices must be contained in every zero forcing set of
G, they must also be contained in every minimal zero forcing set of G. Suppose a
non-isolated vertex v is contained in every minimal zero forcing set of G. Let S be
an arbitrary minimum zero forcing set of G (and hence also a minimal zero forcing
set). Since S is minimal and v is not an isolated vertex, there are neighbors of v
that are not in S. Let L be a chronological list of forces of S. If v forces a vertex
in L, then the terminus of the set of forces in L is a minimum zero forcing set that
does not contain v. If v does not force a vertex in L, let L′ be a chronological list
of forces that is identical to L except that in the step where the last white neighbor
w of v is forced by some vertex u, instead v forces w. Then, the terminus of the
set of forces in L′ is a minimum zero forcing set that does not contain v. In both
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cases, the terminus is a zero forcing set of G that has the same cardinality as S and
is therefore minimum (and hence minimal), which contradicts that v is contained in
every minimal zero forcing set.

Finally, while there are many graphs with Z(G) = Z(G), there are also graphs with
a large gap between Z(G) and Z(G). In the following proposition, we show that for
a graph G of order n, Z(G)− Z(G) can be Ω(n), and in fact can be almost equal to
n.

Proposition 2.10. There are infinitely many graphs G such that Z(G) − Z(G) =
n− 7.

Proof. Let Gn be the graph (2K2) ∨ Pn−4 for each n ≥ 7; see Figure 2.2 for an
illustration. Every vertex in Pn−4 together with one vertex from each K2 forms a
minimal zero forcing set of size n − 2. Since Gn 6∼= Km ∪ kK1 for m = n − k ≥ 2,
it follows from Proposition 2.2 that Z(Gn) 6= n − 1. Thus, Z(Gn) = n − 2. On the
other hand, every vertex in 2K2 together with a leaf in Pn−4 forms a minimum zero
forcing set of size 5. Thus, Z(G)− Z(G) = (n− 2)− 5 = n− 7.

Figure 2.2: A graph Gn on n ≥ 7 vertices with Z(Gn)− Z(Gn) = n− 7.

3 Number of minimal zero forcing sets

In this section, we investigate the effect (or lack thereof) of several graph properties
on the number of minimal zero forcing sets. We begin with a general characterization
using Z(G).

Proposition 3.1. If Z(G) = O(1), then G has a polynomial number of minimal
zero forcing sets. If Z(G) = Ω(n), then G could have either a polynomial or an
exponential number of minimal zero forcing sets.

Proof. For every minimal zero forcing set S of G, |S| ≤ Z(G). There are
(
n
1

)
+
(
n
2

)
+

. . . +
(

n
Z(G)

)
subsets of V (G) of size at most Z(G). If Z(G) = k for some constant

k, then
(
n
1

)
+
(
n
2

)
+ . . . +

(
n

Z(G)

)
= O(nk) and therefore, the number of minimal zero
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forcing sets of G is polynomial. Next, Z(Kn) = Ω(n) and Kn has polynomially many
minimal zero forcing sets, since each minimal zero forcing set consists of n−1 vertices
of Kn. Finally, Z(Kn/2 ◦K1) = Ω(n) and Kn/2 ◦K1 has exponentially many minimal
zero forcing sets, since any set S consisting of n/4 leaves and n/4 non-leaves that
are not adjacent to any of the n/4 leaves is zero forcing (as each leaf in S can force
its white neighbor, and then each non-leaf in S can force its white neighbor) and
minimal (as deleting any element of S will cause it to not be a zero forcing set).

Next we show that the number of minimal zero forcing sets is not determined by
whether the graph is a tree.

Proposition 3.2. Some trees have polynomially many minimal zero forcing sets;
some trees have exponentially many minimal zero forcing sets.

Proof. Let S5,5,...,5 be a spider with center v and n−1
5

legs of length 5. For 1 ≤ i ≤ n−1
5

,
let leg i consist of vertices ai, bi, ci, di, and ei, where ai is adjacent to v, bi to ai,
ci to bi, di to ci, and ei to di. For each I ⊂ {1, . . . , n−1

5
} and j ∈ {1, . . . , n−1

5
}, the

set S(I, j) =
⋃

i∈I,i 6=j{bi, ci} ∪
⋃

i/∈I,i 6=j{ci, di} is zero forcing set, since in each leg i
different from j, either the vertices {bi, ci} or {ci, di} are contained in the set, and
those vertices will force the entire leg i; then, after all legs i 6= j are colored blue, leg
j will be forced by the center v. Moreover, the set S(I, j) is minimal, since if any
vertex u in leg i 6= j is omitted, the leg i cannot be colored. Thus, there are Ω(2n/5)
minimal zero forcing sets in S5,5,...,5. On the other hand, a star Sn has a polynomial
number of minimal zero forcing sets, since any minimal zero forcing set of Sn consists
of all-but-one leaves.

Next we show that the number of minimal zero forcing sets in a tree is not determined
by the number of leaves or branchpoints.

Proposition 3.3. A tree with an exponential number of minimal zero forcing sets
can have the same number of leaves, branchpoints, and vertices as a tree with a
polynomial number of minimal zero forcing sets.

Proof. Let S1,1,...,1,(4n+1)/5 be a spider with n−6
5

legs of length 1 and one leg of length
4n+1

5
. This spider has a total of n−1

5
legs, and therefore n−1

5
leaves. The minimal

zero forcing sets of this graph consist of either all-but-one leaves, or of all-but-one
of the leaves in the legs of length 1 plus two adjacent non-leaf, non-center vertices
in the leg of length 4n+1

5
. Thus, S1,1,...,1,(4n+1)/5 has polynomially many minimal zero

forcing sets. On the other hand, in Proposition 3.2, it was shown that S5,5,...,5 has
exponentially many minimal zero forcing sets, yet it has the same number of vertices,
leaves, and branchpoints as S1,1,...,1,(4n+1)/5.

We next show a direct relation between the number of connected components and
the number of minimal zero forcing sets.

Proposition 3.4. Let G1, . . . , Gk be the connected components of a graph G. For
1 ≤ i ≤ k, let ni be the number of minimal zero forcing sets of Gi. Then, the number
of minimal zero forcing sets of G is

∏k
i=1 ni.
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Proof. A set S is a zero forcing set of G if and only if S ∩ V (Gi) is a zero forcing
set of Gi for each 1 ≤ i ≤ k. Moreover, S is minimal if and only if S ∩ V (Gi) is
minimal for each 1 ≤ i ≤ k. Thus, each minimal zero forcing set S of G corresponds
to a collection of minimal zero forcing sets of G1, . . . , Gk. Furthermore, since there
are

∏k
i=1 ni distinct ways to select minimal zero forcing sets of G1, . . . , Gk, it follows

there are
∏k

i=1 ni distinct minimal zero forcing sets in G.

Corollary 3.5. If a graph has k nontrivial components, then it has Ω(2k) minimal
(and minimum) zero forcing sets.

Proof. Let G1, . . . , Gk be the nontrivial connected components of G. For 1 ≤ i ≤ k,
let S1

i be a minimum zero forcing set of Gi and S2
i be a reversal of S1

i . Note that
both S1

i and S2
i are minimum (and hence minimal) zero forcing sets of Gi. Since

each component Gi has at least two minimum (and minimal) zero forcing sets, G has
Ω(2k) minimum (and minimal) zero forcing sets by Proposition 3.4.

We conclude this section by investigating whether vertex transitivity can affect the
number of minimal zero forcing sets. From Corollary 3.5, it follows that a discon-
nected vertex transitive graph can have both a polynomial and exponential number
of minimal zero forcing sets. For example, any disjoint union of vertex transitive

graphs of fixed size, like
⋃̇n/3

i=1C3, has exponentially many zero forcing sets. However,
Cn/2∪̇Cn/2 has polynomially many minimal zero forcing sets. Next, we show that
this also holds for connected vertex transitive graphs.

Proposition 3.6. Some connected vertex transitive graphs have polynomially many
minimal zero forcing sets; some have exponentially many minimal zero forcing sets.

Proof. Let G = C5�Kn/5. Note that G is a connected vertex transitive graph with
Z(G) = 2n/5. Let K1, K2, and K3 be three distinct maximal cliques of G with
V (K1) = {u1, . . . , un/5}, V (K2) = {v1, . . . , vn/5}, and V (K3) = {w1, . . . , wn/5} such
that vi ∼ ui and vi ∼ wi for all i ∈ {1, . . . , n/5}.

For each I ⊂ {1, . . . , n/5}, let K1(I) = {ui : i ∈ I} and K3(I) = {wi : i ∈
{1, . . . , n/5}\I}. Then, S(I) := V (K2) ∪K1(I) ∪K3(I) is a zero forcing set of G,
since for each i ∈ I, vi can force wi and for each i ∈ {1, . . . , n/5}\I, vi can force ui.
After every vertex in K1, K2, and K3 is colored blue, the rest of the graph can also
be forced. See Figure 3.1 for an illustration. Since Z(G) = 2n/5 and |S(I)| = 2n/5
for each I ⊂ {1, . . . , n/5}, S(I) is a minimum (and hence also minimal) zero forcing
set. There are 2n/5 subsets I of {1, . . . , n/5}, and each of them creates a distinct
minimum zero forcing set S(I); thus, there are Ω(2n/5) distinct minimum zero forcing
sets of G.
In contrast, the cycle Cn is a connected vertex transitive graph with n minimal zero
forcing sets, since a zero forcing set of Cn is minimal if and only if it is a pair of
adjacent vertices.

While vertex transitive graphs with a polynomial number of minimal zero forcing
sets can be both sparse and dense (e.g., cycles and complete graphs), and vertex
transitive graphs with an exponential number of minimal zero forcing sets can be
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Figure 3.1: A connected vertex transitive graph with an exponential number of
minimal zero forcing sets.

dense (e.g., the family shown in Proposition 3.6), we have not found a sparse family
of vertex transitive graphs with an exponential number of minimal zero forcing sets.
We leave this as an open question.

4 Concluding remarks and future work

In this paper, we studied the structure, number, and maximum size of the minimal
zero forcing sets of a graph. In Section 2, we focused on Z(G), the maximum size of
a minimal zero forcing set of G. Generally, it seems nontrivial to find Z(G), but the
exact computational complexity is still unknown. We state this question formally
below.

Question 4.1. Can Z(G) be computed in polynomial time, or is computing Z(G)
NP-Hard?

Another question of interest is related to Proposition 2.3 and the families of graphs
explored in Corollary 2.4 and Proposition 2.5.

Question 4.2. Are there easily verifiable necessary and sufficient conditions to as-
sure that Z(G) = Z(G)?

In Proposition 2.10, we produced a family of graphs with Z(G)−Z(G) = n−7. This
warrants further investigation into the possible differences between Z(G) and Z(G),
as well as characterizations of graphs with Z(G) = n − j for other small values of
j. Recall also that the graphs with Z(G) = Z(G) form a poset (G,�) where G � H
if and only if H can be obtained by adding a universal vertex to G. Exploring the
possible lengths of the chains in this poset would also be of interest. We state these
questions formally below.

Question 4.3. What is the largest possible gap between Z(G) and Z(G)?

Question 4.4. Which graphs satisfy Z(G) = n− j for 2 ≤ j ≤ 6?
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Question 4.5. Let (G,�) be the poset where G is the set of graphs with Z(G) = Z(G)
and for each G,H ∈ G, G � H if and only if H ∼= G ∨K1. Does this poset have a
finite chain of length at least 2?

In Section 3, we investigated the effect of several graph properties, like acyclicity
and vertex transitivity, on the number of minimal zero forcing sets. Proposition 3.6
showed a family of dense connected vertex transitive graphs that have an exponential
number of minimal zero forcing sets. The open question below concerns sparse
connected vertex transitive graphs.

Question 4.6. Is there a family of sparse connected vertex transitive graphs that
have exponentially many minimal zero forcing sets?

To tackle this question, it would be useful to know whether a graph has a polynomial
number of minimal zero forcing sets. It would also be interesting to further investigate
when the minimal zero forcing sets of a graph can be found or counted in polynomial
time. We state these questions formally below.

Question 4.7. Which families of graphs have a polynomial number of minimal zero
forcing sets?

Question 4.8. If a graph is known to have a polynomial number of minimal zero
forcing sets, can all these sets be listed in polynomial time?

Question 4.9. Given a graph G and a zero forcing set B ⊂ V (G), when can the
smallest minimal zero forcing set contained in B be found in polynomial time?

Note that answering Question 4.9 for B = V (G) is equivalent to finding the zero
forcing number and is therefore NP-Hard.
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