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Abstract
We combine two generalizations of ordinary Turán problems. Given
graphs H and F and a positive integer n, we study rex(n,H, F ), which is
the largest number of copies of H in F -free regular n-vertex graphs. We
present similar and different behaviours of this function with ex(n,H, F ),
which is the maximum number of of copies ofH in n-vertex F -free graphs.
Also, we determine the exact value of rex(n,K3, Pk), where Pk is a path
on k vertices.

1 Introduction

One of the fundamental theorems in extremal graph theory is due to Turán [19]. It
states that among n-vertex Kk+1-free graphs, the most edges are contained in the
complete k-partite graph with each part of order ⌊n/k⌋ or ⌈n/k⌉. This graph is
called the Turán graph and is denoted by T (n, k). More generally, given a graph F ,
we denote by ex(n, F ) the largest number of edges in an n-vertex F -free graph. This
topic has attracted a lot of attention, see [8] for a survey.

A natural generalization is the study of the largest number of copies of another
graph H instead of the number of edges in n-vertex F -free graphs. Let N (H,G)
denote the number of not necessarily induced copies of H in G, and let ex(n,H, F ) =
max{N (H,G) : G is an n-vertex F -free graph}. After several sporadic results, the
systematic study of these so-called generalized Turán problems was initiated by Alon
and Shikhelman [1].

Another natural generalization was recently considered in [4, 5, 11, 12, 18]. Here
we study rex(n, F ), which is the largest number of edges in an n-vertex regular F -free
graph.

ISSN: 2202-3518 c©The author(s). Released under the CC BY 4.0 International License



D. GERBNER ET AL. /AUSTRALAS. J. COMBIN. 90 (3) (2024), 326–340 327

In this paper we combine the above generalizations. Let

rex(n,H, F ) := max{N (H,G) : G is an F -free regular n-vertex graph}.

Our goal is to show some examples where rex(n,H,F ) behaves similarly to ex(n,H, F )
and also show some examples where they differ significantly.

Given a graphH, a blow-up ofH is a graph obtained by replacing each vertex ofH
by an independent set of vertices and each edge uv ∈ E(H) by a complete bipartite
graph between the independent sets replacing u and v. A blow-up is balanced,
denoted by H(m), if every independent set replacing each vertex is of size m, for
some m ∈ Z

+. Alon and Shikhelman [1] proved the following result.

Theorem 1.1 ([1]). Let H be a graph on h vertices, then for any graph F , we have

ex(n,H, F ) = Θ(n|V (H)|) if and only if F is not a subgraph of any blow-up of H.

We extend this theorem to the regular setting.

Theorem 1.2. For any graph F and H, we have that rex(n,H, F ) = Θ(n|V (H)|) if

and only if F is not a subgraph of a blow-up of H.

Another result of Alon and Shikhelman [1] is that ex(n,K3, F ) = O(n) if and
only if F is an extended friendship graph. In an extended friendship graph, every
cycle is a triangle and there is a vertex v such that every pair of triangles intersect
in v (or equivalently, its 2-core is empty or a Friendship graph). We extend this
theorem as well to our setting.

Theorem 1.3. rex(n,K3, F ) = O(n) if and only if F is an extended friendship

graph.

Let us turn to problems where adding the regularity changes the situation. It is
well-known and easy to see that for any forest F , any graph with minimum degree
at least |V (F )| contains F . This implies that rex(n, F ) ≤ (|V (F )|−1)n. Let H be a
connected graph, then the vertices of H have an ordering such that each but the first
vertex has a neighbor that is earlier in the ordering. The copies of H in an F -free
r-regular graph can be counted by picking the vertices in the above order. The first
vertex can be picked n ways, and then each other vertex can be picked at most r ways
among the neighbors of at least one of the vertices picked earlier. This shows that
rex(n,H, F ) = O(n), since r < |V (F )|. On the other hand, ex(n, Pℓ, Pk) = Θ(n⌈ℓ/2⌉)
by a theorem of Győri, Salia, Tompkins and Zamora [17].

Another example where the order of magnitude of rex(n,H, F ) is much smaller
than that of ex(n,H, F ) is given by even cycles. When C2k is forbidden, the regularity
does not have to be constant, but it is O(n1/k) by a theorem of Bondy and Simonovits

[3]. Therefore, rex(n,Cℓ, C2k) = O(n1+ ℓ−1

k ), while we have ex(n,Cℓ, C2k) = Θ(n⌊ℓ/2⌋)
if 3 ≤ ℓ 6= 2k [13].

Note that we have ex(n,Cℓ, C2k+1) = Θ(nℓ) if ℓ is even or ℓ > 2k + 1, as shown
by the blow-up of Cℓ. Interestingly, in the remaining case 3 < ℓ < 2k + 1 is odd,
we have ex(n,Cℓ, C2k+1) = Θ(n⌊ℓ/2⌋) [13], while the above argument does not give
any non-trivial bound. It is a natural question to ask whether rex(n,Cℓ, C2k+1) is
significantly smaller in this case. We can answer this question in the negative.
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Proposition 1.4. If 3 < ℓ < 2k + 1 is odd, then rex(n,Cℓ, C2k+1) = Θ(n⌊ℓ/2⌋).

So far we have considered only the order of magnitude of rex(n,H, F ). Let
us turn to exact and asymptotic results. As shown in [4, 5], for k ≥ 3 we have
rex(n,Kk+1) = (1 + o(1))|E(T (n, k))| (we have rex(n,Kk+1) = |E(T (n, k))| if k
divides n). The exact value of rex(n,Kk+1) was determined for all sufficiently large
n in [12]. Let T ∗(n, k) denote an arbitrary n-vertex Kk+1-free regular graph with
rex(n,Kk+1) edges. Forbidding K3 is very different from forbidding larger cliques in
the regular Turán problem. If n is even, then T (n, 2) is the regular n-vertex triangle-
free graph with the most edges. If n is odd, then a regular n-vertex triangle-free
graph with the most edges is obtained by deleting some edges of an n-vertex blow-up
of C5, as shown in [4, 5].

GivenH with χ(H)≤k, there has been a lot of research on whether ex(n,H,Kk+1)
= N (H, T (n, k)) for sufficiently large n, for example it is the case when H is a com-
plete l-partite graph with 3 ≤ l ≤ k, see e.g. [9, 10, 16]. There have been two types of
counterexamples found (where even ex(n,H,Kk+1) = (1 + o(1))N (H, T (n, k)) does
not hold). If H is a very unbalanced bipartite graph, then an unbalanced complete
k-partite graph may contain more copies of H than the Turán graph. For some
graphs H, there are n-vertex Kk+1-free graphs that contain more copies of H than
any n-vertex complete k-partite graph. For example, let H be obtained from a path
on vertices v1, v2, v3, v4, v5, v6 by adding s additional leaves connected to v2 and s
additional leaves connected to v5. Then some unbalanced blowup of C5 contains
more copies of H than any bipartite graph, see [16]. Examples for k > 2 can be
found in [15]. In each of the known constructions, most of the vertices of H would
belong to two different classes of k-partite graphs, but they can belong to the same
class of the blow-up of another graph. Then that class has many vertices.

Both counterexamples are very far from being regular. This suggests that maybe
there are no regular counterexamples at all.

Conjecture 1.5. Let k ≥ 3 and χ(H) ≤ k. Then

rex(n,H,Kk+1) = (1 + o(1))N (H, T (n, k)).

Moreover, if n is sufficiently large and is divisible by k, then

rex(n,H,Kk+1) = N (H, T (n, k)).

We prove Conjecture 1.5 for complete k-partite graphs H.

Proposition 1.6. Let k ≥ 3 and H be a complete k-partite graph. Then

rex(n,H,Kk+1) = (1 + o(1))N (H, T (n, k)). Moreover, if n is sufficiently large and

is divisible by k, then rex(n,H,Kk+1) = N (H, T (n, k)).

We also prove that the moreover part of Conjecture 1.5 holds in the case k = 2.
In the case n is odd, the situation is very different, but we can describe the structure
of the extremal graph.
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Proposition 1.7. Let H be a bipartite graph. If n is even and sufficiently large, then

rex(n,H,K3) = N (H, T (n, 2)). If H is a tree and n is odd and sufficiently large,

then rex(n,H,K3) = N (H,G∗), where G∗ is a regular graph obtained by deleting

some edges of an n-vertex blow-up of C5.

Finally, we determine the exact value for rex(n,K3, Pk), when n is large enough
and Pk is a path on k vertices. To ease the notation and describe the extremal
graphs, we define some graphs first. Let Gk−1 denote the graphs obtained from Kk−1

by removing the edges of a triangle-free 2-regular subgraph, i.e., the union of vertex-
disjoint cycles of length more than 3 such that the total length of the cycles is k−1. In
the case k is even, let Gk−2 := Kk−2−M , a clique on k−2 vertices in which a perfect
matching is removed. Note that each of the above graphs is (k − 4)-regular and Pk-
free. If k is odd, let G′

k−1 := Kk−1 −M , a clique on k− 1 vertices in which a perfect

matching is removed. Note that N (K3, Gk−1) = 8
(

k/2−1
3

)

+ 3 − k/2 for any graph

Gk−1 ∈ Gk−1, N (K3, Gk−2) = 8
(

k/2−1
3

)

and N (K3, G
′
k−1) = (k− 1)(k− 3)(k− 5)/6 =

8
(

(k−1)/2
3

)

. One can obtain these computations from the fact that the complements
of these graphs contain no triangles, the degrees of their vertices and the following
formula that is basically proven by Goodman [14].

N (K3, G) +N (K3, G) =

(

n

3

)

−
1

2

∑

v∈V (G)

deg(v)(n− 1− deg(v)),

where G denotes the complement of G. We denote by H + F the disjoint union of
two graphs H and F , and by mF we mean m disjoint copies of the graph F .

Theorem 1.8. Let Pk be a path on k vertices and n be large enough. Then:

1. If (k − 1)|n, then rex(n,K3, Pk) =
n

k − 1

(

k − 1

3

)

, and the unique extremal

graph is n
k−1

Kk−1.

2. Assume that (k − 1) ∤ n, k ≥ 6 and either k − 2 divides n or k is odd. Let

n = a(k−2)+b with b < k−2. Then we have rex(n,K3, Pk) = (a−b)

(

k − 2

3

)

+

8b

(

k−1
2

3

)

, and the unique extremal graph is (a− b)(Kk−2) + bG′
k−1.

3. If k ≥ 6 is even, and n is neither divisible by k − 1 nor by k − 2. Let n =
a(k − 3) + b, with b < k − 3. Then

rex(n,K3, Pk) = (a− ℓ−⌊b/2⌋)

(

k − 3

3

)

+ ℓN (K3, Gk−2)+ ⌊b/2⌋N (K3, Gk−1),

and the extremal graphs are formed by adding ⌊b/2⌋ graphs from Gk−1 to (a−
ℓ− ⌊b/2⌋)Kk−3 + ℓGk−2, where ℓ = 0 if b is even and ℓ = 1 otherwise.

4. If neither 3, nor 4 divides n, then rex(n,K3, P5) = ⌊n/3⌋ − 1, and the unique

extremal graph is formed by adding a C4 or a C5 to (⌊n/3⌋ − 1)K3. In all the

cases not listed above, rex(n,K3, Pk) = 0.
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2 Tools

We will use the following well-known theorem of Erdős and Sachs [7].

Theorem 2.1 ([7]). For every r and g, there exists an r-regular graph of girth at

least g.

In fact we rely on the following simple corollaries of the above theorem.

Lemma 2.2. (i) For any r and k, if n is sufficiently large and nr is even, then there

is an n-vertex r-regular graph with girth at least k.
(ii) For any r, k and i, if n is sufficiently large and nr − i is even, then there

is an n-vertex graph with girth at least k that contains i vertices of degree r − 1 and

each other vertex has degree r. Moreover, we can have that the vertices of degree

r − 1 are at distance at least k − 1.

Proof. Let us start by proving (i). We know such a graph G1 exists on m vertices
for some m. If r is even, we take r/2 vertex-disjoint copies of G1 and remove an edge
from each. We add a new vertex and connect it to the endpoints of the removed
edges. The resulting graph G2 satisfies the desired properties on rm

2
+1 vertices. For

each n ≥ rm2, we can write n as a( rm
2

+ 1) + bm, thus we can create an n-vertex
graph by taking vertex-disjoint copies of G1 and G2.

If r is odd, since nr is even, we must have n is even. In this case, we take r
vertex-disjoint copies of G1 and remove an edge from each. We add two new vertices
u, v and connect u to one of the endpoints of each removed edge and v to the other
endpoint. The resulting graph G′

2 satisfies the desired properties on rm+2 vertices.
For each even n ≥ r2m, we can write n as a(rm + 2) + bm, thus we can create an
n-vertex graph by taking vertex-disjoint copies of G1 and G′

2.
We continue with the proof of (ii). If i is even, we take a graph guaranteed by

(i) and remove i/2 independent edges such that the endpoints of these edges are at
distance at least k − 1. If n is sufficiently large, we can greedily find such edges.
Indeed, we take an edge u1v1, then at most 2r− 2 other vertices are adjacent to u or
v, and at most 2(r − 1)j vertices are at distance j from u or v. Altogether there are
at most 2(r − 1)k vertices at distance at most k − 1 from u or v. We take a vertex
u2 different from those at most 2(r− 1)k vertices and an arbitrary neighbor v2 of u2.
Repeating this, we can find i/2 edges if we can pick a vertex ui/2 that is not among
the i− 2 vertices picked earlier and the at most (i− 2)(r− 1)k vertices at distance at
most k − 1 from the vertices picked earlier. In other words, we can pick the desired
edges if n > i − 2 + (i − 2)(r − 1)k. Note that the distance of ui and vi is at least
k − 1 after removing the edge uivi because of the girth condition.

If i is odd, observe that both n and r are odd. Let G3 be an (r − 1)-regular
m-vertex graph for some odd m, with girth at least k. Let G4 be an r-regular graph
on m′ vertices for some m′ sufficiently large with girth at least k. Note that G3 and
G4 exist by (i). We take (m− i)/2 copies of G4 and remove an edge from each. This
way we obtain m− i vertices of degree r− 1, we connect each of them to a different
vertex of G3. The resulting graph has exactly i vertices of degree r − 1 and each
other vertex has degree r.
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In each of the above constructions, we removed an edge uv from some copy of a
graph of girth at least k, then we added some edges incident to u and v and outside
vertices. After removing uv, the distance of u and v becomes at least k−1, thus this
way we do not create cycles of length less than k.

The i vertices of degree r− 1 (in the copy of G3) can be chosen to be at distance
at least k − 1, by a similar reasoning as in the case i is even. �

Corollary 2.3. For any sequence (an) of positive integers with an = ω(1), we can

take for every n an n-vertex graph Gn that satisfies the assumptions of Lemma 2.2

with r ≤ an and r = ω(1).

The following observation is a simple corollary of Hall’s theorem, which will be
used in our proofs.

Observation 2.4. For every k ≤ n, there exists a k-regular bipartite graph with both

parts of order n.

A theorem of Andrásfai, Erdős, and Sós [2], states that a non-bipartite triangle-
free graph on n vertices contains a vertex of degree at most 2n/5. Using this, we
prove a stability result on rex(2n + 1, K3), which may be interesting on its own.
When we talk about Vi+j in the statement or the proof, then + is meant modulo 5.

Lemma 2.5. Let G be a d-regular n-vertex triangle-free graph with n odd. Let

d ≥ 2n/5−o(n). Then V (G) contains disjoint sets V1, . . . V5 such that |Vi|= n/5−o(n)
and from Vi there is no edge to Vi, Vi+2 and Vi+3, and n/5 − o(n) edges go to Vi+1

and Vi+4. In particular G is obtained by deleting some edges of an n-vertex blow-up

of C5.

Proof. Observe that G cannot be bipartite, thus d ≤ 2n/5 by the result of Andrásfai,
Erdős, and Sós [2]. Let C2k+1 be a shortest odd cycle in G and C be a copy of C2k+1.
Then every vertex outside C is adjacent to at most two vertices of C. This implies
that there are at most 2(n − 2k − 1) edges between C and the other vertices. On
the other hand, there are at least (2k + 1)d− (2k + 1) ≥ 2(2k + 1)n/5− o(n) edges
between C and the other vertices by our assumption on the degrees of the vertices
of C (which is d). Here we use that there are 2k + 1 edges inside C, since it is the
shortest odd cycle and so does not have any chords.

This shows that k ≤ 2. Since G is triangle-free, we have k = 2. Furthermore,
n − o(n) vertices outside C have two neighbors in C, otherwise there are at most
2(n− 2k− 1)−Ω(n) < (2k+1)d− (2k+1) edges between C and the other vertices.
Let v1, . . . , v5 be the vertices of C in the cyclic order. Observe that no vertex can be
adjacent to both vi and vi+1, thus n− o(n) vertices are each, for some i, adjacent to
vi and vi+2. We place those vertices to Vi+1. Let U = V (G) \ (V1 ∪V2 ∪V3 ∪V4 ∪V5),
then |U |= o(n).

Let u ∈ Vi. As u has a common neighbor with every vertex of Vi, Vi+2 and Vi+3,
there are no neighbors of u in Vi ∪ Vi+2 ∪ Vi+3, thus all the neighbors of u are in
Vi+1 and Vi+4 and U . In particular, |Vi+1|+|Vi+4|≥ 2n/5− o(n). This holds for every
non-adjacent pair of classes. If |Vi|≤ n/5− αn, then |Vi+2|, |Vi+3|≥ n/5 + αn− o(n).
Then |Vi+1|+|Vi+4|≤ 2n/5− αn− o(n), thus α = o(1), completing the proof. �
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3 Proofs

Let us prove Theorem 1.2. Recall that it states that rex(n,H, F ) = Θ(n|V (H)|) if and
only if F is not a subgraph of a blow-up of H.

Proof of Theorem 1.2. If F is a subgraph of a blow-up of H, then rex(n,H, F ) ≤
ex(n,H, F ) = o(n|V (H)|), where we use Theorem 1.1. Assume now that F is not
a subgraph of any blow-up of H. If H is the empty graph, the statement follows.
Observe that otherwise, since each bipartite graph is a subgraph of the (sufficiently
large) blow-up of a single edge, we also have that F has chromatic number at least
3. We can also assume that there are no isolated vertices in F .

In the analogous statement for ex(n,H, F ), this is the trivial direction, as the
blow-up H(m) with m = ⌊n/|V (H)|⌋ is F -free and contains Ω(n|V (H)|) copies of H.
However, we have two problems here: the first is that H(m) is not regular if H is
not regular, and the second is that we may need to add some vertices of degree 0 to
obtain an n-vertex graph.

Let ∆ be the largest degree in H. Let Hi be a graph with girth more than 3|V (F )|
that has a set S of i vertices of degree 2∆ and all the other vertices of degree 2∆+1,
such that the vertices of S are of distance at least |V (F )|. Such a graph exists by
Lemma 2.2 where the number of vertices is large enough compared to ∆ and |V (F )|,
but constant compared to n.

For each 1 ≤ i ≤ ∆ and each vertex v of H of degree i, we take a copy of H2∆+1−i

and join v to the 2∆ + 1− i vertices of this copy of degree 2∆. This way we obtain
a (2∆ + 1)-regular graph H ′ on constant many vertices.

Claim 3.1. The blow-up H ′(m) is F -free for any m.

Proof of Claim. We can assume that m is large enough compared to |V (F )|. Let
us assume that there is a copy of F in H ′(m), that we will denote with F ∗. Let
H∗ denote an arbitrary copy of an Hi in H ′, for some i. Let F0 denote a connected
component of the intersection of F ∗ with the blow-up of H∗. Observe that F0 is
bipartite, since any cycle inside F0 has length at most |V (F )| and any cycle inside
H∗ has length at least 3|V (F )|. Also observe that F0 contains at most one vertex of
S. Indeed, otherwise F0 would contain a path between two vertices of S inside H∗,
but such a path contains more than |V (F )| vertices, a contradiction. Let u be the
vertex of H that is joined to v in H ′ and u′ be an arbitrary neighbor of u in H.

Now we can delete F0 and embed it to the complete bipartite graph between the
blow-ups of u and u′, using only vertices that were not in F ∗. This can be done
since F0 is bipartite and m is large enough. We repeat this for every subgraph of F
outside H(m). At the end, we obtain a copy of F in H(m), a contradiction. �

Let us return to the proof of the theorem. We are done if |V (H ′)| divides n, as we
can pick m to be n/|V (H ′)|. To prove the theorem for every n, we do the following.
Let H ′′ denote the vertex-disjoint union of H ′(2m) and C2|V (F )|+1((2∆+1)m). Note
that H ′′ is F -free, since every subgraph of C2|V (F )|+1((2∆ + 1)m) on at most |V (F )|
vertices is bipartite. If there is a copy of F in H ′′, then the components that are in
C2|V (F )|+1((2∆ + 1)m) are bipartite, and hence could be easily replaced by copies in
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H ′(2m) (we can find such copies in the blow-up of any edge). This way we find a
copy of F in H ′(2m), a contradiction.

Clearly, H ′′ is 2(2∆+1)m-regular for any m, and the number of vertices have the
same parity as m. Let us pick the largest m such that n− |V (H ′′)| is even. Observe
that n−|V (H ′′)| is a constant. Now we modify the C2|V (F )|+1((2∆+1)m) subgraph.
Note that this is similar to the way the odd cycles were modified in [5].

Let A1, . . . , A2|V (F )|+1 be the blown-up parts of the cycle in this order. We take
a pair of neighboring parts, say Ai and Ai+1, and add b = (n − |V (H ′′)|)/2 vertices
to each of Ai and Ai+1. We add them in such a way that we still have a complete
bipartite graph between any pair of consecutive blown-up parts Aj, Aj+1, i.e., we
connect the new vertices of Ai to each vertex of Ai−1 and Ai+1, and connect the
new vertices of Ai+1 to each vertex of Ai and Ai+2. Then we remove the edges of a
spanning bipartite graph B between Ai−1 and Ai such that each vertex of Ai−1 has

degree b and each vertex of Ai has degree
⌊

(2∆+1)mb
(2∆+1)m+b

⌋

or
⌈

(2∆+1)mb
(2∆+1)m+b

⌉

in B. This can

be done the following way. We cover Ai by |Ai−1| sets of size b (each of them are the
b neighbors of a vertex in Ai−1), such that each vertex of Ai is covered by as equal as
possible number of such sets. Then we take a bijection between the vertices of Ai−1

and these sets, and delete the edges between the vertices of Ai−1 and the vertices of
the sets they are mapped to.

We remove the edges of a copy of B between Ai+1 and Ai+2 as well such that the
vertices of degree b are in Ai+2.

At this point the vertices outside Ai and Ai+1 have degree 2(2∆+1)m. The part

Ai consists of a set A′
i of vertices of degree 2(2∆+1)m+b−

⌊

(2∆+1)mb
(2∆+1)m+b

⌋

and a set A′′
i

of vertices of degree 2(2∆ + 1)m+ b−
⌈

(2∆+1)mb
(2∆+1)m+b

⌉

. Similarly, Ai+1 consists of a set

A′
i+1 of vertices of degree 2(2∆+1)m+ b−

⌊

(2∆+1)mb
(2∆+1)m+b

⌋

and a set A′′
i+1 of vertices of

degree 2(2∆ + 1)m+ b−
⌈

(2∆+1)mb
(2∆+1)m+b

⌉

. Observe that by the analogous construction,

we have that |A′
i|= |A′

i+1|. We pick a perfect matching M ′ between A′
i and A′

i+1, and
extend it to a perfect matching M between Ai and Ai+1. We delete the edges of M .

Then the resulting graph between Ai and Ai+1 is 2(2∆ + 1)m + b − 1-regular,
and thus we can delete matchings between Ai and Ai+1 until we obtain a
(

(2∆ + 1)m+
⌊

(2∆+1)mb
(2∆+1)m+b

⌋)

-regular graph between Ai and Ai+1. After that, we add

the edges of M that are not in M ′. Observe that the number of neighbors of each ver-

tex of A′
i in Ai+1 is (2∆+1)m+

⌊

(2∆+1)mb
(2∆+1)m+b

⌋

, and in Ai−1 is (2∆+1)m−
⌊

(2∆+1)mb
(2∆+1)m+b

⌋

.

Vertices of A′′
i have one more neighbor in Ai+1 and one less neighbor in Ai−1. The

same holds for vertices in Ai+1. Let G denote the resulting n-vertex graph. Then
G is 2(2∆ + 1)m-regular and contains at least m|V (H)| = Θ(n|V (H)|) copies of H,
completing the proof. �

Let us continue with the proof of Theorem 1.3. Recall that it states that
rex(n,K3, F ) = O(n) if and only if F is an extended friendship graph.
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Proof of Theorem 1.3. If F is an extended friendship graph, then rex(n,K3, F ) ≤
ex(n,K3, F ) = O(n).

Assume that F is not an extended friendship graph. Then it either contains two
vertex-disjoint triangles or a longer cycle Ck with k ≥ 4. In the first case, we take the
K3-free graph on n−1 vertices with regularity r = Ω(n) due to Caro and Tuza [5]. In
particular, it contains an induced copy K of Kr/2,r/2. We remove a perfect matching
from K, and add a new vertex v, connected to the vertices of K. The resulting graph
is r-regular, and contains r2/4 triangles that all contain v, completing our proof.

Let us assume now that F contains Ck. Let n be sufficiently large. We pick
r = ω(1) such that r is small enough to have a 2r-regular graph of girth more than
3k2 on m vertices whenever m ≥ 11n/36 and such that n > r3|V (F )|. We take an
r-regular m-vertex graph G0 of girth at least 3k2 where m = ⌊n/4⌋, using Corollary
2.3. We consider Gk

0 as an auxiliary graph. Recall that the kth power Gk
0 of a graph

G0 is obtained by joining vertices of distance at most k.
It is easy to see that Gk

0 is r′-reg, where r′ = r+ r(r− 1) + · · ·+ r(r− 1)k−1. We
take a proper r′ + 1-edge-coloring of Gk

0. Since G0 is a subgraph of Gk
0, we obtain

a proper edge-coloring of G0. For each color i, we partition the edges of color i to
some number of r-sets and a set of order at most r. For each such set, we add a new
vertex and connect it to the at most 2r vertices that are incident to those at most r
edges. This way we obtain G1.

The vertices of G0 have degree r in G0, thus they are incident to edges of r colors,
hence their degree is 2r in G1. The newly added vertices have degree 2r, except r′+1
vertices, that are connected to the endpoints of less than r edges. Let us assume that
the sum of degrees in G1 is 2r|V (G1)|−ℓ. Note that ℓ is even since each vertex has an
even degree and at most 2r(r′+1). There are rm edges from V (G0) to V (G1)\V (G0)
and at least 2r(|V (G1) \ V (G0)|−r′ − 1) edges from V (G1) \ V (G0) to V (G0), thus
|V (G1) \ V (G0)|≤

m
2
+ r′ + 1, hence V (G1) ≤ 3n/8 +O(1) ≤ 4n/9.

Now we make G1 regular. We take a copy of a 2r-regular graph G′
0 and remove

ℓ/2 independent edges the following way. First we delete an arbitrary edge u1v1.
The number of vertices at distance at most |V (F )|+1 from u1 is at most r′′ =
2r+2r(2r−1)+ · · ·+2r(2r−1)|V (F )|+1. Then we pick a vertex u2 that is at distance
at least |V (F )|+1 from u1 and a neighbor v2 of u2. Then we delete the edge u2v2
and these four vertices are at distance at least |V (F )| from each other. We repeat
this, always picking vertices ui that are at distance at least |V (F )|+2 from each of
u1, . . . , ui−1. This is doable if ℓr′′ < m, which holds by our assumption on r.

The resulting graph Q1 is of girth more than k with a set S of ℓ vertices of degree
2r − 1 and all the other vertices of degree 2r. The vertices of S are at distance at
least |V (F )|. We join each vertex v of G1 to 2r − d(v) vertices of degree 2r − 1 in
this new graph. The resulting graph G2 is 2r-regular on at most 25n/36 vertices.

Finally, we add a 2r-regular graph of girth more than k on n− |V (G2)| vertices.
This exists by the choice of r. �

Let us continue with the proof of Proposition 1.4. Recall that it states that if
3 < ℓ < 2k + 1 is odd, then rex(n,Cℓ, C2k+1) = Θ(n⌊ℓ/2⌋).
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Proof of Proposition 1.4. The upper bound is shown by ex(n,Cℓ, C2k+1) = Θ(n⌊ℓ/2⌋)
in [13].

Let us turn to the lower bound. We start with an unbalanced blow-up of Cℓ, where
we blow up (ℓ−1)/2 independent vertices tom-sets, and keep the other vertices (note
that this construction shows the analogous bound for ex(n,Cℓ, C2k+1), but it is far
from regular). Let H denote this graph, then the largest degree is 2m in H. We take
two vertex-disjoint copies of H, denoted by 2H. We add sets A1, A2, . . . , A2k of new
vertices of order 2m − 2. We take two blown-up parts A and A′ of order m of 2H
arbitrarily. We add sets A1, A2, . . . , A2k of new vertices of order 2m− 2. We take all
the possible edges between A and A1, then an m-regular graph between Ai and Ai+1

for each i ≤ 2k − 1 (this exists because of Observation 2.4), and then take all the
possible edges between A2k and A′. It is easy to see that each vertex of A, A′ and
each Ai has degree 2m and no C2k+1 is created this way. We repeat this by taking
4k(m− 1) new vertices as long as there are at least two blown up classes of order m
in 2H.

We are left with several vertices of degree 2m and exactly two adjacent vertices
u, v and u′, v′ of degree m+ 1 in both copies of H (they are the adjacent vertices of
the original ℓ-cycles that were not blown up). We take sets B, B′ of order m− 1 and
B1, . . . , B2k of order 2m − 1. We take all the edges between u and B and between
B and B1. Then we take an (m + 1)-regular graph between B2i+1 and B2i+2, for
each 0 ≤ i ≤ k − 1, and an (m − 1)-regular graph between B2i and B2i+1, for each
1 ≤ i ≤ k − 1. Finally, we take all the edges between B2k and B′ and between B′

and v. We do the same to deal with u′ and v′ in the other copy of H.
It is left to add n − |V (H ′)| vertices without ruining these properties. Observe

that we added at most 16ℓkm vertices to H. We pick m to be the largest odd number
below ⌊n/40kℓ⌋, thus H ′ has at most n/2 vertices. If n−|V (H ′)| is even, we can pick
a bipartite 2m-regular graph on those vertices, completing the proof. If n− |V (H ′)|
is odd, we additionally pick a copy of C2k+3(m), and then pick a bipartite 2m-regular
graph on the remaining vertices, completing the proof. �

Let us continue with the proof of Proposition 1.6. Recall that it states that if H is
a complete k-partite graph and k ≥ 3, then rex(n,H,Kk+1)=(1+o(1))N (H, T (n, k)),
and without the error term if k divides n. Recall that T ∗(n, k) denotes an arbitrary
extremal graph for rex(n,Kk+1).

Proof of Proposition 1.6. The lower bound is trivial. We will prove the upper bound
for k ≥ 2. Note that if k = 2 the case n is even is equivalent to the even case of
Proposition 1.7.

Let H = Ks1,...,sk with s1 ≤ s2 ≤ . . . ≤ sk. For simplicity, we will deal with
labeled copies of H, clearly the same n-vertex Kk+1-free regular graph maximizes
(asymptotically) the number of labeled copies of H as the number of copies. We will
show that for k ≥ 2, any n-vertex Kk+1-free graph contains at most k!

∏k
i=1

(

(n/k)
si

)

copies of H. Clearly T (n, k) satisfies this with equality if k divides n, and T ∗(n, k)
gives the correct asymptotics, thus this upper bound completes the proof for other
values of n as well.
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We apply induction on k and on
∑k

i=1 si. The base case k = 2 follows from
Proposition 1.7 if n is even. Moreover, the exact same proof works for the case n
is odd, without changing a single word (but gives a bound that is not sharp). The
other base case

∑k
i=1 si = k follows from Zykov’s theorem [20], which states that

ex(n,Kr, Kk+1) = N (H, T (n, k)).
Let G be an n-vertex Kk+1-free r-regular graph, then r ≤ (k− 1)n/k by Turán’s

theorem. We consider two cases. Assume first that s1 = 1 and let H ′ be the graph
we obtain by deleting the first class from H. Then we first pick a vertex v of G corre-
sponding to the single vertex in the first class, at most n ways. Then we pick a labeled
copy of H ′ in the neighborhood of v, at most (k−1)!

∏k
i=2

(

(r/(k−1))
si

)

by the induction

on k. This way we picked the labeled copies of H at most n(k−1)!
∏k

i=2

(

(r/(k−1))
si

)

≤

nk! /k
∏k

i=2

(

(k−1)n/k)/(k−1)
si

)

= k! n
k

∏k
i=2

(

n/k
si

)

= k!
(

n/k
s1

)
∏k

i=2

(

n/k
si

)

.
Assume now that s1 > 1 and let H ′′ be the graph we obtain by deleting a Kk from

H. We first pick an unlabeled copy K of Kk, then a labeled copy of H ′′ from the
remaining vertices, and then add the labels to the vertices ofK. By Zykov’s theorem,
the number of unlabeled copies of Kk is maximized by the Turán graph, thus it is
at most nk/kk. The number of labeled copies of H ′′ is at most k!

∏k
i=1

(

(n−k)/k
si−1

)

by

induction on
∑k

i=1 si. Afterwards, we add the vertices of K to the vertices of H ′′.
Observe that each vertex of K has a copy of Kk−1 in their neighborhood in H ′′. As G
is Kk+1-free, the vertices of a Kk−1 cannot be adjacent to two adjacent vertices. This
implies that each copy of Kk−1 has at most one common neighbor in K. Therefore,
each vertex of K can belong to at most one of the classes of H. This means that the
number of labels the vertices of K can receive is at most

∏k
i=1 si, hence the number

of labeled copies of H is at most nk

kk
k!
∏k

i=1 si
∏k

i=1

(

(n−k)/k
si−1

)

= k!
∏k

i=1

(

n/k
si

)

. This
completes the proof. �

Let us continue with Proposition 1.7. Recall that it extends the above proposition
to the case k = 2 if n is even. If n is odd, then it deals with the case H is a tree
and claims that the extremal graph G∗ is a regular graph obtained by deleting some
edges of a blow-up of C5.

Proof of Proposition 1.7. Let n be even, consider a component H0 of H and an
ordering of the vertices of H0 such that each but the first vertex has an earlier
neighbor. Such an ordering exists by first picking an arbitrary vertex and then each
time picking a neighbor of a vertex already picked.

Let G be an n-vertex r-regular triangle-free graph, then r ≤ n/2. Moreover,
either G is bipartite (with both parts of order n/2, thus G is contained in T (n, 2),
completing the proof), or r ≤ 2n/5. Assume that r ≤ 2n/5. There are at most n
ways to pick the first vertex and at most 2n/5 ways to pick each subsequent vertex.
In T (n, 2) there are n and (1 + o(1))n/2 ways to do this. The copies of H0 may
be counted multiple times, but the number of times is a fixed constant c depending
only on the automorphisms of H and not the host graph. Therefore, G contains

at most 2
(

2n
5

)|V (H0)| /c, while T (n, 2) contains (2 + o(1))
(

n
2

)|V (H0)| /c copies of H0.
Then we pick the other components of H. Similarly, there are more ways to pick
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each component in T (n, 2) than in G if n is large enough. Therefore, T (n, 2) contains
more copies of H for sufficiently large n, completing the proof.

Assume now that n is odd and H is a forest. Let G be an n-vertex r-regular
triangle-free graph, then r ≤ 2n/5. Moreover, by Lemma 2.5, either G is obtained
by deleting some edges of an n-vertex blow-up of C5, or r ≤ 2n/5 − εn for some
ε > 0. In the first case, we are done. In the second case, we can proceed similarly to

the argument in the case where n is even. G contains at most 2
(

2n
5
− εn)

)|V (H0)| /c

copies of H0, while G
∗ contains 2

(

2n
5

)|V (H0)| /c copies of H0. The same holds for other
components, thus G∗ contains more copies of H for sufficiently large n, completing
the proof in this case. �

Before the proof of Theorem 1.8, let us mention some results that will be used.
By a theorem of Erdős and Gallai [6], if a connected graph has at least k vertices
and minimum degree ⌊k/2⌋, then it contains a Pk. Gerbner, Patkós, Tuza and
Vizer [12] gave the exact value of regex(n, T ) for any tree T and large n. Note that
regex(n, F ) = max{d : there is an n-vertex, d-regular, F -free graph G}.

Theorem 3.2 ([12]). Let T be a tree on t vertices and n > n0(T ). Then

regex(n, T ) =























t− 2 if t− 1 divides n or T is a star and t or n is even,

t− 3 if the above does not hold, and either t is odd, or t− 2

divides n, or T is a star or T is an almost-star and n is even;

t− 4 otherwise.

A tree is an almost-star if in its proper 2-coloring, one of the classes consists of
at most two vertices (thus a path on at least 6 vertices is not an almost-star).

Now we are ready to present the proof of Theorem 1.8, which determines
rex(n,K3, Pk) if k ≥ 7 and n is sufficiently large.

Proof of Theorem 1.8. Let G be an n-vertex r-regular Pk-free graph containing the
maximum number of triangles. Observe that each vertex of G is in at most

(

r
2

)

triangles, and hence N (K3, G) ≤ n
3

(

r
2

)

, with equality only when each vertex is in a
clique Kr+1. Note that in each of the constructions described in the introduction,
the r-regular n-vertex graph contains n/(r+1)−O(1) copies of Kr+1, hence contains
n
3

(

r
2

)

−O(1) triangles. This implies that, for large n, a graph with smaller regularity
cannot contain more triangles than our construction. Therefore, r is at least the
regularity of the claimed unique construction. Using Theorem 3.2, in each of the
cases we know that r is at most the regularity of the claimed unique construction,
and it is left to show that no other r-regular graph can contain at least as many
triangles as our construction, in each case.

As G is Pk-free, we have r ≤ k − 2 by Theorem 3.2. Therefore, N (K3, G) ≤
n
3

(

k−2
2

)

= n
k−1

(

k−1
3

)

, with equality only when (k − 1)|n and G is n/k − 1 disjoint
copies of Kk−1, proving the first case. If n is not divisible by (k − 1) and r = k − 2,
then by Theorem 3.2 we have that Pk is a star, i.e., k ≤ 3. Consequently, r < k− 2.

In the second case, we have k is odd or k − 2 divides n and we can assume
r = k − 3. We can write n as a(k − 2) + b, where 0 ≤ b ≤ k − 3. Since k ≥ 6, we
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have k − 3 ≥ k/2, and hence, by the result of Erdős and Gallai, each component
has at most k − 1 vertices. Thus, each component is either a Kk−2 or G′

k−1, for
these are the only (k − 3)-regular graphs on at most k − 1 vertices. This means
G = xKk−2 + yG′

k−1, which gives x(k − 2) + y(k − 1) = n = a(k − 2) + b, implying

y = a′(k − 2) + b, where a′ = a− x− y.

If y > b, then a′ ≥ 1, and hence, y ≥ (k− 2) + b, then we can replace k− 2 copies of
G′

k−1 by k − 1 copies of Kk−2, increasing the number of triangles as N (K3, Kk−2) >
N (K3, G

′
k−1), contradicting the choice of G. Also, if y < b, then as k − 2 > 0,

we must have a′ < 0, which implies y < 0, a contradiction. Therefore, y = b and
x = a− b, which proves the second case.

Note that if k is even, then Kk−1 does not contain a perfect matching, and hence,
if (k − 2) ∤ n, then r < k − 3, leading to the third case.

Assume now r = k − 4 and k ≥ 6 is even. We can write n as a(k − 3) + b,
where 0 ≤ b ≤ k − 4. First recall that each graph in Gk−1 contains the same
number of triangles. By the same reasoning of the previous case, we may assume
that G consists of xKk−3 + yGk−2 and z copies of graphs from Gk−1. This gives
x(k − 3) + y(k − 2) + z(k − 1) = n = a(k − 3) + b, implying

2z ≥ a′(k − 3)− y + b, where a′ = a− x− y − z.

Note that N (K3, Kk−3)+N (K3, Gk−1) > 2N (K3, Gk−2), for any graph Gk−1 ∈ Gk−1,
and hence, whenever there are two copies of Gk−2 in G, we can replace them by a
copy of Kk−3 and a copy of Gk−1, increasing the number of triangles. Therefore,
we have that y is either 0 or 1. If z > ⌊b/2⌋, then we have a′ ≥ 1, which means
z ≥ (k − 3)/2 − y/2 + b/2. If b is even we may assume y = 0, and hence, in both
cases of b being odd or even, we still have z ≥ ⌈(k − 3)/2⌉ + ⌊b/2⌋. We can then
replace ⌈(k−3)/2⌉ copies of Gk−1 by ⌊(k − 1)/2⌋ copies of Kk−3 and a copy of Gk−2,
increasing the number of triangles, which contradicts the extremality of G. Again,
due to compatibility of the number of vertices, z cannot be less than ⌊b/2⌋, proving
the third case.

Finally, if k = 5, the only connected regular Pk-free graph with regularity at
least 3 is K4. In the case of regularity 2, the only connected 2-regular graph that
contains a triangle is K3. If 3 does not divide n, we need to add at least one longer
cycle to a graph consisting of vertex-disjoint triangles. If k = 4, the only connected
regular Pk-free graph that contains a triangle is K3, thus if n not divisible by 3,
then rex(n, P4) = 0. In the remaining cases k ≤ 3, the triangle contains Pk, thus
rex(n, Pk) = 0, completing the proof. �
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