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Abstract

A 3-uniform 5-cycle C(3,5), sometimes called a tight 5-cycle, consists of
five vertices a, b, ¢, d, e and five 3-element sets abc, bed, cde, dea, eab. A
hypercycle system C(3,5, v) is a decomposition of the family of 3-element
subsets of a v-element set in such a way that each part is isomorphic to
C'(3,5) and each 3-set occurs in precisely one part. In this note we show
a principle of recursion which can be used to build systems C(3, 5, 4v + 1)
and C(3,5,9v + 1), and possibly more, when a certain kind of structural
property is satisfied.

1 Introduction

In this paper we continue the study of edge decompositions of complete 3-uniform
hypergraphs into 5-cycles.

An r-uniform hypercycle of length & (k > r > 3) is called a tight cycle if it is
a cyclic sequence of k vertices of X in which any r consecutive vertices, and only
those, form an edge. If r is understood, we simply call it a k-cycle. An r-uniform
hypercycle of length k is denoted by C(r, k).

A hypercycle system C(3,5,v) is a decomposition of the family of 3-element sub-
sets of a v-element set in such a way that each part is isomorphic to C'(3,5) and each
3-set occurs in precisely one part. One very natural question is to determine the set
of those v for which a C(3,5,v) exists.
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This problem was initiated by Meszka and Rosa [9] who noted that a necessary
condition is v = 1,2,5,7,10,11 (mod 15). They also verified that there exists a 5-
cycle system for every admissible v < 17 from these residue classes. This range was
extended to v < 22 by Gionfriddo, Milazzo and Tuza [2], and to v < 60 by Keszler
and Tuza [6], with some earlier intermediate constructions in a sequence of papers
by Jirimutu et al.; see e.g. [8]. Beyond these cited works, which also contain infinite
sequences of systems obtained by recursive constructions, a comprehensive account
on the literature is given in [6]. For sufficiently large (huge) orders the existence of
systems C(3, 5, v) follows from the very strong general results of Keevash’s milestone
paper [5] on Steiner systems.

In this paper our goal is to present some methods that are suitable for the con-
struction of new infinite classes of 3-uniform 5-cycle systems. For this, in Sections 2,
3, and 4 we introduce three new types of systems.

For the first type—systems of order 4v 4+ 1 built upon four almost disjoint “semi-
parallel classes” of systems of order v + 1—we create systems of all feasible orders
under 60 (Section 2).

The second type is closely related to Steiner systems S(3, 5, v), they have the same
arithmetic necessary conditions. The existence of §(3,5,41) is a famous old open
problem in design theory, however here we are able to construct a “block-centered”
cycle system for the order of 41 (Section 3).

The third type, “transversal cycle systems” are the cycle analogues of 3-wise
transversal designs; the latter are widely used in Design Theory. Here we prove
that transversal cycle systems can be constructed for every value of the group size
parameter, demonstrating sharp contrast to transversal designs (Section 4).

Finally, in Section 5 we apply these structures to design a recursive construction
of cycle systems. Namely, from special types of systems of orders 4v 4+ 1 and w + 1,
a system of order vw + 1 is created. As a corollary, C(3,5,v) systems are obtained
for several new values of v.

1.1 Orbits of edges and triplet types

Symmetry is a useful tool in designing decompositions. In this paper we consider
three types of symmetry:

e cyclic systems, where the vertex set is Z, and the mapping defined for all i € Z,
as i +— i+ 1 (mod v) is an automorphism;

e l-rotational systems, which are hypergraphs whose vertex set is Z,_1 U{x} and
the mapping with fixed point  and ¢ +— i+ 1 (mod v — 1) for all i € Z, 4 is
an automorphism;

e hypergraphs whose vertex set is Z,_ 2 U {x,y} and the mapping with the two
fixed points = and y, and taking i — i+ 1 (mod v — 2) for all i € Z,_5 is an
automorphism.

For these three kinds of symmetry we define triplet types over Z,,, where m = v or
m=v —1or m=uv — 2, respectively.
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First, we need to define the distance of two vertices ¢, 7 as their shortest distance
“along the cycle” in Z,,, that is ||i — j|| = min{|i — j|,m — |i — j|} for any two i, j €
Loy,

Consider any vertex triple T' = {p,q,r} C Z,,. Adopting a term from [2], the
difference triplets associated with T" are the triplets of nonnegative integers obtained
in the following way. Find the increasing order of elements in 7', i.e.,let 0 < a < b <
¢ < m be such that {a,b,c} = {p,q,r}. Then, each of (|la — b||,||b — ||, ||c — al]),
(1lb—c¢||, ||c=all, ||a=bl]), (||c—all, [la—0b||, ||b—c||) is considered as a difference triplet
of T. These three are equivalent representations of T'; usually (but not always), we
take the lexicographically smallest of them. Viewing them as cyclic triplets, the
three actually become identical.

A difference triplet of type (d,d,d’) is also called a “symmetric difference”; and
we use the term “reflected difference” for a pair {(d,d’,d"), (d,d",d")} of difference
triplets in which the three distances d,d’,d” are all distinct. In accordance with
this, a reflected cycle pair means two cycles whose 5 + 5 edges form five reflected
differences.

Definition 1.1 Let 7' = {p,q,r} C Z,, be any edge in a 3-uniform hypergraph,
where it is assumed that i+ i+ 1 (mod m) is an automorphism. Consider the
lexicographically smallest difference triplet (d, d’, d”) associated with T'. (Here either
of d = d and d < d" may hold.) Then the triplet type, or simply the type of T is
defined as the 3-tuple (1,d+ 1,d+d' + 1). o

This notion, introduced in [6], is very useful in verifying constructions based
on a concept of circular symmetry. Triplet types are invariant under the mapping
i — i+ 1 (mod m). Hence, the orbit of any 7" consists of all vertex triples having
the same type.

2 Cycle systems with semi-parallel classes

Definition 2.1 Let C(3,5,v) be a hypercycle system of order v with vertex set X,
and let d and k be integers such that v = kd + 1. A semi-parallel d-class, SP(d),
for short, is a subsystem C’ C C(3, 5, v) satisfying the following conditions:

e ('=CU---UCy,

e cach C; is a C(3,5,k + 1) system,

e there exists a vertex = € (i_, V(Cy),

e the sets V(C;) \ {z} for i = 1,...,d are mutually disjoint.

We call the sets V(C;) \ {z} the parts of C’, and vertex x the center of C'. o

It follows, in particular, that the subsystems C; of C’ cover the entire vertex set,
but do not cover any vertex triple more than once. In the current context the relevant
substructure will be SP(4), i.e., the case of d = 4.
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Remark 2.2 If there exists a C(3,5,v) containing an SP(d), then inside the vertex
set of every subsystem C; one can take a system isomorphic to a fixed C(3,5,k + 1).
Hence it can be assumed without loss of generality that the vertices in all V(C;) are
labeled consistently and the label-preserving mapping V' (C;) «— V(C;) (that maps
x to itself) establishes an isomorphism between any two subsystems, 1 <i,j < d. ©

Proposition 2.3 If a 5-cycle system C(3,5,v) with an SP(4) subsystem exists, then
v=1,5,17,25,37,41 (mod 60).

Proof. We know that a C(3,5,v) system exists only if v = 1,2,5,7,10, 11 (mod 15),
which means

v = 1,2,5,7,10,11,16,17,20, 22, 25, 26, 31,
32,35, 37,40,41,46,47,50,52,55,56  (mod 60).

Moreover, the presence of SP(4) certainly requires that v — 1 is a multiple of 4. This
excludes all even numbers and all numbers of the form 4k 4 3. Thus, the residue
classes listed in the assertion remain. !

More generally, one can obtain necessary conditions for the existence of SP(d)
subsystems in C(3,5, kd + 1) systems with other values of d, as well. However, we
postpone those discussions to a later work, because for the 5-cycle systems con-
structed in Section 5 we apply d = 4 only.

In the rest of this section we show that all the four relevant feasible orders under
60 admit 5-cycle systems with SP(4) subsystems. We begin with the following
observation concerning S(3,5,17).

Proposition 2.4 The Steiner system S(3,5,17) contains four blocks which all con-
tain a common point and are mutually disjoint otherwise.

Proof. Let the set of points be Z;7, and consider the cyclic 5-uniform hypergraph
generated by the following four basic blocks:

{0,1,7,10,16}, {0,2,3,14,15}, {0,4,6,11,13}, {0,5,8,9,12},

by taking all possible rotations modulo 17. Those 17 x 4 = 68 subsets of Z;7; cover
each 3-element set exactly once, and the four basic blocks above are mutually disjoint
in Zy7 \ {0}. O

This proposition implies that the smallest possible case of an SP(4) exists indeed.

Corollary 2.5 The system C(3,5,17) derived from S(3,5,17) in [2] and [8] contains
an SP(4) subsystem.
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There are several further values of v for which a cycle system C(3,5,v) with an
SP(4) subsystem can be constructed, despite that arithmetic conditions exclude the
existence of an §(3,5,v).

Cyclic representation. If an SP(4) is present in a cycle system C, it is more
convenient to assume that the order is 4v 4 1, rather than v. Then the system is
built upon four subsystems Cy, ..., Cy; each Cy is a cycle system of order v+ 1 and has
vertex set Vp U {x}, the sets V1, ..., Vj being mutually disjoint. So V(C) = V; UV, U
VsuVyU{x}. We represent V(C)\ {x} as Zy,, where V; = {i € Zy, | i = ¢ (mod 4v)}
for £ =1,...,4. Hence, the distances between elements other than x are computed
in Zy4,. Then the 3-element sets not covered by any cycles of C; U ---UCy are:

e {x,a,b} such that a,b € Zy, and ||a — b|| is not divisible by 4;

e {a,b,c} such that a,b, c € Zy, and at least one of ||a — 0|, ||b — ¢||, ||c — a| is
not divisible by 4.

The task is to decompose the family of these vertex triples into edge-disjoint 5-cycles.
We carry out this with decompositions for which the mapping i + 7 + 1 over Zy,,
together with x — x, is an automorphism.

Next we present three such cycle systems.

Proposition 2.6 There exist 5-cycle systems C(3,5,25), C(3,5,37), and C(3,5,41),
that contain SP(4) subsystems.

Proof. For all three cases we list the base cycles of the constructions. Following
Definition 2.1 and the cyclic representation described above, x denotes the center
of the SP(4) subsystem. In the three constructed systems SP(4) consists of four
subsystems of order 7 or 10 or 11, respectively. We do not list their cycles here
because they are well known systems from the cited references [2] and [9]. We only
note that these subsystems cover

e for v = 25 the orbits of vertex triples (z,0,4), (z,0,8), (z,0,12), (0,4,8),
(0,4,12), (0,4,16), (0,8, 16);

e for v = 37 the orbits of vertex triples (x,0,4), (x,0,8), (x,0,12), («,0,16),
(0,4,8), (0,4,12), (0,4,16), (0,4,20), (0,4,24), (0,4,28), (0,8,16), (
0,8,24), (0,12, 24);

(0,

e for v = 41 the orbits of vertex triples (x,0,4), (x,0,8), (x,0,12), («x,0,16),

(z,0,20), (0,4,8), (0,4,12), (0,4,16), (0,4,20), (0,4,24), (0,4,28), (0,4,32),
(0,8,16), (0,8,20), (0,8,24), (0,8,28), (0,12,24).

v = 25. Supplementing the four C(3,5,7) subsystems we take

(a) 3 base cycles containing z: (x,0,1,13,2), (z,0,3,15,6), (z,0,5,17,10);
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(b) 9 base cycles containing the symmetric triplets:
(0,1,22,2,23), (0,2,20,4,22), (0,3,19,5,21),
(0,5,14,10,19), (0,6,23,1,18), (0,7, 10, 14, 17),
(0,9,10, 14, 15), (0,10, 4, 20, 14), (0, 11,2, 22, 13);

(c) 3 reflected pairs of base cycles:
(0,11,8,17,1), (0,2,12,23,5), (0,16,1,18,5) and
(0,8,17,14,1), (0,6,17,3,5), (0,11,4,13,5).

v = 37. Supplementing the four C(3,5, 10) subsystems we take

(a) 5 base cycles containing z: (x,0,1,19,2), (z,0,3,21,6), (z,0,5,23,10),
(2,0,7,25,14), (z,0,9,27, 18);

(b) 12 base cycles containing the symmetric triplets:
(0,1,34,2,35), (0,2,32,4,34), (0,3,30,6,33), (0,5,26,10,31),
(0,6,25,11,30), (0,7, 22,14, 29), (0,10, 16,20, 26), (0,11, 14,22, 25),
(0,13, 10,26, 23), (0,14, 8, 28,22), (0, 15,6,30,21), (0,17, 2,34, 19);

(¢) 12 reflected pairs of base cycles:
(0,1,5,8,10), (0,1,6,8,17), (0,1,7,12,15), (0, 1,8, 10,21),
(0,1,9,14,23), (0,1,11,35,24), (0,2,14,19,23), (0,3,20, 32, 10),
(0,4,11,16,27), (0,4, 22,28,15), (0,8,25,2,18), (0,9,19,2,16) and
(0,2,5,9,10), (0,9,11,16,17), (0,3,8,14,15), (0,11, 13,20, 21),
(0,9, 14,22, 23), (0,25,13,23,24), (0,4,9,21,23), (0, 14, 26,7, 10),
(0,11,16,23,27), (0,23,29,11,15), (0, 16,29, 10, 18), (0, 14,33, 7, 16).

v = 41. Supplementing the four C(3,5, 11) subsystems we take

(a) 5 base cycles containing z: (z,0,1,21,2), (z,0,3,23,6), (x,0,5,25,10),
(,0,7,27,14), (z,0,9,29, 18);

(b) 15 base cycles containing the symmetric triplets:
(0,1,38,2,39), (0,2,36,4,38), (0,3,34,6,37), (0,5,32,8,35),
(0,6,28,12,34), (0,7,26,14,33), (0,9,22,18,31), (0,10, 21,19, 30),
(0,11, 19,21, 29), (0,13, 14,26, 27), (0, 14, 12, 28,26), (0, 15,8, 32, 25),
(0,17,6,34,23), (0,18, 4, 36,22), (0,19, 2,38, 21);

(c) 15 reflected pairs of base cycles:

(0,1,5,8,18), (0,1,6,3,11), (0,1,7,11,16), (0,1,8,3, 15),
0,1,9,15,22), (0,1,10,15,29), (0,2,9,12,27), (0,2, 17,6, 20),
0,2,18,31,12), (0,3,21,10,17), (0,4, 14,32,19), (0,5,22,32,17),
0,6,15,38,11), (0,6,16,37,21), (0,9,25,39, 16) and
0,10,13,17,18), (0,8,5,10,11), (0,5,9,15,16), (0,12,7, 14, 15),
0,7,13,21,22), (0,14, 19,28, 29), (0, 15, 18,25, 27), (0, 14,3, 18, 20),
0,21,34,10,12), (0,7,36,14,17), (0,27,5,15,19), (0,25, 35,12, 17),
(0,13,36,5,11), (0,24,5,15,21), (0,17, 31,7, 16).

To facilitate the verification of correctness that indeed the required cycle systems are
obtained, we provide more details on the base cycles in Section 6. U

(
(
(
(
(
(
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3 Block-centered cycle systems

The following type is an intermediate structure between cycle systems and Steiner
systems.

Definition 3.1 We say that a hypercycle system C = C(3,5,v) with vertex set X
is block-centered if there is an z € X such that the cycles incident with x are in
complementary pairs; i.e., if (x,p,q,r,s) is a 5-cycle in C, then also (z,q, s,p,r) is a
5-cycle in C. Every such unordered 5-tuple {x,p, q,r, s} will be called a block of C.
The collection of blocks will be denoted by B|C]. o

Since every vertex triple occurs in precisely one 5-cycle, it follows by definition
that the derived system

{B\{z} | B € B[C]}

is a Steiner system S(2,4,v — 1), whenever C is a block-centered 5-cycle system.
Proposition 3.2 If a block-centered C(3,5,v) exists, then
v =2,5,17,26,41,50 (mod 60).

Proof. Recall that if C is a block-centered C(3,5,v) system, then B|C] is an
S(2,4,v — 1) system. A classical result of Hanani [3] states that the latter exists
if and only if v = 2,5 (mod 12). Modulo 60 this means v = 2, 14, 26, 38, 50 (mod 60)
or v ="5,17,29,41,53 (mod 60). On the other hand, the analogous necessary condi-
tion for C(3,5,v) systems is v = 1,2,5,7,10,11 (mod 15), as stated in [9, 2]. Hence
from 2, 14, 26, 38, 50 there remain 2, 26, 50 and from 5, 17, 29, 41, 53 there remain
5,17, 41. 0

Observe that the above six residue classes are exactly the ones derived from the
divisibility conditions for §(3,5,v) systems. Hence, as a particular case of Keevash’s
theorem [5], for all sufficiently large v a block-centered 5-cycle system exists if and
only if the divisibility conditions are satisfied. To put it in another way, for large
v the existence of block-centered 5-cycle systems is equivalent to the existence of
Steiner systems S(3,5,v). On the other hand, however, for many small values of v
the existence of S(3,5,v) systems is an unsolved problem, and it may happen that
either the spectrum of the two kinds of structures is not the same, or a block-centered
5-cycle system is easier to construct than a Steiner system S(3,5,v). In this way,
based on a table of [1] for v < 200 the following problem arises naturally.

Problem 3.3 Does there exist a block-centered 5-cycle system of order v for
v =41,50,62,77,86,110, 122,125, 137,146, 161, 170, 182, 185, 1977

Solving this problem in full generality seems to be very hard. On the other hand
we next show that the first case, v = 41, admits an affirmative answer.

Proposition 3.4 There exists a block-centered C(3,5,41) system.



A. KESZLER AND Z. TUZA / AUSTRALAS. J. COMBIN. 90 (2) (2024), 262-280 269

Proof. We construct a C(3,5,41) that contains two central vertices x, y (rather than
just one), and whose other vertices are labeled with the elements of Zgg. The mapping
that fixes z and y and acts as 7 — ¢+ 1 for all 1 € Z3g will be an automorphism. We
denote this special mapping as ¢*. The basis of the system consists of blocks of size
5 (i.e., 5-element subsets of {x,y} UZsg) and 5-cycles, (copies of C(3,5)) as follows:

(a) the block (x,y,0,13,26);

(b) the 3 + 3 blocks (z,0,1,6,31), (x,0,2,12,23), (z,0,3,7,22) and
(y,0,1,9,34), (y,0,2,18,29), (y,0, 3,20, 35);

(c) the 9 blocks in Zse: (0,1,35,4,38), (0,2,31,8,37), (0,3,29,10, 36),
(0,5,21,18,34), (0,6,20,19,33), (0,7,27,12,32),
(0,9,22,17,30), (0,11,24,15,28), (0,14,23,16,25);

(d) the cycles (12 reflected pairs) in Zgg:

,1,3,7,15), (0,1,7,10,18),(0,1,8,3,12), (0,1,10,17,21),
,1,13,31,11), (0,2, 14,37, 13),(0, 3, 25, 32, 14),(0, 4, 18, 8, 23),
5,17, 34,11),(0,6, 21, 3,15),(0, 8, 22, 37, 20),(0,9, 20, 3, 19) and
18,12,14,15),(0,8, 11,17, 18),(0,9,4,11,12),(0, 4, 11, 20, 21),
,19,37,10,11),(0, 15,38, 11, 13),(0, 21,28, 11, 14),(0, 15, 5, 19, 23),

t
(
(
(
(
(
(0,16,33,6,11),(0,12,33,9,15),(0, 22, 37,12, 20),(0, 16, 38, 10, 19).

0
0
0
0
0
0

The orbits of (a) under ¢* cover all of the following vertex triples: those containing
x and y together; one of x and y together with each pair of elements 7,7 + 13 € Zsg;
and each {i,7+ 13,7+ 26} C Zso.

Omitting z from the three blocks of (b) containing x we obtain 4-tuples that
cover each of the 18 distances {1,2,...,19} \ {13} exactly once, thus the orbits of
these blocks together with (a) cover all vertex triples (x,4, j) where 7,5 € Zsg. The
analogous property holds for y as well. In addition, the vertex triples covered inside
Zsg by the blocks of y are the reflected images of those covered by the blocks of x.

The nine blocks of (¢) are symmetric and cover every vertex triple in which two
distances between the three elements are equal.

After (a), (b), (¢) the remaining uncovered vertex triples are all inside Zgg, and
form reflected pairs. They are covered with the orbits of the base cycles listed in (d).
In order to make checking easier, we provide a detailed table in Section 6. U

The following problem is also natural to raise, although currently its solution
seems to be far out of reach. In the light of Proposition 3.4, even the case of v = 41
remains a famous unsolved problem in the theory of Steiner systems.

Problem 3.5 Determine the set of those orders v that admit a block-centered 5-
cycle system C(3,5,v), but for which a S(3,5,v) system does not exist.
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4 Transversal cycle systems and 3-wise transversal designs

First, let us quote the definition of a well-known structure from the literature of
design theory. It is a special type of 5-partite hypergraph; according to standard
terminology, the partite classes are called groups.

Definition 4.1 A 3-wise transversal design of block size 5 and group size w is a
3-tuple (X, G, B) where X is the vertex set of cardinality 5w, G is a partition of X
into five groups (classes) of size w each, and B is a family of w?® blocks, which are
5-element subsets of X intersecting each group of G, with the property that every
3-tuple with elements from three distinct groups is contained in exactly one block.
The common notation is 3-TD(5, w); we simply write 3-TD when block size 5 and
group size w are understood. o

Denoting the groups as X; = {0, Zi1, ..., Tiw-1} for 1 <i <5, in the paper [2]
the 3-TD with blocks

(xl,pa xQ,qa xS,ra x4,p+q+7‘> w5,p+2q+3r>

is applied, where p, ¢, r are any three elements of Z,, and subscript addition is taken
modulo w. This system exists whenever w = 1,5 (mod 6). Concerning the method
presented below, the applicable residue classes are

w = 1,19,25,31,49,55 (mod 60)

because they may admit cycle systems C(3,5,w + 1).

Further sufficient conditions for the existence of 3-TD(5, w) systems are given by
Hanani [4]. It follows, in particular, that a 3-TD(5,w) exists also for w = 4 and
w = 9. More generally, any product w of prime powers ¢; = 0,1,4,6,9,10 (mod
15) may be of interest in this context. Note that the set {0,1,4,6,9,10} of residue
classes is closed under multiplication modulo 15.

On the other hand, from the negative answer to Euler’s 36 Officers Problem it
follows that a 3-TD(5,6) does not exist (see, e.g., page 12 of [1]). Nevertheless, we
can offer a method that is applicable for C(3,5,v) systems also in those cases where
3-wise transversal designs cannot be constructed. For this purpose we introduce the
following definition, that we formulate with general parameters, although here we
will apply it only for C(3,5).

Definition 4.2 An r-uniform transversal k-cycle system with group size w, denoted
as -TC(k,w), is a 3-tuple (X, G,C) where X is the vertex set of cardinality kw, G is
a partition of X into k groups (classes) of size w each, and C is a family of r-uniform
k-cycles, such that each cycle C' € C meets each group (in exactly one vertex) and
each r-element subset of X meeting exactly r groups is contained in precisely one
cycle.

More generally, an r-uniform group-divisible k-cycle system with g groups and
group size w, denoted as -GDC(k, g, w), is a 3-tuple (X, G,C) where X is the vertex
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set of cardinality gw, G is a partition of X into g groups (classes) of size w each,
and C is a family of r-uniform k-cycles, such that each cycle C' € C meets each group
in at most one vertex, and each r-element subset of X meeting exactly r groups is
contained in precisely one cycle. o

It follows that the number of cycles is (f)w””/k in 7-TC(k,w) and (Y)w"/k in
r-GDC(k, g,w). One should emphasize that the vertices in a cycle appear in a
prescribed order, whereas the blocks of transversal designs are unordered sets.

The existence of r-TC and r-GDC systems with general parameters will be studied
in the forthcoming paper [7]. Here we prove a construction for the case that is relevant
in the present discussion; i.e., g = k =5 and r = 3. It demonstrates that transversal
cycle designs offer substantially more flexibility than 3-wise transversal designs do.

Theorem 4.3 (Transversal 5-Cycles Lemma.) A 3-TC(5,w) system with 2w?
cycles of length 5 exists for every w > 1.

Proof. Let X; U---U X5 = X be the partition of the vertex set into five groups.
We are going to construct two collections of 5-cycles. The generic form of cycles of
the first type is C' = x1xox37475, where z; € X; holds for all 1 < i < 5. The generic
form for the second type is C' = zyx3252924. Clearly, if the types of two cycles are
not the same, then they are edge-disjoint. Hence it suffices to construct a system of
the first type and apply an isomorphism to derive the system of the second type.

Let W be a quasigroup of order w. We label the vertices of each X; with the
elements of W. Now, for each (a,b,c) € W3, construct the 5-cycle

(331,.'152,233,374,5175) = (CL,b, C,a + bab + C) .

It has to be verified that cyclically any three consecutive elements x;, x;1.2;42 (Where
xg := x1 and x7 := x9) uniquely determine the triplet (a,b,c). Indeed,

e ; =1 — all the three of a,b, ¢ are specified;

e 1 =2 — b and c are specified, and a = x4 — b;

1 =3 — cis specified, b = x5 — ¢, and a = x4 — b;
e | =4 — qa is specified, b = 4 — a, and ¢ = x5 — b;
e 1 =5 — a and b are specified, and ¢ = x5 — b.

Thus, every 3-element set meeting three consecutive groups (vertex classes) is an
edge in a cycle of the above collection. No vertex triple can be covered more than
once, because the w? cycles contain exactly bw? edges.

The cycles of the other type are obtained in the same way, by the analogous rule
(21,3, x5, 2, 24) = (a,b,c,a+b,b+ c). O
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5 Recursive construction

The papers cited in the Introduction present some ways of building cycle systems
from smaller ones. The following construction provides a further useful tool.

Theorem 5.1 (Recursion v+ 1,w+ 1 — vw+1.)  Suppose that there exists
each of the following structures:

e a cycle system C(3,5,4v + 1) containing a SP(4) subsystem;
e a block-centered cycle system C(3,5,w + 1).
Then there also exists a C(3,5,vw + 1).

Proof. We combine a recursive construction of Hanani [4] for Steiner systems with
ideas from the proof of Theorem 4.3 in [2]. Let Cyp41 be a C(3,5,4v + 1) system in
which a SP(4) subsystem C’ with center  and parts X, X, X3, X} is fixed. Hence
each X; U {z} induces a C(3,5,v + 1).

Consider now a block-centered C(3,5,w + 1) system C,41 whose vertex set is
{0,1,...,w}. Assume that the blocks of B[C,1] are incident with 0. We construct
a system C* = C(3,5,vw + 1) on the vertex set

Vw1 = {00} U{(i,j) [ 1 <i<w, 1 <j <w}
in the following way. Let C' be any 5-cycle of Cy 1.

o If 0 ¢ V(C), say C = (41,19, 13,14,15) with all of its vertices being nonzero, we
take a transversal cycle system 3-TC(5,v), denoted by T¢, with group size v
and block size 5, whose five partition classes are

Vi =A{(in,j) |1 <j<v}, 1<k<5.

Lemma 4.3 guarantees that this 3-TC(5, v) exists. Then, for each cycle C' € T¢
we specify the 3-uniform 5-cycle

(C'NY;,,C'NY,, C'NY,, C'NY;,,C"'NY,),

i.e., its edges are the vertex triples (C'NY;,,C'NY;, ., C'NY;
addition in the sub-subscript is taken modulo 5.

i1 o) for kb =1,....5;
Note that this step does not need the cyclic sequence (i1, i3, i5, i2,74) to be a

cycle of C,1, only the properties of a transversal cycle design were needed.

o If 0 € V(C), say C = (0,1iy,19,13,74), we create a 5-cycle system C[C] on the
vertex set
Z[C] :i={oo} U{(ix,)) | 1 <k <4,1<j<wv}
by taking a bijective mapping ¢ : V(Capr1) — Z[C] such that po(z) = oo,
moreover pc(x; ;) = (ix,7) for all 1 <4,k <4 and all 1 < j < v. Further, we
also require that if V(C") = V(C”) then oo = pen.

Note that these mappings are consistent for all C, because the derived system
{B\ {0} |0 € B € B[Cy41]} is a Steiner system S(2,4,w).
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We have to show that each vertex triple T" in V,,, 11 occurs in precisely one of the
5-cycles defined above. For i = 1,...,w let us call the 5-element set {oo, (i, 1), (7, 2),
..., (i,v)} as fiber i. Note that all vertex triples originating from cycles C' € Cy 1
with 0 ¢ C meet exactly three fibers.

e If T is contained in a fiber, then it occurs in a 5-cycle originating from C’,
the fixed SP(4) of Cypi1; there is precisely one 5-cycle for 7. Indeed, due to
the condition ¢ (z; ;) = (ix,j), every C € Cypyq with {0,4,} C V(C) defines
exactly the same 5-cycle for T

e If T meets exactly two fibers, say fibers ¢; and i, then consider the vertex
triple {0,41,42}. It occurs in precisely one C' € C,,41, which defines a bijection
¢c. The inverse mapping ¢g' determines a vertex triple o' (T) C V (Capy1),
which is contained in precisely one 5-cycle Cr € Cyyy1. Then ¢(Cr) is a 5-cycle
containing 7" in C*. These steps for T are unambiguous because the derived
system of B[Cy41] is a S(2,4, w)

e If T meets three fibers, say fibers i1, i and i3, then consider the vertex triple
{i1,42,43} in Cypy1. It occurs in precisely one C' = (iy,1a,13,14,15) € Cpi1-
Now two situations are possible, depending on whether 0 € V(C) or not. If
0 € V(C), then by assumption the block B = V(C) € B|[Cy41] is the unique
one containing {i1,is,i3} as a subset, therefore the 5-cycles meeting the three
fibers iy, 49,13 are determined by pc. Otherwise, if 0 ¢ V(C), then we have
taken T¢ as a 3-TC(5,v), whose vertex set entirely includes (and consists of)
fibers 1,19, 13,14, 75 minus co. Hence there is precisely one cycle in 7o that
contains T', whose 5-cycle specified above has T as an edge.

Thus, C* is a C(3,5,vw + 1). 0

Combining this result with previously known constructions, we can confirm the
existence of 3-uniform 5-cycle systems for several new values of the numbers of ver-
tices.

Theorem 5.2 There ezist C(3,5,n) systems for each of the orders
n = 97,145,151, 161, 241, 251, 266, 361, 385,401, 577,601, 641,901, 1001.

Proof. We apply Theorem 5.1 with 4v +1 = 17,25,37,41 by Corollary 2.5 and
Proposition 2.6, which means v = 4,6,9, 10, and w = 17,26, 41, 65, 101 by the block-
centered system C(3, 5, 41) of Proposition 3.4 and the known Steiner systems of orders
17,26, 65,101. The details of computation are collected in Table 1. O]
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dv+1 | v+1 | w+1= 17 26 41 65 101
17 5 65 101 161 257 401
25 7 97 151 241 385 601
37 10 145 226 361 577 901
41 11 161 251 401 641 1001

Table 1: Constructions of C(3,5,vw + 1) via Theorem 5.1.

6 Tables of small cycle systems

Here we list the triplet types (see Definition 1.1) generated by the base cycles of
systems containing SP(4) subsystems, on 25, 37, and 41 vertices, respectively. At
the end, the detailed description of the block-centered C(3,5,41) system is also given.

Let us recall from the “Cyclic representation” paragraph of Section 2 that the
center x of SP(4) is fixed and circular symmetry is established in Z,, for the base
cycles whose orbits cover the 3-element sets not contained in the parts of SP(4).
More explicitly, the mapping with z — x and ¢ — ¢ + 1 for all + € Z4, will be an
automorphism of the subsystem C(3,5,4v + 1) \ SP4. Here it is irrelevant whether
or not this mapping is an automorphism of the SP(4) subsystem, too.

In the block-centered system of order 41 (Table 6) the central part consists of
two vertices z,y. In this case the other 39 vertices are represented over Zsg, and the
mapping with z — x, y — y, i — i + 1 (i € Z3zg) will be an automorphism of the
entire system.

The first small table aims to help the interpretation of the data presented in the
rest of this section. We take the example base cycle (0,1, 22,2, 23) from the system
C(3,5,25) and go through the process of determining its triplet types. The first step
is to calculate the distances between the vertices of all 5 vertex triples. Recall that
the calculation is done in Zo,. Within each vertex triple the smallest of the three
distances will be denoted by d. The vertex pair with this smallest distance will be
the first and second vertex in the ordered version of the triple. The remaining vertex
of the original triple will get the third place. The order of the first two vertices will
be chosen so that the pair is put in the smaller arc of the cyclic order 0,1,...,v—1,0.
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Table 2: Triplet type calculations explained on the example base cycle (0, 1,22, 2, 23)
from the system C(3,5,25) with an SP(4) subsystem; computed modulo 24 after
removing the center of SP(4).

Vertices Distances : . Ordered

d | Direction . Type

(Vi,Vig1,Vige) | Viovigr | Vigi-Vigs | Viga-vs triple

(0,1,22) 1 3 2 1 right 0122 | 1223
(1,22,2) 3 4 1 1 left 1222 | 1222
(22,2,23) 4 3 1 1 left 22232 | 125
(2,23,0) 3 1 2 1 right 2302 | 124
(23,0,1) 2 1 1 1 right 2301 123

Table 3: Base cycles of the system C(3,5,25), modulo 24,
that form the SP(4) subsystem.

without the four C(3,5,7),

(v1,v2,v3,v4,v5) (v1,v2,v3) (v2,v3,v4) (v3,v4,v5) (v4,v5,v1) (v5,v1,v2)
d ‘ triple ‘ type | d ‘ triple ‘ type | d ‘ triple ‘ type | d ‘ triple ‘ type | d ‘ triple ‘ type
Base cycles containing x.

(x,0,1,13,2) - - - 110113 12141 1213 | 1213 - - - - - -

(x,0,3,15,6) - - - 31031514163 3615 | 1413/ - - - - - -

(x,0,5,17,10) - - 510517 |1618|5| 51017 | 1613 - - - - - -

Base cycles containing the symmetric triplets.
(0,1,22,2,23) 1101221223 1] 1222 (1222122232 | 1251|2302 | 124 |1]2301 | 123
(0,2,20,4,22) 210220132112 2420 |1319|2| 20224 | 139 |2| 2204 | 137 2] 2202|135
(0,3,19,5,21) 310319|11420({2|3519 |1317|2] 19215 |1311(3| 2105 | 149 |3|2103 | 147
(0,5,14,10,19) |[5[0514 1615 |4 [10145|1520|4|101419|1510[5|19010|1616|5| 1905 [1611
(0,6,23,1,18) 112306 128 |2]2316 | 138 (2]23118 |1320(1| 0118 [1219|6]| 1806 |1713
(0,7,10,14,17) [3[7100]1418 |3 |71014| 148 |3 1417101421 |3 [14170|1411|7| 1707 | 1815
(0,9,10,14,15) [1]9100|1216|1]91014| 126 |1 |141510|1221|1[14150|1211|6| 9150 |1716
(0,10,4,20,14) [4]0410]1511 |6 410201717 6| 14204 |[1715]4[20014|1519|4]10140|1515
(0,11,2,22,13) [2]0211|1312|4]22211|1514|4| 22213 |1516|2[22013|1316|2|11130|1314
First half of the reflected cycle pairs.
(0,11,8,17,1) 31811014173 8111714107 | 1817 |1817(1| 0117 [1218|1| 0111 |1212
(0,2,12,23,5) 21021211313 13123212(1414|6| 23512 |1714|1| 2305 | 127 |2] 025 136
(0,16,1,18,5) 11011612172 |16181 13104 | 1518 |1518 |5 0518 |[1619|5| 0516 | 1617
Second half of the reflected cycle pairs.

(0,8,17,14,1) 7117081816 (3|14178 14193 | 14171 |1412|1]0114 |1215|1| 018 129
(0,6,17,3,5) 6061717183 3617 [1415|2| 3517 |1315|2| 350 |[1322|1| 560 |1220
(0,11,4,13,5) 410411115122 |11134|1318|1| 4513 |1210(5| 0513 [1614|5| 0511 |1612
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Table 4: Base cycles of the system C(3, 5, 37), modulo 36, without the four C(3, 5, 10),
that form the SP(4) subsystem.

(v1,v2,v3,v4,v5) (v1,v2,v3) (v2,v3,v4) (v3,v4,v5) (v4,v5,v1) (v5,v1,v2)
d ‘ triple ‘ type | d ‘ triple ‘ type d ‘ triple ‘ type d ‘ triple ‘ type d ‘ triple ‘ type
Base cycles containing x. The fourth cycle has only 18 positions.

(x,0,1,19,2) - - - 0119 | 1220 1219 | 1219 | - - - - - -

(x,0,3,21,6) - - - 0321 1422 3621 1419 | - - - - - -
(x,0,5,23,10) - - - 0523 | 1624 51023 | 1619 | - - - - - -
(x,0,7,25,14) - - - 0725 | 1826 71425 | 1819 | - - - - - -
(x,0,9,27,18) - - - 0927 | 11028 18279 | 11028 - - - - - -

Base cycles containing the symmetric triplets.

(0,1,34,2,35) 170134 1235 |1] 1234 | 1234 |1[3432 ] 125 |1 ]3502] 124 |1 |3501 123
(0,2,32,4,34) 2102321333 2| 2432 | 1331 |2 | 32344 | 139 |2 |3404 | 137 |2 ]3402 | 135
(0,3,30,6,33) 3103301431 3| 3630 | 1428 |3 |30336 | 1413 |3 [3306 | 1410 |3 |3303 | 147
(0,5,26,10,31) 510526 | 1627 |5 51026 | 1622 |5 |263110| 1621 |5 [31010| 1616 | 5| 3105 | 1611
(0,6,25,11,30) 610625 | 1726 |5|61125 | 1620 |5 |253011| 1623 |6 [30011| 1718 | 6 | 3006 | 1713
(0,7,22,14,29) 710722 | 1823 | 7| 71422 | 1816 | 7222914 | 1829 | 7 |29014| 1822 | 7 | 2907 | 1815
(0,10,16,20,26) | 6 [ 10160 | 1727 | 4162010 | 1531 | 4 [162026| 1511 | 6 {20260 | 1717 |10|26010 | 11121
(0,11,14,22,25) | 3 [ 11140 | 1426 |3 |111422| 1412 | 3 | 222514 | 1429 | 3 {22250 | 1415 | 1125011 |11223
(0,13,10,26,23) | 3 [10130| 1427 |3]101326| 1417 | 3 232610 | 1424 | 3 [23260| 1414 | 1013230 |11124
(0,14,8,28,22) 6| 8140 | 1729 |6 | 81428 | 1721 | 6 | 22288 | 1723 | 6 (22280 | 1715 | 8 [14220| 1923
(0,15,6,30,21) 610615 | 1716961530 |11025]| 9 | 21306 |[11022| 6 [30021| 1728 | 6 |15210| 1722
(0,17,2,34,19) 210217 | 1318 |4 34217 | 1520 | 4 | 34219 | 1522 | 2 (34019 | 1322 | 2 |17190| 1320

First half of the reflected cycle pairs.

(0,1,5,8,10) 11015 126 [3]| 581 1433 | 2] 8105 | 1334 |2 (8100|1329 | 1| 0110 | 1211

(0,1,6,8,17) 11016 127 [2] 681 1332 2] 6817 | 1312 |8 | 0817 | 1918 | 1| 0117 | 1218
(0,1,7,12,15) 171017 128 |[5] 7121 1631 | 312157 | 1432 |3 (12150 1425 | 1| 0115 | 1216
(0,1,8,10,21) 11018 129 [2] 8101 1330 |2 ]81021 | 1314 100102111122 1| 0121 | 1222
(0,1,9,14,23) 17019 [ 1210 |5] 9141 1629 | 5191423 | 1615 | 9 1423011023 | 1| 0123 | 1224
(0,1,11,35,24) 170111 [ 1212 |2] 35111 | 1313 | 1124351111224 |1 (35024 1226 | 1| 0124 | 1225
(0,2,14,19,23) 210214 | 1315514192 | 1625 | 4 |192314| 1532 | 4 (19230 | 1518 | 2 | 0223 | 1324
(0,3,20,32,10) 310320 | 1421 |7)32320| 1825 (1010203211123 4 [32010| 1515 |3 ] 0310 | 1411
(0,4,11,16,27) 410411 | 1512 |5 11164 | 1630 | 5 | 111627 | 1617 | 9 |27016 11026 | 4 | 0427 | 1528
(0,4,22,28,15) 410422 | 1523 |6 22284 | 1719 | 6 222815 | 1730 | 8 |28015| 1924 | 4| 0415 | 1516
(0,8,25,2,18) 8 108251926 |6 2825 | 1724 | 7| 18252 1821 |2 | 0218 | 1319 |8 | 0818 | 1919
(0,9,19,2,16) 910919 |11020|7| 2919 | 1818 | 3 | 16192 | 1423 | 2 | 0216 | 1317 | 7| 9160 | 1828

Second half of the reflected cycle pairs.

(0,2,5,9,10) 2|1 025 136 |3| 259 148 | 1] 9105 | 1233 |1 ]9100 | 1228 2] 0210 | 1311
(0,9,11,16,17) 219110 | 1328 291116 | 138 |1 1617111232 |1 16170 1221 | 8 | 9170 | 1928
(0,3,8,14,15) 31038 149 |5 3814 | 1612 |1 | 14158 | 1231 |1 14150 1223 | 3 | 0315 | 1416
(0,11,13,20,21) | 2 [ 11130 | 1326 |2|111320| 1310 | 1 202113 | 1230 | 1 {20210 1217 |10]|11210|11126
(0,9,14,22,23) 519140 1628 |5 91422 | 1614 |1 2223141229 |1 22230 1215 |9 | 0923 11024
(0,25,13,23,24) |11 (25013 11225 |2 (232513 | 1327 | 1 232413 | 1227 |1 (23240 1214 | 1 24250 1213
(0,4,9,21,23) 41 049 | 1510 |5 4921 1618 | 2| 21239 | 1325 |2 |21230| 1316 | 4| 0423 | 1524
(0,14,26,7,10) |10 | 26014 | 111257 | 71426 | 1820 | 3 | 71026 | 1420 | 3 | 7100 | 1430 | 4 |10140| 1527
(0,11,16,23,27) | 5 [11160| 1626 |5 |111623 | 1613 | 4 232716 | 1530 | 4 [23270| 1514 | 9 |27011 | 11021
(0,23,29,11,15) | 6 [23290 | 1714 |6 (232911 | 1725 | 4 111529 | 1519 | 4 [11150| 1526 | 8 | 15230 | 1922
(0,16,29,10,18) | 7 [29016 | 1824 |6 [101629| 1720 | 8 101829 | 1920 | 8 {10180 | 1927 | 2 | 16180 | 1321
(0,14,33,7,16) 3133014 | 1418 | 7| 71433 | 1827 |9 | 71633 |11027| 7 | 0716 | 1817 | 2 |14160| 1323
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Table 5: Base cycles of the system C(3,5,41), modulo 40, without the four C(3, 5, 16),
that form the SP(4) subsystem.

(v1,v2,v3,v4,v5) (v1,v2,v3) (v2,v3,v4) (v3,v4,v5) (v4,v5,v1) (v5,v1,v2)

d ‘ triple ‘ type d ‘ triple type d ‘ triple type d ‘ triple ‘ type d ‘ triple ‘ type

Base cycles containing x.
(x,0,1,21,2) - - - 0121 1222 1221 1221 | - - - - - -
(x,0,3,23,6) - - - 0323 | 1424 3623 | 1421 | - - - - - -
(x,0,5,25,10) - - - 0525 | 1626 51025 | 1621 | - - - - - -
(x,0,7,27,14) - - - 0727 | 1828 71427 | 1821 | - - - - - -
(x,0,9,29,18) - - - 0929 | 11030 91829 | 11021 - - - - - -
Base cycles containing the symmetric triplets.

(0,1,38,2,39) 110138 | 1239 |1 1238 | 1238 | 1| 38392 125 | 113902 | 124 113901 123
(0,2,36,4,38) 210236 | 1337 | 2| 2436 | 1335 |2 |36384| 139 |2 ]3804 | 137 |2]3802]| 135
(0,3,34,6,37) 310334 | 1435 | 3| 3634 | 1432 |3 | 34376 | 1413 |3 |3706 | 1410 | 3| 3703 147
(0,5,32,8,35) 510532 | 1633 |3 | 5832 | 1428 | 3 |32358 | 1417 |5 |3508 | 1614 |5 | 3505 | 1611

(0,6,28,12,34) 610628 | 1729 | 6| 61228 | 1723 | 6 [283412| 1725 | 6 |34012| 1719 | 6 | 3406 | 1713
(0,7,26,14,33) 71072 | 1827 | 7| 71426 | 1820 | 7 |263314| 1829 | 7 |33014| 1822 | 7 | 3307 | 1815
(0,9,22,18,31) 910922 |11023] 4| 18229 | 1532 | 4 182231 | 1514 | 9 3101811028 | 9 | 3109 |11019
(0,10,21,19,30) [10 01021 |11122| 2 [192110] 1332 | 2 |192130| 1312 |10[30019]11130|10|30010| 11121
(0,11,19,21,29) | 8 | 11190 1930 | 2 [192111| 1333 | 2 | 192129 | 1311 | 8 |[21290| 1920 |11 29011 |11223
(0,13,14,26,27) 113140 1228 | 1 | 131426 1214 | 1 |262714| 1229 | 1 |26270| 1215 |13|27013|11427
(0,14,12,2826) | 2 | 12140 | 1329 | 2 | 121428 | 1317 | 2 | 262812 | 1327 | 2 |26280| 1315 |12|14260| 11327
(0,15,8,32,25) 718150 | 1833 | 7| 81532 | 1825 | 7 | 25328 | 1824 | 7 |25320| 1816 |10 |15250| 11126
(0,17,6,34,23) 60617 | 1718 |11 61734 | 11229 |11 ] 23346 [11224| 6 [34023| 1730 | 6 | 17230 | 1724
(0,18,4,36,22) 410418 | 1519 | 8 | 36418 | 1923 | 8 | 36422 | 1927 | 4 |36022| 1527 | 4 |18220| 1523
(0,19,2,38,21) 210219 | 1320 | 438219 | 1522 | 4| 38221 | 1524 | 2 [38021| 1324 |2 ]19210| 1322

First half of the reflected cycle pairs.
(0,1,5,8,18) 1] 015 126 | 3 581 1437 3| 5818 | 1414 | 8 | 0818 | 1919 | 1| 0118 | 1219
(0,1,6,3,11) 1 016 127 2 136 136 3 3611 149 310311 1412 | 1 0111 1212
(0,1,7,11,16) 1] 017 128 | 4| 7111 1535 |4 | 71116 | 1510 | 5 |11160| 1630 | 1 | 0116 | 1217
(0,1,8,3,15) 1] 018 129 | 2 138 138 | 5] 3815 | 1613 |3 | 0315|1416 |1 | 0115 | 1216
(0,1,9,15,22) 1] 019 | 1210 |6 | 9151 1733 16| 91522 | 1714 | 715220 1826 | 1| 0122 | 1223

(0,1,10,15,29) 170110 | 1211 |5 ] 10151 | 1632 |5 |101529| 1620 |11|29015]11227| 1 | 0129 | 1230
(0,2,9,12,27) 2 029 1310 | 3 9122 1434 | 391227 | 1419 (1210122711328 |2 | 0227 | 1328
(0,2,17,6,20) 210217 | 1318 | 4| 2617 | 1516 | 3 | 17206 | 1430 | 6 | 0620 | 1721 | 2 ]| 0220 | 1321
(0,2,18,31,12) 210218 | 1319 |11 31218 |11228| 6 |121831| 1720 |9 |31012|11022| 2 | 0212 | 1313
(0,3,21,10,17) 310321 | 1422 |7 (31021 | 1819 |4 |172110] 1534 |7 |[10170| 1831 | 3 | 0317 | 1418
(0,4,14,32,19) 410414 | 1515 | 10| 41432 |11129| 5 |141932| 1619 | 8 |32019] 1928 | 4 | 0419 | 1520
(0,5,22,32,17) 510522 | 1623 |10] 22325 |11124| 5 |172232| 1616 | 8 |32017| 1926 | 5 | 0517 | 1618
(0,6,15,38,11) 60615 | 1716 | 8 | 38615 | 1918 | 4 |111538| 1528 | 2 38011 | 1314 |5 | 6110 | 1635
(0,6,16,37,21) 610616 | 1717 | 9| 37616 |11020| 5 |162137| 1622 | 3 |37021| 1425 | 6 | 0621 | 1722
(0,9,25,39,16) 910925 |11026]10] 39925 |11127] 9 [162539|11024| 1 | 3916 | 1218 | 7 916 1832

Second half of the reflected cycle pairs.

(0,10,13,17,18) | 3 | 10130 | 1431 | 3 101317 | 148 | 1 | 171813 | 1237 | 1 |17180| 1224 | 8 | 10180 | 1931
(0,8,5,10,11) 3 580 1436 | 2 8105 1338 | 1 10115 (1236 | 1 10110 1231 | 3 | 8110 | 1433
(0,5,9,15,16) 41590 [ 1536 | 4| 5915 | 1511 | 1| 15169 | 1235 | 1 [15160| 1226 | 5| 0516 | 1617
(0,12,7,14,15) 517120 | 1634 | 2| 12147 | 1336 | 1 14157 | 1234 | 1 14150 1227 | 3 |12150 | 1429
(0,7,13,21,22) 6| 7130 | 1734 | 6| 71321 | 1715 |1 ]212213] 1233 |1 [21220] 1220 |7 | 0722 | 1823

(0,14,19,28,29) 5114190 1627 | 51141928 1615 | 1 [ 282919 1232 | 1 (28290 1213 |11 29014 |11226

(0,15,18,2527) | 3 | 15180 | 1426 | 3 | 151825 | 1411 | 2 | 252718 | 1334 | 2 [25270| 1316 |12|15270| 11326
(0,14,3,18,20) 310314 | 1415 |4 | 14183 | 1530 |2 | 18203 | 1326 | 2 |18200| 1323 |6 14200 1727

(0,21,34,10,12) | 6 [ 34021 | 1728 |11 [102134 11225 | 2 | 101234 | 1325 | 2 |10120] 1331 | 9 |12210|11029
(0,7,36,14,17) 413607 | 1512 | 7 | 71436 | 1830 | 3 |141736| 1423 | 3 [14170| 1427 | 7| 0717 | 1818
(0,27,5,15,19) 510527 | 1628 |10| 51527 | 11123 | 4 | 15195 | 1531 | 4 |15190| 1526 | 8 | 19270 | 1922

(0,25,35,12,17) | 5 [ 35025 | 1631 |10 [253512 11128 | 5 | 121735 | 1624 | 5 |12170] 1629 | 8 | 17250 | 1924
(0,13,36,5,11) 4136013 | 1518 | 8 | 51336 | 1932 | 6 | 51136 | 1732 |5 | 0511 | 1612 | 2 |11130| 1330
(0,24,5,15,21) 510524 | 1625 | 9| 15245 |11031| 6 | 15215 | 1731 | 6 [15210| 1726 | 3 [21240| 1420
(0,17,31,7,16) 9 3101711027 10| 71731 |11125| 9 | 71631 |11025| 7 | 0716 | 1817 | 1 |16170| 1225
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Table 6: Block-centered C(3,5,41) system; types computed modulo 39.

(a) A block containing both x and y. This block has 13 positions.
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. v1,v2,v3 v2,v3,v4 v3,v4,vh v4,v5,v1 vH,v1,v2
(v1,v2,v3,v4,v5) EVLV3,V5; EVS,VB,V?; EVS,VQ,V4; EVQ.,V4,V1; Ev4,v1,\73;
triple | type | d triple | type | d triple type d triple | type | d triple | type
(x,7.0,13,26) xy0 - 13 | y013 - 131 01326 | 11427 | 13| x 1326 - - | xy26 -
A 13 ] x026 - 13| y026 - 13 | y 13 26 - - xy 13 - 13 ] x013 -
(b) Blocks containing either x or y.
v1,v2,v3 v2,v3,v4 v3,v4,vh v4,vd,vl vH,vl,v2
(v1,v2,v3,v4,v5) Evl,v3,v5; Ev3,v5,v2; EV5,V2,V4§ EVQ,V4,V1§ §v4,v1,v3;
d ‘ triple ‘ type | d ‘ triple ‘ type | d ‘ triple ‘ type d ‘ triple ‘ type | d ‘ triple ‘ type
Blocks containing x only.

(x,0,1,6,31) 1 x01 - 1,016 127 |5|1631 1631 | 14 x631 - 8 | x031 -
e 9 | x131 - |1/0131(1232]6 | 0631 | 1732 6 x06 - 5 x16 -
(x,0,2,12,23) 2 x02 - 12102121313 ]10|21223 11122 11 | x1223 - 16 | x023 -
e 18 | x223 - 12102231324 |11|12230 11228 12| x012 - 10| x212 -
(x,0,3,7,22) 3 x03 - |31 037 | 148 | 4]3722 1520 | 15| x722 - 17 | x 022 -
T 19 | x322 - 13103221423 7| 0722|1823 7 x07 - 4 x37 -
Blocks containing y only.

(v,0,1,9,34) 1 y01 - |1,019 (12106 | 3419 | 1715 | 14, y934 - 5| y034 -
A 6 | y134 - |1/0134(1235|5 | 3409 | 1615 9 y09 - 8 y19 -
(+,0,2,18,29) 2 y02 - |2/10218(1319|11|18292 11224 11 | y 1829 - 10 | y 029 -
T 12 | y229 - 1210229(1330(10{29018 11129 | 18, y 018 - 16 | y 218 -
(v,0,3.20,35) 3 y03 - [3]0320)11421 |7 35320| 1825 | 15| y 2035 - 4 | y035 -
S 7| y335 - |3/10335(1436| 4 (3020 1525 | 19, y020 - 17 | y 320 -
(c) Blocks containing symmetric triplets. The symmetric triplets are highlighted.

; . v1,v2,v3 v2,v3,v4 v3,v4,vH v4,vh,vl vo,vl,v2

(v1,v2,v3,v4,v5) Evl.vS,VSi EV?),VE),VQ; EV{).VQ,VZS EV?,V4,V1; Evﬁl.vl,v?)g
d | triple type d triple type d triple type d | triple type d triple type
(0,1,35.4,38) 110135 | 1236 | 3 1435 1435 | 3| 35384 149 13804 126 1 3801 123
e 1380351237 |2 | 38135 | 1337 |2 3814 136 1 014 125 4 0435 159
(0,2,31,8.37) 210231 | 133216 2831 1730 | 6| 31378 | 1717 | 2 | 3708 | 1311 2 3702 135
- ’ 2137031 | 1334 | 437231 | 1534 | 4 3728 1511 | 2 028 139 8 0831 1917
(0,3,20,10,36) 310329 | 1430 | 731029 | 1827 | 7 (293610] 1821 | 3 |36010| 1414 3 3603 147
e 313029 1433 |6 (3329 | 1733 |6 (3310|1714 |3 | 0310 | 1411 10| 01029 | 11121
(0,5.21,18,34) 510521 1622 | 3| 18215 | 1427 | 3 | 182134 | 1417 | 5 |34018| 1624 ) 3405 1611
e 5134021 | 1627 [10] 34521 | 11127 10| 34518 | 11124 |5 | 0518 | 1619 3 18210 1422
(0,6,20,19,33) 61062 | 1721 |1 ]19206 | 1227 |1 [192033| 1215 |6 |33019| 1726 6 3306 1713
e 6133020 | 1727 |12 33620 | 11327 12| 33619 |[11326| 6 | 0619 | 1720 1 19200 | 1221
(0,7,27,12,32) 710727 | 1828 | 5 | 71227 | 1621 | 5 |273212| 1625 | 7 32012 | 1820 7 3207 1815
e 5127320 1613 | 5 | 27327 | 1620 | 5 | 71232 | 1626 | 5| 7120 | 1633 | 12| 01227 | 11325
(0,9,.22,17,30) 910922 110235 | 17229 | 1632 | 5 (172230 1614 | 9 |30017 11027 | 9 3009 11019
e 8122300 1918 | 8 122309 | 1927 | 8 | 91730 | 1922 | 8 | 9170 | 1931 5| 17220 | 1623
(0,11,24,15,28) 1110112411225 4 | 111524 | 1514 | 4 |242815| 1531 |11 |28015|11227 | 11| 28011 | 11223
T 4124280 1516 | 4 | 242811 | 1527 | 4 111528 | 1518 | 4 |11150| 1529 9 15240 | 11025
(0,14,23,16,25) 9 114230(11026| 2 141623 | 1310 | 2 [232516| 1333 |9 |16250 (11024 11| 14250 | 11226
Y ’ 2123250 1317 | 2 | 232514 | 1331 | 2 [141625| 1312 | 2 |14160| 1326 71 16230 1824
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(d) The remaining triplets are organized into reflected cycle pairs.

vl,v2,v3 v2,v3,v4 v3,v4,vH v4,v5,v1 vH,v1,v2
(V1,v2,v3,v4,v5) d] t(lriple | )type d | ériple )type d] t(riple | >type d] t<riple | 1ype d] t<riple | 1ype
First half of the reflected cycle pairs.
(0,1,3,7,15) 11 013 124 | 2 137 137 |4 3715 | 1513 | 7| 0715 | 1816 |[1| 0115 | 1216
(0,1,7,10,18) 11017 128 3 7101 1434 3| 71018 | 1412 |8 |10180| 1930 |1 0118 | 1219
(0,1,8,3,12) 11 018 129 2 138 138 |4 8123 1535 1310312 | 1413 110112 | 1213
(0,1,10,17,21) 110110 [ 1211 | 7] 10171 1831 |4|172110| 1533 |4 17210 1523 |1 0121 | 1222
(0,1,13,31,11) |1 (0113 | 1214 |9 | 31113 [11022]2|111331| 1321 |[8|31011| 1920 [1] 0111 | 1212
(0,2,14,37,13) 210214 | 1315 |4 | 37214 | 1517 | 1131437} 1225 |2 37013 | 1316 2| 0213 | 1314
(0,3,25,32,14) 310325 | 1426 |7 |25323 | 1818 | 7253214 1829 |7|32014| 1822 3| 0314 | 1415
(0,4,18,8,23) 410418 | 1519 | 4 4818 1515 |5 18238 | 1630 | 8| 0823 | 1924 |4]| 0423 | 1524
(0,5,17,34,11) 5| 0517 | 1618 |10 | 34517 | 11123 |6 | 111734 | 1724 |5 34011 | 1617 |5| 0511 | 1612
(0,6,21,3,15) 610621 | 1722 | 3| 3621 1419 |6 15213 | 1728 {30315 | 1416 |6] 0615 | 1716
(0,8,22,37,20) | 8| 0822 | 1923 |10 | 37822 [11125]2[202237| 1318 |2|37020| 1323 [8] 0820 | 1921
(0,9,20,3,19) 910920 (110216 | 3920 | 1718 [1] 19203 | 1224 [3|0319 | 1420 (9| 0919 |11020
Second half of the reflected cycle pairs.

(0,8,12,14,15) 418120 | 1532 | 2| 12148 | 1336 |1|141512| 1238 |1 |14150| 1226 |7| 8150 | 1832
(0,8,11,17,18) 318110 | 1432 |3 81117 | 1410 |1 171811} 1234 |1 |17180| 1223 | 8| 0818 | 1919
(0,9,4,11,12) 41 049 1510 | 2 | 9114 | 1335 | 1] 11124 | 1233 |1[11120] 1229 [3]| 9120 | 1431
(0,4,11,20,21) |4 0411 | 1512 | 7 | 41120 [ 1817 | 1202111 | 1231 |1/20210] 1220 [4] 0421 | 1522
(0,19,37,10,11) | 237019 | 1322 | 9 [101937 | 11028 |1 |101137| 1228 |[1]10110| 1230 |8|11190| 1929
(0,15,38,11,13) | 138015 | 1217 | 4 111538 | 1528 | 2| 111338 | 1328 |2|11130] 1329 [2|13150| 1327
(0,21,28,11,14) | 721280 1819 | 7 [212811| 1830 |3 |111428 | 1418 [3 11140 | 1429 |7|14210| 1826
(0,15,5,19,23) 5|/ 0515 | 1616 | 4 | 15195 | 1530 |4 | 19235 | 1526 |4 |19230| 1521 | 8|15230| 1925
(0,16,33,6,11) |6 (33016 | 1723 |10 | 61633 [11128 | 5| 61133 | 1628 |5| 6110 | 1634 [5]|11160| 1629
(0,12,33,9,15) |6 (33012 | 1719 | 3 | 91233 [ 1425 6| 91533 | 1725 |6 | 9150 | 1731 [3]12150| 1428
(0,22,37,12,20) | 237022 | 1325 [10]122237 |11126|8|122037| 1926 [8]12200| 1928 |2|20220| 1320
(0,16,38,10,19) | 138016 | 1218 | 6 |[101638 | 1729 |9]101938 11029 |9|10190]11030|3|16190| 1424
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