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Abstract
It is well known that if the edges of a finite simple graph on n vertices
are colored so that no cycle is rainbow, then no more than n − 1 colors
may appear on the edges. In previous work it was shown that a certain
structure theorem held true for edge colorings with exactly n − 1 col-
ors appearing in which no cycle is rainbow. In this paper we consider
edge colorings which are proper and “forbid” rainbow cycles, without the
condition that the maximum number of colors must appear.

Two questions about the eponymous edge colorings are considered:
which graphs have such a coloring, and, for a graph G that does have
such a coloring, for what values of k does G have a coloring with exactly
k colors appearing?
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1 Introduction

Let G be an edge-colored graph and H be a subgraph with the induced edge coloring.
If no color appears more than once on H, then H is said to be rainbow. An edge
coloring of G is rainbow-cycle-forbidding (RCF) if no cycle in G is rainbow with
respect to the edge coloring.

Obviously no graph with a loop can have an RCF edge coloring, since a loop with
an assigned color is a rainbow cycle. Also, since a double edge is a cycle of length 2,
in an RCF coloring of any multigraph, all of the edges joining any particular pair
of vertices must bear the same color. Therefore in investigating RCF colorings of
graphs we may as well confine our attention to simple graphs. From here on, every
graph shall be finite and simple.

It is easy to see that any RCF coloring on a graph with n vertices can bear at
most n− 1 colors. Although the statement is well known and a proof is given in [4],
to save the reader some trouble we will supply the proof in the next section. More
generally, an edge coloring of a graph G with c components and n vertices cannot
be RCF if it uses more than n − c colors. It is shown in [3] (and again we repeat
a proof in the next section) that we can always construct an RCF edge coloring in
which this maximum number of colors appears. To maintain consistency with the
terminology in [1, 3, 4, 5], we shall call an RCF edge coloring on a graph G with c
components and n vertices in which exactly n − c colors appear a JL-coloring of
G. The authors feel it is important to note that in [1], the JL-colorings of complete
graphs are characterized. These edge colorings are Gallai colorings, which are edge
colorings of complete graphs in which no K3 is rainbow. It was not known to the
authors of [1] that one of their main results was a special case of a characterization
of Gallai colorings—see [2].

However, that result in [1] led beyond Gallai colorings, which are simply RCF
edge colorings of complete graphs, to the results in [5], [4], and, finally, [3], in which
JL-colorings of arbitrary connected (finite, simple) graphs are characterized. The
chracterization: given a connected graph G on at least two vertices, each JL-coloring
of G is obtained by an instance of the process described in the proof of Proposition
2.2, below; furthermore, each such instance produces a JL-coloring of G.

A coloring of the edges of a graph is proper if no two adjacent edges (i.e., edges
sharing a vertex) bear the same color. The chromatic index, or edge chromatic
number, of a graph G, denoted by χ′(G), is the smallest number of colors in a proper
edge coloring of G. A proper RCF (or PRCF for short) edge coloring of a graph is
an edge coloring which is both proper and rainbow-cycle-forbidding. When we say
PRCF coloring we mean a PRCF edge coloring. A PRCF coloring is a particular
kind of mixed hypergraph coloring in the sense of Voloshin [7]; the literature on
this subject has expanded greatly over the few decades since the topic’s introduction.
In Section 3 we introduce some basic definitions and concepts about PRCF colorings.
In Section 4 we suppose a graph G does admit a PRCF coloring and try to determine
for which values of k does G have a PRCF coloring where exactly k colors appear.
Finally, in Section 5 we discuss minimal graphs that cannot be PRCF colored, in
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pursuit of a forbidden-induced-subgraph characterization of PRCF-colorability.

2 Preliminary proofs

At least the first of the following fundamental results about RCF colorings is well
known. While Proposition 2.2 has appeared in several other papers written by the
authors and may be considered well known by readers familiar with the topics, we
include a proof for completeness.

Proposition 2.1. Suppose that G is a connected graph on n vertices with an RCF
edge coloring. Then the number of colors appearing on the edges of G is at most
n− 1.

Proof. Suppose the number of colors appearing on G is greater than or equal to n.
Choose n edges of different colors from G and let H be the subgraph of G induced by
these edges. Since H has n edges and |V (H)| ≤ n, then H, and hence G, necessarily
contains a rainbow cycle.

Proposition 2.2. If G is a connected graph on n vertices, then there is an RCF
edge coloring of G in which n− 1 colors appear.

Proof. We will describe a general construction for such a coloring, providing more
than is necessary in the proposition.

Let T be a spanning tree in G and let the n− 1 edges of T be colored so that T
is rainbow. The n− 1 colors appearing on T will be the only colors appearing in the
RCF coloring of G whose construction will now be described.

Choose any edge e ∈ E(T ). Then T − e is the disjoint union of two trees, T [R]
and T [S]; here R, S is a partition of V (T ) = V (G).

Let [R, S] = {f ∈ E(G)| one end of f is in R and the other is in S}. We already
have e ∈ [R, S] colored; let all edges of [R, S] bear the same color as e. At this stage,
E(G[R]) \ E(T [R]) and E(G[S]) \ E(T [S]) remain uncolored.

Before proceeding, notice that no matter how the coloring of E(G) is completed,
no cycle in G with at least one vertex in each of R and S can be rainbow, because
such a cycle would contain at least two edges in [R, S].

To proceed: for X ∈ {R, S}, T [X] is a spanning tree of G[X] and therefore G[X]
is connected. If |X| = 1 then G[X] has no edges to color. Otherwise if |X| > 1, treat
G[X] as G was just treated, with the rainbow spanning tree T [X] playing the role
played by T . Iterate until all the edges of G are colored.

Note that in the last part of the preceding proof, the reader can replace T [X]
with any other spanning tree in G[X], supplied with the colors on T [X].

Corollary 2.3. If a graph G has c components, then the greatest number of colors
appearing in an RCF edge coloring of G is |V (G)| − c.
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3 Proper RCF edge colorings

In a mixed hypergraph coloring problem, one has a two-ply hypergraph H =
(V ;C,F) in which V is the set of vertices of H and C,F ⊆ 2V are two families of
hyperedges (subsets of V ). The problem is to color V so that no C ∈ C is rainbow
and no F ∈ F is monochromatic. We will call such a coloring of V a proper (C,F)
coloring of (the vertices of) H.

A PRCF coloring is a mixed hypergraph coloring in which the vertices of the
hypergraph are the edges of some graph G, and

C = {E(C) | C is a cycle in G} and
F = {E(F ) | F ' K1,2 and F is a subgraph of G} .

The standard object of attention in a mixed hypergraph is the Voloshin spec-
trum [7], the set of positive integers k such that there is a proper (C,F) coloring of
the vertices of H with exactly k colors appearing. We define

SPRCF (G) = {k ∈ N \ {0} | there is a PRCF edge coloring of
G with exactly k colors appearing}.

By Proposition 2.1 and previous remarks, for a connected graph G on n vertices,

SPRCF (G) ⊆ {χ′(G), . . . , n− 1}
= {k ∈ N \ {0} | χ′(G) ≤ k ≤ n− 1} .

We continue with a few definitions. A graph G is PRCF-good if SPRCF (G) 6= ∅.
Otherwise, G is PRCF-bad. We will also define the graph with no edges to be PRCF-
good as that simplifies some later statements.

If SPRCF (G) is either a singleton or a block of consecutive integers, then G
is PRCF-solid. G is PRCF-excellent if χ′(H) < |V (H)| for every component
of H of G and, with c denoting the number of components of G, SPRCF (G) =
{χ′(G), . . . , |V (G)| − c}.

We will note here that not all graphs which are PRCF-solid will be PRCF-
excellent. In Theorem 4.1.3 we show that SPRCF (K2,3) = {3} as opposed to {3, 4}
which would be required for PRCF-excellence. We have not found a graph which is
PRCF-good but not PRCF-solid. In fact, we strongly suspect that every PRCF-good
graph is solid, i.e., we suspect that we do not get any “gaps” in the spectrum, except
at the end or potentially the beginning of the interval.

Further, we have not even found an example of a graph where a ∈ SPRCF (G) but
{χ′(G), . . . , a} 6⊆ SPRCF (G). It would be nice if one could find such an example (or
alternatively, show that if a ∈ SPRCF (G) then {χ′(G), . . . , a} ⊆ SPRCF (G) if such
a thing ends up being true). While we believe that this previous statement would be
difficult to prove (if even true), it does bring to mind the following related question.
If G is properly JL-colorable (i.e., |V (G)| − 1 ∈ SPRCF (G)), then is G PRCF-
excellent? We know that every JL-coloring of a graph has a monochromatic edge-cut
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[3] and further, since the coloring is proper, this implies the cut is a matching. Our
work in Section 4.6 then goes a long way towards this goal.

Our aim in requiring χ′(H) < |V (H)| for every component of H in G, in the
definition of PRCF-excellence, is to exclude from the class of PRCF-excellent graphs
certain graphs which would otherwise satisfy the definition, but which are also PRCF-
bad. If n = |V (G)| > 1, n is odd, and G is Kn with no more than n−3

2
edges removed,

then χ′(G) = n, so {k ∈ N | χ′(G) ≤ k ≤ |V (G)| − 1} = ∅ = SPRCF (G).
We shall not prove it here, but it is well known (see Plantholt [6]) that the only

connected PRCF-bad graphs G excluded from PRCF-excellence by the provision that
χ′(G) = |V (G)| are those mentioned above.

There is another reason besides |χ′| = |V (G)| for the PRCF-badness of these
graphs: they contain K3’s. In any proper edge coloring of any graph G, any K3 sub-
graph of G must be rainbow. Therefore, every PRCF-good graph must be triangle-
free.

As we shall see, PRCF-goodness is rare even among triangle-free graphs. The
following proposition is trivial to prove, yet it is of considerable importance.

Proposition 3.1. Every subgraph of a PRCF-good graph is PRCF-good.

Proof. Suppose G has a PRCF edge coloring, and H is a subgraph of G. The
restriction of the coloring to the edges of H is proper, and also forbids rainbow
cycles, since any cycle in H is a cycle in G. Therefore, H has a PRCF edge coloring,
and is therefore PRCF-good.

A forbidden-subgraph characterization of a property Q of graphs is a collec-
tion F of graphs such that a graph G has property Q if and only if G has no subgraph
F ∈ F. A forbidden-induced-subgraph characterization of Q is a collection
F of graphs such that a graph G has property Q if and only if G has no induced
subgraph F ∈ F. A property Q has a forbidden(-induced)-subgraph characterization
if and only if every (induced) subgraph of a graph with property Q has property Q.
When Q has such a characterization, the minimal forbidden-subgraph characterizing
collection for Q is

FQ ={H | H is a graph not possessing property Q, but every proper subgraph of
H does possess property Q}.

The minimal forbidden-induced-subgraph characterizing collection of Q, when
there is one, is

FQ,i ={H | H is a graph not possessing property Q, but H − v does possess
property Q, for each v ∈ V (H)}.

Corollary 3.2. The property of being PRCF-good has a forbidden-subgraph charac-
terization and a forbidden-induced-subgraph characterization.

A graph H is critically PRCF-bad if and only if H is PRCF-bad but every
proper subgraph of H is PRCF-good. H is vertex-critically PRCF-bad if and only
if H is PRCF-bad but H − v is PRCF-good for every v ∈ V (H).
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Proposition 3.3. Suppose G is a graph. The following are equivalent.

1. G is PRCF-good.

2. G has no critically PRCF-bad subgraph.

3. G has no vertex-critically PRCF-bad induced subgraph.

Proof. If G is PRCF-good, then by Proposition 3.1, every subgraph is PRCF-good
and thus cannot have a critically PRCF-bad subgraph nor a vertex-critically PRCF-
bad subgraph. Therefore, 1 immediately implies both 2 and 3.

To show 3 implies 1, we suppose G is PRCF-bad and show that G has a vertex-
critically PRCF-bad induced subgraph. If no v ∈ V (G) can be found such that
G − v is PRCF-bad, then G itself is vertex-critically PRCF-bad, and is an induced
subgraph of itself.

Otherwise, suppose G1 = G− v1 is PRCF-bad for some v1 ∈ V (G) and note that
G1 is an induced subgraph of G. We continue to remove vertices from G to obtain a
sequence of vertices v1, . . . , vk ∈ V (G) and induced subgraphs Gk = G−{v1, . . . , vk}
which are PRCF-bad. Since we start with a finite graph, this process eventually
leads us to a graph with three vertices (otherwise we would have found a vertex-
critically PRCF-bad induced subgraph). The only PRCF-bad subgraph on three
vertices is K3, and removing any vertex leaves a PRCF-good, and thus K3 is our
vertex-critically PRCF-bad induced subgraph.

The proof that 2 implies 1 is similar. Assuming again that G is PRCF-bad, we
remove edges to obtain PRCF-bad subgraphs of G, taking care to remove vertices
that have become isolated, until no more such edges can be found. As before, since
we have a finite graph, this process must reach a graph with three vertices (if we
have not yet found a critically PRCF-bad subgraph). The only PRCF-bad subgraph
on three vertices is K3 and removing any edge leaves a PRCF-good graph, so G has
a critically PRCF-bad subgraph.

Lemma 3.4. A graph H is critically PRCF-bad if and only if H is connected, PRCF-
bad, and H − e is PRCF-good for every e ∈ E(H).

Proof. This follows immediately from the definition of a graph H being critically
PRCF-bad and Proposition 3.1.

The next section will contain results on the PRCF spectra of graphs. The last
section is devoted to critically PRCF-bad graphs. We currently do not have a concise
description of these graphs, but at least we have ways of producing two infinite
families of critically PRCF-bad graphs.

4 PRCF spectra

If a, b ∈ N and a ≤ b then we will use the notation [a, b] = {k ∈ N | a ≤ k ≤ b}. If
a1, . . . , at ∈ N, then we also define s(a1, . . . , at) = [max {a1, . . . , at} ,

∑t
i=1 ai]. We

will denote the disjoint union of graphs H1, . . . , Ht by H1 + · · ·+Ht.
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4.1 Trees, cycles, and complete bipartite graphs

Theorem 4.1.1. Every tree is PRCF-excellent.

Proof. Let T be a tree. Since T has no cycles, a coloring of E(T ) is a PRCF coloring
if and only if it is a proper edge coloring. Therefore χ′(T ) ∈ SPRCF (T ). From
a proper edge coloring of T with χ′(T ) colors appearing we can obtain proper edge
colorings with χ′(T ) + 1, χ′(T ) + 2, . . . , |E(T )| = |V (T )| − 1 colors appearing by,
at each stage, recoloring one edge representing a color class with more than one
representative with a new color not previously appearing.

We note here that a second proof follows from Corollary 4.4.5, which we will give
in Subsection 4.4.

Theorem 4.1.2. Every cycle of order n ≥ 4 is PRCF-excellent.

Proof. Suppose that C is a cycle on n ≥ 4 vertices. Since χ′(C) ∈ {2, 3}, in any
proper edge coloring of C with χ′(C) colors, C will not be rainbow. Thus χ′(C) ∈
SPRCF (C). Choose two edges with the same color in some proper edge coloring
of C with χ′(C) colors. Recolor one of these edges with a new color, not already
appearing. Continue in this way, recoloring one edge at a time from a color class
with at least 2 representatives with a new color, until there are n−1 colors appearing
(so only one color appears twice). At each stage, the new coloring is proper and the
cycle is still not rainbow.

We note here that again we have a second proof. The previous theorem also
follows from Corollary 4.6.2, but as that proof is not shorter than the one already
given, we will leave those details as an exercise for the reader.

Theorem 4.1.3. SPRCF (K2,3) = {3}. Furthermore, there is essentially only one
way to PRCF color the edges of K2,3 with exactly three colors appearing.

Figure 1: K2,3 with the beginning of a PRCF edge coloring.
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Proof. Let the three colors with which the edges of K2,3 will be colored be r, b, g,
and let the vertices of K2,3 be labeled as in Figure 1. Without loss of generality, we
color the three edges incident to u as shown.

The 4-cycle uyvxu must be properly colored with at least one color repeated.
Since there are only three colors allowed, it must be either that vy will be colored
r, or vx will be colored b. If we choose one of the possibilities and interchange the
names of x and y, and of r and b, we obtain the other choice. Therefore, without loss
of generality, we color vx with b. Looking at uxvzu, we see that this choice forces us
to color vz with r and then vy with g; the result is a PRCF coloring. This coloring
is unique up to automorphisms of K2,3 and renaming of the colors.

Since SPRCF (K2,3) ⊆ {3, 4}, to finish the proof it suffices to show that there
is no PRCF coloring of K2,3 with four colors appearing. Let the available colors be
a, r, b, g and, without loss of generality, let us begin with the coloring of the edges
incident to u shown in Figure 1. Even with a fourth color at our disposal, we still
have two equivalent choices: either vy will be colored r, or vx will be colored b. So,
we choose to color vx with b. Only vy and vz remain to be colored, and a has not
yet appeared. Putting color a on vz creates a rainbow cycle. If vy is colored a, then
propriety forces us to color vz with r, and that creates a rainbow cycle.

Corollary 4.1.4.

1. K2,4 is critically PRCF-bad.

2. SPRCF (K3,3) = {3}.

Proof.

1. Let G = K2,4, with vertices as labeled in Figure 2. Since χ′(G) = 4 and
|V (G)| = 6, we have SPRCF (G) ⊆ {4, 5} . Suppose K2,4 has a PRCF-coloring.
Then the K2,3 subgraph G − w is colored with only 3 of these colors, say r, b,
and g, and by Theorem 4.1.3 and its proof, we can assume, without loss of
generality, that it is colored as indicated in Figure 2. Since all three colors
appear at both u and v, and since the two edges incident to w must be colored
differently, the only way to complete the coloring of G−w to a proper coloring
of G is to put a fourth and fifth color on the two edges incident to w. But that
creates 3 rainbow C4’s. Thus SPRCF (K2,4) = ∅.
On the other hand, if one edge, say wu, is removed from G, clearly there is a
PRCF coloring of the graph remaining. (In fact, although it is not claimed,
we see that for any edge e ∈ E(G), SPRCF (G − e) = {4}, and there is an
essentially unique PRCF coloring of G − e with four colors.) Thus K2,4 is
critically PRCF-bad.

2. We leave it to the reader to see that K3,3 has a PRCF coloring with three colors
appearing. (In fact, K3,3 has essentially only one such coloring.) Now suppose
that K3,3 is PRCF-colored. Let the bipartition sets of K3,3 be {u, v, w} and
{x, y, z}. The K2,3 induced by {u, v, x, y, z} bears only three colors, and all 3



D. HOFFMAN ET AL. /AUSTRALAS. J. COMBIN. 90 (3) (2024), 281–312 289

appear on the edges incident to u, and incident to v. Therefore, these same
three colors are the only colors appearing on any K2,3 in K3,3; consequently, no
other color appears. Thus SPRCF (K3,3) = {3}.

Figure 2: K2,4 with a PRCF coloring of one of its K2,3 subgraphs.

Corollary 4.1.5. The only complete bipartite graphs which are PRCF-good are K2,3,
K3,3, and K1,b for b ∈ {1, 2, . . . }.

Proof. The K1,b are trees, and therefore are PRCF-excellent. If 2 ≤ a and 4 ≤ b
then Ka,b contains K2,4 as a subgraph, and is therefore PRCF-bad.

4.2 1-subdivisions

The 1-subdivision SG of a graph G is obtained from G by inserting a “new” vertex (of
degree 2) into every edge of G. In other words, SG is the result of replacing each edge
of G by a path of length 2. In yet other words, V (SG) = V (G) ∪ E(G), each edge
uv ∈ E(G) (which we now think of as a vertex in SG) is adjacent to u, v ∈ V (G),
and these are the only adjacencies of elements of V (SG). In an attempt to avoid
confusion, for each edge uv ∈ E(G) we will denote the corresponding vertex of
SG by [uv], while vertices of G will retain their names. Thus if uv ∈ E(G), then
NSG([uv]) = {u, v}, and for u ∈ V (G), NSG(u) = {[uv]|v ∈ NG(u)} . (Recall that we
are considering only simple graphs in this paper.)

Useful facts about SG when G is a finite simple graph:

1. |V (SG)| = |V (G)|+ |E(G)| and |E(SG)| = 2|E(G)|.

2. SG is bipartite. Therefore, χ′(SG) = ∆(SG).

3. ∆(G) = ∆(SG) if ∆(G) > 1.

Lemma 4.2.1. If G is connected and |V (G)| > 1 then at least two vertices of G are
not cut-vertices.

Proof. Any vertex which is an end-vertex of a longest path in G cannot be a cut-
vertex of G.
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Corollary 4.2.2. If G is connected and |V (G)| > 2 then there exist vertices v ∈
V (G) such that G− v has no isolated vertices.

Theorem 4.2.3. If G has no isolated vertices then |V (G)| ∈ SPRCF (SG). If, in
addition, there is at least one vertex v ∈ V (G) such that G − v has no isolated
vertices, then |V (G)| − 1 ∈ SPRCF (SG).

Proof. Supposing G has no isolated vertices, we will color the edges of SG with the
elements of V = V (G) as follows: for each uv ∈ E(G), color u[uv] with v and color
[uv]v with u. It is straightforward to see that this coloring is proper, with |V | colors
appearing, and that any color appearing on a cycle in SG must appear twice on the
cycle, so the coloring is a PRCF coloring of SG. Notice that for each v ∈ V , v does
not appear as a color on any edge of SG incident to v.

Now suppose that w ∈ V and G′ = G−w has no isolated vertices. Let the edges of
SG′ be colored with the elements of V (G′), as described above. Extend this coloring
to the edges of SG by coloring u[uw] with u for each u ∈ NG(w), and then coloring
the edges [uw]w with elements of V (G′) so that the resulting coloring is proper.
Specifically, if NG(w) = {u}, then because G − w has no isolated vertices, V (G′)
must contain vertices other than u. Color [uw]w with one of these. If dG(w) > 1, the
edges [uw]w can be colored with the elements of NG(w), permuted so that [uw]w is
not colored with u, for each u ∈ NG(w).

Clearly the coloring described is proper. By the earlier part of this proof, there
are no rainbow cycles in SG′. The only cycles in SG that are not in SG′ must contain
w, and none of these are rainbow since every path of length 4 starting at w contains
two edges of the same color (namely, u when w[uw] is the first edge of the path).
Thus |V (G′)| = |V (G)| − 1 ∈ SPRCF (SG).

Theorem 4.2.4. If n = |V (G)| > 2 and G is connected, then [n−1, n+|E(G)|−1] ⊆
SPRCF (SG).

Proof. If n = 3 then SG is either P5 or C6, so the result follows from what we already
know about trees and cycles. Assume that n > 3. We will proceed by induction on n.

By Theorem 4.2.3 and Corollary 4.2.2, {n− 1, n} ⊆ SPRCF (SG). It remains to
be shown that [n + 1, n + |E(G)| − 1] ⊆ SPRCF (SG). By Lemma 4.2.1 there is a
vertex v ∈ V (G) such that G′ = G− v is connected. By the induction hypothesis,

[n− 1 + 1, n− 1 + |E(G′)| − 1] = [n, n+ |E(G)| − dG(v)− 2] ⊆ SPRCF (SG′).

Suppose that n+1 ≤ k ≤ n+|E(G)|−1. If k ≤ n+|E(G)|−dG(v)−1, let t = k−1.
Otherwise, if n+ |E(G)|−dG(v) ≤ k ≤ n+ |E(G)|−1, let t = n+ |E(G)|−dG(v)−2.
In either case, t ∈ SPRCF (SG′) and 1 ≤ k − t ≤ dG(v) + 1.

Let SG′ be PRCF-colored with exactly t colors appearing. Extend this coloring
of SG′ to SG as follows: for each u ∈ NG(v), color u[uv] with c, a color which is not
one of the t colors on SG′. Then color the dG(v) edges [uv]v with dG(v) different
colors, k− t− 1 of them not among the t+ 1 colors already appearing, and the rest,
dG(v)− (k − t− 1) ∈ [1, dG(v)] colors drawn from the stock of t colors on SG′.
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The result is a proper edge coloring with exactly k colors appearing. There are
no rainbow cycles on SG′. Any cycle in SG which is not in SG′ must contain v, and
any cycle containing v has at least two edges colored c.

Corollary 4.2.5. If G is connected, with |V (G)| > 1, then SG has a proper JL-
coloring.

Proof. This is obviously true when |V (G)| = 2, and for |V (G)| > 2 it follows from
Theorem 4.2.4 and the fact that |V (SG)| = |V (G)|+ |E(G)|.

Corollary 4.2.6. If G is connected, n = |V (G)| > 1, and ∆(G) = n − 1, then SG
is PRCF-excellent.

Proof. This is obvious when |V (G)| = 2 and in the other cases it follows from
Theorem 4.2.4 and χ′(SG) = ∆(G).

We do not know of any connected graph G with |V (G)| > 1 such that SG is not
PRCF-excellent.

4.3 Cartesian Products

The Cartesian product of graphs G and H is denoted by G �H, and is defined by
V (G � H) = V (G) × V (H), with ordered pairs (u, v), (u′, v′) adjacent in G � H
if and only if either u = u′ and vv′ ∈ E(H) or uu′ ∈ E(G) and v = v′. There
are |V (G)| subgraphs of G �H induced by the vertex sets {u} × V (H), u ∈ V (G),
which are all copies of H and there are |V (H)| subgraphs induced by the vertex sets
V (G) × {v} , v ∈ V (H), which are all copies of G. Further, the edge sets of these
“coordinate copies” of H and G partition the edge set of G�H.

We first make a rather obvious claim about sets, the use of which will be apparent
in the resultant theorem and later in Subsection 4.5.

Lemma 4.3.1. Suppose that a1, . . . , at ∈ N and let

s(a1, . . . , at) = [max {a1, . . . , at} ,
t∑

i=1

ai].

For each s ∈ s(a1, . . . , at) there exists sets A1, . . . , At such that |Ai| = ai, i = 1, . . . , t

and
∣∣∣∣ t⋃
i=1

Ai

∣∣∣∣ = s.

Proof. The proof will be informal. We can let a1 ≤ · · · ≤ at. We find the desired

sets A1, . . . , At satisfying
∣∣∣∣ t⋃
i=1

Ai

∣∣∣∣ = at by arranging Ai ⊆ At for i < t, and we can get∣∣∣∣ t⋃
i=1

Ai

∣∣∣∣ =
t∑

i=1

ai by taking A1, . . . , At to be disjoint. Clearly we can get every integer∣∣∣∣ t⋃
i=1

Ai

∣∣∣∣ = s ∈ (at,
∑t

i=1 ai) by managing the intersections of the sets A1, . . . , At. We

leave the formalities to the reader.
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Theorem 4.3.2. Suppose that G and H are PRCF-good, n = |V (H)|, a1, . . . , an ∈
SPRCF (G), and b ∈ SPRCF (H). Then b+ s(a1, . . . , an) ⊆ SPRCF (G�H).

Proof. Let the vertices of H be v1, . . . , vn. Let A1, . . . , An be sets of colors such that
|Aj| = aj, j = 1, . . . , n. PRCF-color the edges of the copy of G induced by the vertex
set V (G)× {vj} with the elements of Aj, j = 1, . . . , n.

Let B be a set of colors such that |B| = b. Let H be PRCF-colored with the
elements of B and give each copy of H induced by {u} × V (H), u ∈ V (G), the
same coloring. That is, for each u ∈ V (G) and edge vv′ ∈ E(H), color the edge
(u, v), (u, v′) of G�H with the color on vv′.

We take B to be disjoint from
⋃n

j=1Aj. We now have G � H edge-colored with

b +
∣∣∣⋃n

j=1Aj

∣∣∣. colors. Since the coloring is proper in each component graph and B
is disjoint from

⋃n
j=1Aj, the coloring is proper. There are no rainbow cycles in any

subgraph u � H, u ∈ V (G), nor in G � v, v ∈ V (H). Therefore, the only cycles in
G � H that might be rainbow are those such that neither the first nor the second
component of the vertices on the cycle is constant. Let C be such a cycle.

Looking at the second coordinates of the vertices on C, we see that they must
be the vertices encountered on a non-trivial closed walk W in H. Because we have
arranged that for every vv′ ∈ E(H) and u, u′ ∈ V (G), the edges (u, v), (u, v′) and
(u′, v), (u′, v′) of G�H will bear the same color, it follows that for different traver-
sals of the same edge in W , the different edges of C corresponding to the different
traversals of that edge on W must bear the same color. Therefore if there are any
re-traversals of edges onW , then C is not rainbow. If there are no such re-traversals,
then W must contain a cycle in H, on which some color appears on two different
edges. Again, C is not rainbow.

Thus b+ |A1 ∪ · · · ∪ An| ∈ SPRCF (G�H). Since A1, . . . , An were arbitrary, by
Lemma 4.3.1 we have b+ s(a1, . . . , an) ⊆ SPRCF (G�H).

Corollary 4.3.3. If G and H have proper JL-colorings, then so does G�H.

Proof. If G and H have proper JL-colorings then in Theorem 4.3.2 we can take
b = |V (H)| − 1 and a1 = · · · = an = |V (G)| − 1. Then

a1 + · · ·+ an = n(|V (G)| − 1) = |V (H)|(|V (G)| − 1) ∈ s(a1, . . . , an) =⇒

b+ (a1 + · · ·+ an) = |V (H)| − 1 + |V (H)|(|V (G)| − 1)

= |V (G)||V (H)| − 1 = |V (G�H)| − 1

∈ SPRCF (G�H).

So, there is a proper JL-coloring of G�H.

Corollary 4.3.4. If c1, d1, c2, d2 are positive integers such that c1 ≤ d1, c2 ≤ d2,
[c1, d1] ⊆ SPRCF (G), and [c2, d2] ⊆ SPRCF (H), then

[c1 + c2,max (d2 + |V (H)|d1, d1 + |(V (G)|d2)] ⊆ SPRCF (G�H).
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Proof. Let m = |V (G)|, n = |V (H)|. With reference to Theorem 4.3.2, if we take
a1 = · · · = an = a ∈ SPRCF (G) and any b ∈ SPRCF (H), we get

I(a, b) = b+ s(a, . . . , a) = [a+ b, b+ na] ⊆ SPRCF (G�H).

Clearly, ⋃
a∈[c1,d1]
b∈[c2,d2]

I(a, b) = [c1 + c2, d2 + nd1] ⊆ SPRCF (G�H).

Interchanging the roles of G and H gives [c1 + c2, d1 +md2] ⊆ SPRCF (G�H),
whence
[c1 + c2, d2 + nd1] ∪ [c1 + c2, d1 + md2] = [c1 + c2,max (d2 + nd1, d1 +md2)] ⊆
SPRCF (G�H).

Corollary 4.3.5. If G and H are PRCF-excellent and χ′(G�H) = χ′(G) + χ′(H)
then G�H is PRCF-excellent.

Proof. This follows from Corollary 4.3.4, taking c1 = χ′(G), c2 = χ′(H), d1 =
|V (G)| − 1, d2 = |V (H)| − 1. Note the proof of Corollary 4.3.3.

Corollary 4.3.6. If G and H are PRCF-excellent, χ′(G) = ∆(G), and χ′(H) =
∆(H), then G�H is PRCF-excellent.

Proof. Properly coloring the edges of the coordinate copies of G and H in G � H
with disjoint sets of χ′(G) and χ′(H) colors, respectively, we see that χ′(G �H) ≤
χ′(G)+χ′(H) for all finite simple subgraphsG andH. On the other hand χ′(G�H) ≥
∆(G � H) = ∆(G) + ∆(H). Therefore, if χ′(X) = ∆(X), for X ∈ {G,H}, then
χ′(G�H) = χ′(G) + χ′(H), and the result follows from the previous corollary.

We do not know of any PRCF-excellent graphs G and H such that G�H is not
PRCF-excellent.

4.4 PRCF spectrum of a union of two graphs with one vertex in common

If G is a graph and v ∈ V (G), let the degree of v in G be denoted by dG(v).

Theorem 4.4.1. Suppose that G and H are graphs with V (G) ∩ V (H) = {v} and
dG(v), dH(v) > 0. If a ∈ SPRCF (G) and b ∈ SPRCF (H), then [max{a, b, dG(v)
+ dH(v)}, a+ b] ⊆ SPRCF (G ∪H).

Proof. First, observe that dG(v) ≤ χ′(G) ≤ a and dH(v) ≤ χ′(H) ≤ b, so dG(v) +
dH(v) ≤ a+b, with equality if and only if dG(v) = χ′(G) = a and dH(v) = χ′(H) = b.

Let A be the set of colors appearing on a PRCF coloring of G with |A| = a and
B be the set of colors appearing on a PRCF coloring H with |B| = b. Let C be the
set of colors appearing on G incident to v and D be the set of colors appearing on
H incident to v.
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Since any PRCF-coloring of G ∪ H is proper, C ∩ D = ∅, and |C| = dG(v),
|D| = dH(v). We will start with A∩B = ∅ and vary |A ∪B| by renaming the colors
in (A \ C) ∪ (B \ D). The sets C and D will remain constant. In the interest of
simplicity, we will continue to refer to the varying sets A,B as A and B; |A| = a and
|B| = b will remain constant. It is |A ∪B| that will trend down.

Clearly if A∩B = ∅ then we get a+b ∈ SPRCF (G∪H). With careful renaming of
colors, one color at a time, we will reach our goal ofM = max {a, b, dG(v) + dH(v)} ∈
SPRCF (G ∪ H). For clarity, when we say “rename” a color q ∈ B \ D as a color
r ∈ C, we take every instance of the color q and label that edge with the color r.
This decreases the color count by 1, keeps the coloring proper since the colors q
and r were not incident before the renaming, and clearly no rainbow cycle has been
introduced.

Case 1: M ∈ {a, b}
Without loss of generality, suppose that M = b. Recall we are starting from the

assumption that A ∩ B = ∅. We shall show that by valid renaming we can achieve
A ⊆ B, whence |A ∪B| = |B| = b = M.

Since b = M, b ≥ dG(v)+dH(v), so |B \D| = b−dH(v) ≥ dG(v) = |C|. Therefore
we can rename |C| of the colors in B \D with the names of colors in C. This changes
B so that now C ⊆ B \D, but (A \ C) ∩B = ∅ still.

If |A \ C| = a − dG(v) ≤ dH(v) = |D|, then we can rename all of the colors
in A \ C with the names of colors from D, thus achieving A ⊆ B. So assume
a− dG(v) > dH(v). Let dH(v) colors in A \C be renamed with the colors in D. This
leaves a − (dG(v) + dH(v)) colors in A \ C which are not in B. But we now have
b − (dG(v) + dH(v)) of the original colors in B \ D still not renamed (as they shall
remain); since a ≤ b = M,a− (dg(v) + dH(v)) ≤ b− (dG(v) + dH(v)) so we can now
rename the a− (dG(v) + dH(v)) colors in A \ C that need renaming with the names
of colors in B \ D which previously did not appear in A. Thus we achieve A ⊆ B
while preserving the PRCF coloring of G ∪H.

Case 2: M = dG(v) + dH(v) > max[a, b]

Since a < dG(v) + dH(v) we have |A \ C| = a − dG(v) < dH(v) = |D|. Thus we
can rename all of A \C so that A \C ⊆ D. Similarly, we can rename B \D so that
B \D ⊆ C. With these changes, |A ∪B| = |C ∪D| = dG(v) + dH(v) = M.

We remind the skeptical reader that in both cases, the color renamings can be
performed one color at a time, so that every integer between M and a + b is in
SPRCF (G ∪H).

Corollary 4.4.2. Let G,H and v be as in Theorem 4.4.1. Suppose that G and
H are PRCF-good, and let a1 = minSPRCF (G), a2 = minSPRCF (H), b1 =
maxSPRCF (G), b2 = maxSPRCF (H). Then the smallest and largest elements,
respectively, of SPRCF (G ∪H) are max {a1, a2, dG(v) + dH(v)} and b1 + b2.

Proof. M = max {a1, a2, dG(v) + dH(v)} and b1 +b2 are elements of SPRCF (G∪H)
by Theorem 4.4.1. Suppose that G ∪ H is PRCF-colored with exactly x colors
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appearing. At least a1 colors must appear on G, and at least a2 on H; also, x ≥
χ′(G ∪H) ≥ dG(v) + dH(v) = dG∪H(v). Thus x ≥M .

On the other hand, no more than b1 colors can appear on G and no more than
b2 on H, so x ≤ b1 + b2.

Corollary 4.4.3. Let G,H and v be as in Theorem 4.4.1. If both G and H have
proper JL colorings, then so does G ∪H.

Proof. With reference to the proof of Corollary 4.4.2, we are assuming that b1 =
|V (G)|−1, b2 = |V (H)|−1, whence b1+b2 = |V (G)|+|V (H)|−2 = |V (G ∪H)|−1.

Corollary 4.4.4. Let G,H and v be as in Theorem 4.4.1. Suppose that G and H are
PRCF-solid; let SPRCF (G) = [a1, b1] and SPRCF (H) = [a2, b2]. Then G ∪ H is
PRCF-solid; in particular, SPRCF (G∪H) = [max {a1, a2, dG(v) + dH(v)} , b1 + b2].

Proof. Let M = max {a1, a2, dG(v) + dH(v)}. In view of Corollary 4.4.2 , it suffices
to show that if x is an integer and M < x < b1 + b2, then x ∈ SPRCF (G ∪H).

It is easy to see (details left to the reader) that as (y1, y2) varies over [a1, b1] ×
[a2, b2] the intervals J(y1, y2) = [max {y1, y2, dG(v) + dH(v)} , y1+y2] cover [M, b1+b2].
(Helpful observation: when either yi is incremented, the right hand endpoint of
J(y1, y2) is incremented and the left hand endpoint either stays put or is incre-
mented.) The conclusion now follows from Theorem 4.4.1.

Corollary 4.4.5. Let G,H and v be as in Theorem 4.4.1. If both G and H are
PRCF-excellent, then so is G ∪H.

Proof. This follows from Corollary 4.4.4 and the observations that |V (G ∪H)|−1 =
(|V (G)|−1)+(|V (H)|−1) and χ′(G∪H) = max {χ′(G), χ′(H), dG(v) + dH(v)} (left
as an exercise).

As promised earlier, this gives us a second way to prove Theorem 4.1.1.

Proof. Clearly K1 and K2 are PRCF-excellent. Every tree of order n > 2 can be
obtained from a tree of order n − 1 by attaching a leaf by a pendant edge incident
to some vertex of the smaller tree. Now the result follows by induction on n by
applications of Corollary 4.4.5.

4.5 PRCF spectra of disjoint unions

Conceptually, assuming we can properly edge color each graph Hi with some color
palette in a way that avoids rainbow cycles, Lemma 4.3.1 says that we can then
carefully choose which colors go into each palette in order to get the following results.

Informally, if G is the disjoint union of graphs H1 through Ht and we say ai is in
the spectrum of Hi for 1 ≤ i ≤ t, then the interval from the largest ai to the sum of
all ai’s is in the spectrum of G. Moreover the spectrum of G is exactly the union of
these intervals over all possible choices for each ai.
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Theorem 4.5.1. Suppose that G = H1 + · · ·+Ht and ci ∈ SPRCF (Hi), i = 1, . . . , t.
Then

s(c1, . . . , ct) ⊆ SPRCF (G) =
⋃

ai∈SPRCF (Hi)
i=1,...,t

s(a1, . . . , at).

Proof. Let each Hi be PRCF-colored with exactly ci colors appearing. Let Ai be the
set of colors appearing on Hi. Then G is PRCF-colored with |C| = |Ai ∪ · · · ∪ At|
colors appearing. By Lemma 4.3.1 we can arrange for |C| to be any integer in
s(c1, . . . , cn). This proves the first inclusion, which implies⋃

ai∈SPRCF (Hi))
i=1,...,t

s(a1, . . . , at) ⊆ SPRCF (G).

The reverse inclusion follows from the observation that for every PRCF-coloring
of G, the restriction of the coloring to Hi is a PRCF-coloring of Hi, i = 1, . . . , t.

The following theorem give us SPRCF (G) when G = H1 + · · ·+Ht, given that
we know the SPRCF (Hi) for each i = 1, . . . , t.

Theorem 4.5.2. If H1, . . . , Ht are PRCF-good, ai = minSPRCF (Hi), bi =
maxSPRCF (Hi), i = 1, . . . , t, and G = H1 + · · · + Ht, then SPRCF (G) ⊆
[max
1≤i≤t

ai,
∑t

j=1 bj], with equality if each Hi is PRCF-solid.

Proof. Suppose that k ∈ SPRCF (G), and suppose that G is PRCF colored so that
exactly k colors appear on G. The restriction of this coloring to each Hi is a PRCF
coloring of Hi. Therefore if the number of colors appearing on Hi is ci, we have that

ci ∈ SPRCF (Hi), so ai ≤ ci ≤ bi. We have k ∈ s(ci, . . . , ct) = [max
1≤i≤t

ci,
t∑

i=1

ci] ⊆

[max
1≤i≤t

ai,
t∑

i=1

bi]. Since k was arbitrary, the inclusion is proved.

If each Hi is PRCF-solid then SPRCF (Hi) = [ai, bi], i = 1, . . . , t. The second
equality below follows from Theorem 4.5.1. The first equality follows from the fol-
lowing simple observations.

For the reverse containment, with ai ≤ ci ≤ bi, i = 1, . . . , t, we have max
1≤i≤t

ai ≤

max
1≤i≤t

ci and
∑t

j=1 cj ≤
∑t

j=1 bj, so s(c1, . . . , ct) ⊆ [max
1≤i≤t

ai,
∑t

j=1 bj].

For the forward containment, we note that [max
1≤i≤t

ai,
∑t

i=1 ai] = s(a1, . . . , at) and

then
(∑t

i=1 ai
)
+1 ∈ s(a1+1, a2, . . . , at). Continuing this process, iterating each term

one at a time, until s(b1, . . . , bt), we see that each k ∈ [max
1≤i≤t

ai,
t∑

j=1

bj] is realized. So

we have

[max
1≤i≤t

ai,
t∑

j=1

bj] =
⋃

(c1,...,ct)∈Πt
i=1[ai,bi]

s(c1, . . . , ct) = SPRCF (G).
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Corollary 4.5.3. If each component of a graph G is PRCF-excellent then so is G.

Proof. Suppose that H1, . . . , Ht are the components of G, and that each Hi is PRCF-
excellent. Then each Hi is PRCF-solid, with SPRCF (Hi) = [χ′(Hi), |V (Hi)| − 1].
The conclusion now follows from Theorem 4.5.2 and the observations that χ′(G) =
max
1≤i≤t

χ′(Hi) and

|V (G)| − (number of components of G) = |V (G)| − t =
t∑

j=1

(|V (Hi)| − 1).

We do not know whether the converse of Corollary 4.5.3 holds, i.e., does the
PRCF-excellence of G imply the PRCF-excellence of each component?

4.6 PRCF spectra of graphs formed by joining two PRCF-good graphs
by a matching

A matching is a non-empty independent set of edges where no two edges in the set
share a vertex. Suppose that X and Y are PRCF-good graphs on disjoint vertex
sets, and M is a matching, each edge of which has one end in X and the other in Y .
Throughout this subsection, G = X ∪ Y ∪M.

Theorem 4.6.1. If a ∈ SPRCF (X) and b ∈ SPRCF (Y ) then 1 + s(a, b) ⊆
SPRCF (G).

Proof. By Theorem 4.5.1 we have s(a, b) ⊆ SPRCF (X + Y ) = SPRCF (X ∪ Y ).
Suppose c ∈ s(a, b). Let X + Y be properly edge colored with exactly c colors
appearing while forbidding rainbow cycles. Then the coloring of G obtained by
coloring all of the edges of M with a color not appearing among the c colors now has
1 + c colors appearing, is proper, and forbids rainbow cycles. (See the argument late
in the proof of Proposition 2.2.)

Corollary 4.6.2. If X and Y are both PRCF-excellent then [max {χ′(X), χ′(Y )}+
1, |V (G)| − 1] ⊆ SPRCF (G). Therefore, if χ′(G) = max {χ′(X), χ′(Y )} + 1, G is
PRCF-excellent when both X and Y are.

Proof. Note that max {χ′(X), χ′(Y )} ≤ χ′(G) ≤ max {χ′(X), χ′(Y )} + 1. From the
assumptions that SPRCF (X) = [χ′(X), |V (X)| − 1] and SPRCF (Y ) =
(since both are PRCF-excellent), by Theorem 4.6.1 and by the same argument as
the one at the end of Theorem 4.5.2, we have

⋃
a∈SPRCF (X)
b∈SPRCF (Y )

(s(a, b) + 1) = [max {χ′(X), χ′(Y )}+ 1, |V (G)| − 1]

⊆ SPRCF (G)

⊆ [χ′(G), |V (G)| − 1].
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Let Qn denote the n-cube, n ≥ 1, the graph with vertex set {0, 1}n, with two
binary words of length n adjacent if and only if they differ at exactly one place. Let
2 stand for the cartesian product operation on pairs of graphs. Some facts about
Qn:

1. |V (Qn)| = 2n.

2. Qn is regular of degree n.

3. Qn is bipartite, so χ′(Qn) = ∆(Qn) = n.

4. For n > 1, Qn
∼= Qn−12K2. This means that Qn can be regarded as 2 disjoint

copies of Qn−1 joined by a perfect matching.

Theorem 4.6.3. For all n > 0, Qn is PRCF-excellent.

Proof. The proof will be by induction on n. When n = 1, Q1 = K2 is PRCF-
excellent. Suppose that n > 1. Since Qn = Qn−12K2 and χ′(Qn) = χ′(Qn−1) + 1,
and since Qn−1 is PRCF-excellent by our induction hypothesis, the conclusion that
Qn is PRCF-excellent follows from Corollary 4.6.2.

5 Critically PRCF-bad graphs

Up to here, the only critically PRCF-bad graphs presented in this paper are K3 and
K2,4. The next smallest critically PRCF-bad graph is depicted in Figure 3.

Figure 3: A critically PRCF-bad graph on seven vertices, with ten edges.

The hard part of showing that the graph G in Figure 3 is critically PRCF-bad
is in showing that it is PRCF-bad. We will not carry this out here, but here is an
observation that might speed up the process for those readers who want to decide
for themselves:

If the graph G in Figure 3 does have a PRCF edge coloring, then it has one in
which the edges e and f bear the same color, and, of course, the K1,4 centered at
u is rainbow. The former claim arises from the more general observation that in
any PRCF edge coloring of C4, two opposite (i.e., independent) edges must bear the
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same color. Since G has 7 different C4 subgraphs, it is useful to keep this general
observation in mind.

We are confident, although not absolutely certain, that there are no critically
PRCF-bad graphs other than K3 and K2,4, with G of order less than 7, or of order
7 but with no more than 10 edges, in part because of our own scrutiny as well as
because of a computer-generated list provided by co-author G.P. that finds bipartite
critically PRCF-bad graphs. All 13 of the graphs in G.P.’s list, and also the graph
in Figure 6, are listed in the Appendix of this paper, with the best planar drawings
we can manage.

With this list in mind, we find it unlikely that one can find a concise characteriza-
tion of critical PRCF-badness. However, there is one feature they have in common:
they all have a lot of C4 subgraphs. This observation raises questions: Does there
exist a PRCF-bad graph with girth greater than 4? If so, do there exist PRCF-bad
graphs with arbitrarily large girth?

If the answer to the second question is yes, then there are infinitely many critically
PRCF-bad graphs. The remainder of this section will be devoted to two constructive
attempts to prove this theorem directly, due to our co-authors N.T. and M.N. The
following easy result will eventually be of assistance.

Proposition 5.1. If G is vertex-critically-PRCF-bad, then every critically PRCF-
bad subgraph of G is spanning in G.

Proof. If a subgraph H of G is not spanning, then it is a subgraph of G− v for some
v ∈ V (G), and is therefore PRCF-good.

Since every PRCF-bad graph has a critically PRCF-bad subgraph, we have the
following.

Corollary 5.2. There are infinitely many critically PRCF-bad graphs if and only if
there are infinitely many vertex-critically PRCF-bad graphs.

Proof. Every critically PRCF-bad graph is vertex-critically PRCF-bad, so the exis-
tence of infinitely many of the former implies infinitely many of the latter.

For the reverse implication: If G is vertex-critically PRCF-bad, then by Propo-
sition 3.3 G has a critically PRCF-bad subgraph. By Proposition 5.1, every such
subgraph has the same order.

The existence of infinitely many vertex-critically PRCF-bad graphs implies the
existence of such graphs of infinitely many different orders, which then implies the
existence of critically PRCF-bad graphs of infinitely many different orders, which
clearly implies the existence of infinitely many critically PRCF-bad subgraphs.

5.1 Creating PRCF-bad graphs by replacing edges by K2,3

The construction is based on Theorem 4.1.3, and especially the fact that there is
essentially only one PRCF-coloring of K2,3, up to the names of the colors and auto-
morphisms of the graph. The idea is to take a connected graph H, and to replace
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some or all of its edges by K2,3’s as in Figure 4, which also indicates the essen-
tially unique PRCF edge coloring of K2,3. (All credit for this subsection goes to our
co-author N. Terry.)

Figure 4: The Terry replacement.

For example, let us look at the graph G obtained from H = K3 by performing
the Terry replacement on two of H’s three edges.

Figure 5: Applying the Terry replacement to two of the three edges of K3.

In Figure 5 we have given an edge coloring, proper if a /∈ {1, 2, 3, 4, 5, 6}, which
is essentially the only possible proper edge coloring of G in which rainbow cycles
within the K2,3’s are forbidden. If a is chosen so that the coloring is proper, then
there are 9 different rainbow cycles in G with this coloring. Thus G is PRCF-bad.

But G is not critically PRCF-bad. In Figure 6 we show a critically PRCF-bad
subgraph of G. We leave as an exercise for the reader the verification that the graph
in Figure 6 is critically PRCF-bad.

We have not gone far in discovering new critically PRCF-bad graphs using the
tool of Terry replacement. The following theorem points to a way, but the way is
hard.
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Figure 6: A critically PRCF-bad subgraph of the graph in Figure 5.

Theorem 5.1.1. Suppose that H is a PRCF-good graph and G is obtained by ap-
plying K2,3 replacement to all of the edges of H. Then G is PRCF-good.

Proof. For e ∈ E(H) let T (e) denote the K2,3 replacing e in the formation of G. In
any PRCF coloring of E(G), should one exist, the edges of each T (e) will have to
bear three colors.

There are at most two kinds of cycles in G: C4 subgraphs of some T (e), e ∈ E(H),
and cycles not so contained. Each cycle of the latter type is obtainable from a cycle
in H by Terry replacement of some of its edges.

Since H is PRCF-good, there is a PRCF coloring of E(H), say with colors
c1, . . . , ck. Colors can be any objects whatever, so we can let c1, . . . , ck be pair-
wise disjoint 3-sets, say cj = {xj, yj, zj}. If e ∈ E(H) is colored with cj, give T (e) a
PRCF coloring with xj, yj, zj. Because the cj are pairwise disjoint and the coloring
of E(H) is proper, the derived coloring of E(G) is proper. We claim that it forbids
rainbow cycles in G; if this claim is true then the claim of the theorem is proven.

We chose the coloring so that no C4 in any T (e), e ∈ E(H), is rainbow. Suppose
that C is a cycle in G not contained in any T (e); let C ′ be the cycle in H from
which C arises by Terry replacement. Because the edge-coloring of H is rainbow-
cycle-forbidding, two different edges e, f ∈ E(C ′) bear the same color, cj. Because
of the way the edges of T (e) and T (f) are colored with xj, yj, zj, as C traverses each
of these two K2,3’s, two of these three colors appear on edges of C. Therefore, at
least one of xj, yj, zj appears twice on the edges of C.

The graph G in Figure 7, touted there as the only critically PRCF-bad subgraph
of the graph obtained from K3 by Terry replacement of every edge, is also the result
of Terry-replacing two adjacent edges of C4. This shows that if the statement of
Theorem 5.1.1 is altered by replacing “all” with “some”, the resulting statement is
not a theorem.

Moreover, Theorem 5.1.1 does not say that a graph obtained from a PRCF-bad
graph by total Terry replacement (i.e., by Terry replacement of every edge) will be
PRCF-bad, but it does say that if one is searching for new PRCF-bad graphs by
total Terry replacement, then do not bother starting with PRCF-good graphs. In
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fact, a little thought shows that one may as well apply total Terry replacement to
critically PRCF-bad graphs in search of PRCF-bad graphs from which to extract
new critically PRCF-bad graphs.

If G is obtained from H by total Terry replacement, we write G = T (H).
The following two lemmas posit for reference some obvious facts about PRCF-

goodness and PRCF-criticality. Proofs are omitted.

Lemma 5.1.2. (a) If G is vertex-critically-PRCF-bad, then G is connected and
has no vertices of degree 1 (leaves).

(b) If a graph G is critically PRCF-bad, then G is vertex-critically-PRCF-bad.

Lemma 5.1.3. If G is PRCF-good, then a graph obtained from G by adding a leaf
or an isolated vertex is also PRCF-good.

Proposition 5.1.4. If G = T (H), then G is critically PRCF-bad if and only if G is
vertex-critically-PRCF-bad.

Proof. The “only if” claim holds by Lemma 5.1.2 part (b). Suppose that G is vertex-
critically-PRCF-bad. Because G = T (H), every e = uv ∈ E(G) is an edge of some
K2,3 subgraph of G in which one of u, v (say v) has degree 2 in G. Therefore, G− e
is obtained from the PRCF-good graph G − v by adding a leaf (namely, v). By
Lemma 5.1.3, G− e is PRCF-good. Since e ∈ E(G) was arbitrary, it follows that G
is critically PRCF-bad.

Proposition 5.1.4 has not helped, so far, in our hunt for critically PRCF-bad
graphs. Our plan was to apply Proposition 5.1.4 with H being a critically PRCF-
bad graph. Success would involve showing that G = T (H) is PRCF-bad and then
that G− u is PRCF-good for every u ∈ V (G).

For all of the small critically PRCF-bad graphs H that we have checked, T (H)
is indeed PRCF-bad, but not critically so. What is more, verifying that T (H) is
PRCF-bad, even for these small critically PRCF-bad graphs, is not easy. We strongly
suspect that T (H) will be PRCF-bad (though not critically so) wheneverH is PRCF-
bad, but we do not yet have a proof.

We are interested in extracting critically PRCF-bad graphs from T (H), whenH is
a critically PRCF-bad graph, because it may lead to a proof that there are infinitely
many critically PRCF-bad graphs. We will finish this section with the result of this
process in the simplest case, when H = K3.

Lemma 5.1.5. Suppose that H is vertex-critically-PRCF-bad, G is a subgraph of
T (H) and v ∈ V (H) ∩ V (G). Then G− v is PRCF-good.

Proof. G − v is a subgraph of T (H − v) plus, possibly, some added leaves. Since
H − v is PRCF-good, it follows that T (H − v) is PRCF-good, by Theorem 5.1.1.
Therefore every subgraph of T (H − v) is PRCF-good, and so G is PRCF-good, by
Lemma 5.1.3.
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Figure 7: G is the unique (up to isomorphism) critically PRCF-bad subgraph of
T (K3). A PRCF coloring of G− w is given.

Proposition 5.1.6. The first graph G in Figure 7 is the only (up to isomorphism)
critically PRCF-bad subgraph of T (K3).

Proof. Cleary G is a subgraph of T (K3). Suppose G has a PRCF coloring. Without
loss of generality, the left K2,3 has the unique PRCF coloring of K2,3 with colors 1,
2, and 3, and the right K2,3 is so-colored with colors 4, 5, and 6. Then the color
of uy cannot be one of 4, 5, or 6, and the color of xu cannot be one of 1, 2, or
3. Consequently, there must be a rainbow C6 in G, with this coloring; so no such
coloring exists. Thus G is PRCF-bad.

Since removing any edge of G leaves a leaf, to show that G is critically PRCF-bad
it suffices to show that removing any vertex of G of degree 2 leaves a PRCF-good
graph. It is obvious that G − u is PRCF-good. Without loss of generality, it now
suffices to show that G− w has a PRCF-coloring. This is displayed in Figure 7.

It remains to show that G is, up to isomorphism, the only critically PRCF-
bad subgraph of T (K3). By Lemma 5.1.3 and Lemma 5.1.5 (with H = K3), to
find critically PRCF-bad subgraphs of T (K3) it suffices to consider graphs obtained
from T (K3) by removing vertices of degree 2; for instance, the graph G in Figure 7 is
obtained by removing from T (K3) two vertices of degree 2 that inhabit the same K2,3

in T (K3). Next in line, in both the ordering by order and the subgraph ordering, is
the graph in Figure 8, for which a PRCF coloring is supplied.

The graph in Figure 6 is not a subgraph of T (K3), but of the graph obtained by
Terry-replacing 2 of K3’s 3 edges. It is the unique critically PRCF-bad subgraph of
that K3 derivative.

The graph obtained by Terry-replacing only one of the edges ofK2,3 isK2,4. It can
be shown that T (K2,4) has a critically PRCF-bad proper subgraph, and is therefore
PRCF-bad, but not critically so; but we shall not pursue this matter further.

5.2 Mycielskians of odd cycles

The Mycielskian, M(G), of a finite simple graph G on n vertices is formed as follows
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Figure 8: A PRCF coloring of another subgraph of T (K3).

1. Put a copy of G on vertices x1, . . . , xn.

2. For each xi introduce its “clone” yi and make yi adjacent in M(G) to each xj
for which xixj ∈ E(G). There are no edges yiyj in M(G).

3. Finally, introduce a vertex z which is adjacent to each yi, and to none of
x1, . . . xn in M(G).

M(C5), the famous Grötzsch graph, is depicted in Figure 9.

Figure 9: The Grötzsch graph, M(C5)

Theorem 5.2.1. If n ≥ 5 is an odd integer, then M(Cn) is PRCF-bad.

Proof. Let x1, . . . , xn be the vertices of Cn with xi adjacent to xj when |i− j| = 1
or when i = 1 and j = n. Let y1, . . . , yn and z be as described in the instructions for
the formation of M(C5). See Figure 10.
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Figure 10: Part of M(Cn), with zyi colored i, for 1 ≤ i ≤ n.

Suppose that φ : E(M(Cn))→ {1, 2, . . . } is a PRCF coloring of M(Cn). Since φ
is a proper coloring, we may as well suppose that φ(zyi) = i, for 1 ≤ i ≤ n.

Reading indices modulo n, observe that z, yk, xk+1, yk+2 induce a C4 in M(Cn)
for each k = 1, . . . , n, with edges zyk and zyk+2 colored k and k + 2, respectively.
Therefore, either ykxk+1 is colored k + 2 or xk+1yk+2 is colored k. We can form a
binary word ā = a1 . . . an ∈ {L,R}n such that ak = R implies that φ(xk+1yk+2) = k
and ak = L implies that φ(ykxk+1) = k + 2. Imagine that the word is arranged in a
circle – that is, this word represents a coloring of the vertices of Cn with the colors
L and R.

Either ā = Ln, or ā = Rn, or both R and L appear in ā. Because n is odd, in the
latter case either the arc RRL of consecutive colors appears in ā, or the arc RLL
appears in ā. Without loss of generality, assume that a1a2a3 = RRL.

Referring to Figure 11, observe that, under our assumption, the P4’s x2y3zy4x3

and x3y4zy3x4 are both rainbow. Because φ is a PRCF coloring, it follows that
{φ(x2x3), φ(x3x4)} = {3, 4}; but then the 4-cycle x2y3x4x3x2 is rainbow.

Therefore, we may assume, without loss of generality, that ā = Rn.
Referring to Figure 12, observe that for each k = 1, . . . , n, the P4 xkyk+1zyk+2xk+1

is rainbow. Since the 5-cycle induced by these vertices cannot be rainbow, it follows
that φ(xkxk+1) ∈ {k + 1, k + 2} , for k = 1, . . . , n. (We are again reading indices
mod n.)

If, for instance, φ(x1x2) = 3, then the properness of φ forces φ(x2x3)=4, which
forces φ(x3x4) = 5, etc., and we have a rainbow cycle, Cn. Similarly, if φ(x1x2) = 2,
the forcing proceeds counterclockwise, and again we have that Cn is rainbow. Thus
there is no PRCF coloring of M(Cn), so M(Cn) is PRCF-bad.
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Figure 11: The coloring φ partially revealed.

Figure 12: φ partially revealed, under the assumption that ā = Rn.

We strongly suspect that when N ≥ 5 is odd, then M(Cn) is vertex-critically
PRCF-bad, which, if true, would show that there are infinitely many critically PRCF-
bad graphs, by Corollary 5.2.

However, we can prove that there are infinitely many vertex-critically-PRCF-
bad graphs, and thus infinitely many critically PRCF-bad graphs, without actually
exhibiting an infinite sequence of such graphs.

Theorem 5.2.2. For n ≥ 3, let the vertices of M(Cn) be x1, . . . xn, y1, . . . , yn, z as in
the proof of Theorem 5.2.1. For each i ∈ {1, . . . , n}, M(Cn)−{xi, yi} is PRCF-good.

Proof. Clearly, it suffices to prove that Hn−1 = M(Cn) − {xn, yn} is PRCF-good.
We depict Hm, for m ≥ 2, in Figure 13, with a coloring φ = φm : E(Hm) →
{1, . . . ,m+ 2} that we claim is a PRCF coloring.
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Figure 13: Hm = M(Cm+1)− {xm+1, ym+1}, with a PRCF edge coloring.

φ = φm is defined by :

φ(zyi) = i+ 1, for i = 1, . . . ,m;
φ(xi+1yi) = i+ 2, for i = 1, . . . ,m− 1;
φ(xiyi+1) = i, for i = 1, . . . ,m− 1;

φ(xixi+1) = i+ 3, for i = 1, . . . ,m− 1.

Observe that if m ≥ 3 then the restriction of φm to the edges of Hm − {xm, ym}
is φm−1.

Checking the colors on edges incident to each vertex of Hm shows that φm is a
proper edge coloring. We will show that φm forbids rainbow cycles by induction on
m, starting with m = 2; H2 is C5 and φ2(zy2) = 3 = φ(x2y1).

Now suppose that m ≥ 3 and that φm−1 is a PRCF coloring of Hm−1. Then to
show that there are no rainbow cycles in Hm with the coloring φm it suffices to show
that neither xm nor ym is in such a rainbow cycle.

Any cycle containing both xm and ym must contain the edges zym and xmym−1,
both colored m + 1. So now we must consider cycles containing exactly one of xm
and ym.

Suppose that C is a rainbow cycle in Hm (with reference to φm) such that ym ∈
V (C) and xm /∈ V (C). Then, because ym is incident to only two edges, those edges
zym and xm−1ym, colored m + 1 and m − 1, respectively, are in E(C). Let us ask:
what other edges must be in E(C)?

Because xm /∈ V (C), xm−1xm /∈ E(C), and because φm(xm−2xm−1) = m+ 1,
xm−2xm−1 /∈ E(C). Therefore, xm−1ym−2, colored m, must be in E(C).

Because φ(zym−2) = m − 1, which already appears as a color on C, on xm−1ym,
it must be that xm−3ym−2 ∈ E(C), adding m − 3 to the list of colors appearing on
C. Examining the colors on the other three edges incident to xm−3, we find ourselves
forced to leave xm−3 along xm−3ym−4, adding m− 2 to the list of colors on C.
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Continuing in this way, we find that the coloring φm and the assumptions that
C is rainbow, that ym ∈ C, and that xm /∈ C, force the existence of a path P on C
starting at z: z, ym, xm−1, ym−2, . . . landing on either x1 or y1, depending on whether
m is even or odd. On the subpath from z to xm−k, k > 1, the colors appearing
are {m+ 1,m,m− 1, . . .m− k} \ {m− k + 1}; on the subpath from z to ym−k the
colors appearing are {m+ 1,m, . . . ,m− k + 1}. From this it can be deduced that
after arriving at xm−k, 1 ≤ k ≤ m − 2, the next edge on the path can only be
xm−kym−k−1, and after arriving at ym−k, 2 ≤ k ≤ m− 2, the next edge on the path
can only be xm−k−1ym−k.

If y1 is a stop on this path then the colors appearing along the path from z to y1

are {2, . . .m+ 1}; because y1 was arrived at along x2y1, the only edge along which
to depart from y1 to complete the cycle is y1z, which is colored 2–thus the rainbow
C cycle cannot exist. If x1 is a stop on the path, arrived at along x1y2, then the
colors from z to x1 along P are {1, . . .m+ 1}\{2}; the only edge to leave x1 by x1x2

colored 4. Again, the rainbow cycle C cannot exist.
Now suppose that C is a rainbow cycle in Hm, with reference to φm, such that

xm ∈ V (C) and ym /∈ C. The proof that C does not exist starts like the proof just
completed, except that we build a path on C containing xm by building out from xm
in both directions.

Since xm has degree 2 in Hm, xm ∈ V (C) implies that xm−1xm, xmym−1 ∈ E(C),
bearing colors m + 2,m + 1, respectively. Since ym /∈ V (C) and xm−2xm−1 bears
color m + 1, the other edge of C incident to xm−1 must be xm−1ym−2, adding m to
the colors that must appear on C, on the edges so far discovered.

That means that zym−1 /∈ E(C), so xm−2ym−1 ∈ E(C), adding m− 2 to the color
list, which now stands at m+2,m+1,m,m−2. Our path has end vertices xm−2 and
ym−2 at this point. If m = 3 then it is straightforward to see that this path cannot
be extended to a rainbow cycle in H3; so we assume that m > 3.

Examining the edges incident to xm−2, we see that it must be that xm−2ym−3 ∈
E(C), adding m− 1 to the list of colors known to be on C, and forcing xm−3ym−2 ∈
E(C). The list of colors known to be on C is now m+2,m+1,m,m−1,m−2,m−3.
Since the colors on the 3 edges of Hm besides xm−3ym−2 incident to xm−3 (if m >
4) are among those on this list, there is no such rainbow cycle C satisfying the
assumptions of this part of the proof. If m = 4, then xm−3 = x1, so the same
conclusion holds.

Corollary 5.2.3. If n ≥ 5 is odd, then M(Cn) has a vertex-critically-PRCF-bad
subgraph of order at least n. In fact, every vertex-critically-PRCF-bad subgraph of
M(Cn) has order at least n.

Proof. Every vertex-critically-PRCF-bad subgraph of M(Cn) is obtained by remov-
ing vertices from M(Cn). The order of M(Cn) is 2n + 1; any (n + 2)-set of vertices
of M(Cn) must contain a set {xi, yi} for some i ∈ {1, . . . , n}. Therefore , every sub-
graph ofM(Cn)−S, S ⊆ V (M(Cn)), |S| = n+2, is PRCF-good. Consequently every
PRCF-bad subgraph of M(Cn) has order greater than (2n+1)− (n+2) = n−1.

Corollary 5.2.4. There are infinitely many different critically PRCF-bad graphs.
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Proof. This follows from Corollaries 5.2 and 5.2.3.

Appendix: Small critically PRCF-bad graphs

Our fifth co-author (G.P.) wrote a computer program for the task of discovering all
bipartite critically PRCF-bad graphs of order at most 12. The program discovered
three graphs that we knew of already (A2, A3, and A5, below) and ten others. Of
these ten, we have hand-checked the PRCF-bad criticality of none; nor have we
confirmed that Greg’s program discovered all bipartite critically PRCF-bad graphs
of order at most 12. As for non-bipartite critically PRCF-bad graphs, we know of
only the two given below, A1 and A4. Below is a list of what we believe to be the
first 15 critically PRCF-bad graphs, listed by order.

K3, K2,4, and the graph in Figure 3 that we will call A1, A2, andA3 respectively.

A4: This appears in Figure 6. It is not
bipartite.

A5: This bipartite graph is a subgraph
of T (K3). It appears, drawn differ-
ently, in Figure 7.
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A6

A7

A8

A9

A10
A11
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A12 A13

A14
A15
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