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Abstract

A (2 + 1)-bispindle B(k1, k2; k3) is a digraph formed by the union of two
(x, y)-dipaths of respective lengths k1 and k2, and one (y, x)-dipath of
length k3, all these dipaths being pairwise internally disjoint. Recently,
Cohen et al. conjectured that for any positive integers k1, k2, k3, there is
an integer g(k1, k2, k3) such that every strongly connected digraph con-
taining no subdivisions of B(k1, k2; k3) has a chromatic number at most
g(k1, k2, k3), and they confirmed this only for the case where k2 = 1. In
this paper, we prove Cohen et al.’s conjecture for the case where k1, k2
are arbitrary and k3 = 1, namely g(k1, k2, 1) = O((k1 + k2)

2). Moreover,
we show that if in addition D is Hamiltonian, then the chromatic number
of D is at most 5k − 7, with k = max{k1, k2}.

1 Introduction

Throughout this paper, an orientation of a graph G is a digraph obtained by giving
a direction to each edge of G, and the underlying graph of a digraph D, denoted
by G(D), is the graph obtained from D by ignoring the directions of its arcs. The
chromatic number of a digraph D, denoted by χ(D), is the chromatic number of its
underlying graph. The chromatic number of a class D of digraphs, denoted by χ(D),
is the smallest integer k such that χ(D) ≤ k for all D ∈ D or +∞ if no such k
exists. By convention, if D = ∅, then χ(D) = 0. If χ(D) 6= +∞, we say that D has
a bounded chromatic number.
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A directed path, or simply a dipath, is an oriented path where all the arcs are
oriented in the same direction from the initial vertex towards the terminal vertex. A
classical result due to Gallai and Roy [11, 13] is the following:

Theorem 1.1 (Gallai [11], Roy [13]) Let k be a non-negative integer. If χ(D) ≥ k,
then D contains a directed path of order k.

This raises the following question:

Problem 1 Which are the digraph classes D such that every digraph with chromatic
number at least k contains an element of D as a subdigraph?

Denoting by Forb(D) the class of digraphs that do not contain an element of a
class D of digraphs as a subdigraph, the above question can be restated in terms of
Forb(D) as follows:

Which are the digraph classes D such that χ(Forb(D)) < +∞?

Due to a famous theorem of Erdős [9] which guarantees the existence of graphs
with arbitrarily high girth and arbitrarily high chromatic number, if H is a digraph
containing an oriented cycle, then there exist digraphs with arbitrarily high chromatic
number with no subdigraphs isomorphic to H. This means that the only possible
candidates to generalize Theorem 1.1 are the oriented trees. In this context, Burr [6]
proved that the chromatic number of Forb(T ) for every oriented tree T of order k
is at most k2 − 2k and he conjectured that this upper bound can be improved to
2k−3. The best known upper bound, found by Addario-Berry et al. [1], is k2/2−k/2.
However, for oriented paths with two blocks (blocks are maximal directed subpaths),
the best possible upper bound is known. Assuming that an oriented path P has
two blocks of lengths k1 and k2, we say that P is a two-blocks path and we write
P = P (k1, k2).

Theorem 1.2 (Addario-Berry et al. [2]) Let k1 and k2 be positive integers such that
k1 + k2 ≥ 3. Then Forb(P (k1, k2)) has chromatic number equal to k1 + k2, for every
two-blocks path P (k1, k2).

A subdivision of a digraph H is a digraph H ′ obtained from H by replacing
each arc (x, y) by an (x, y)-dipath of length at least 1. A digraph D is said to be
H-subdivision-free if it contains no subdivisions of H as a subdigraph. Inspired by
the previous researches, Cohen et al. [8] asked about the existence of subdivisions
of oriented cycles in highly chromatic digraphs. In other words, denoting by S-
Forb(C) the class of digraphs that do not contain subdivisions of a given oriented
cycle C as subdigraphs, Cohen et al. asked if the chromatic number of S-Forb(C)
can be bounded. In the same article, Cohen et al. provided a negative answer to
their question by proving a stronger theorem based on a construction built by Erdős
and Lovász [10] that implies the existence of hypergraphs with large girth and large
chromatic number:

Theorem 1.3 (Cohen et al. [8]) For any positive integers b, c, there exists an acyclic
digraph D with χ(D) ≥ c in which all oriented cycles have more than b blocks.
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However, restricting Cohen et al.’s question to the class of strongly connected
digraphs may lead to dramatically different results. A digraph D is said to be
strongly connected, or simply strong, if for any two vertices x and y of D, there is
a directed path from x to y. A directed cycle, or simply a circuit, is an oriented
cycle whose all arcs have the same orientation. An example is provided by a famous
result of Bondy [5]: Every strong digraph D contains a directed cycle of length at
least χ(D). Denoting by S the class of strong digraphs, Bondy’s theorem can be
restated in the following way:

Theorem 1.4 (Bondy [5]) For the circuit C+
k of length k, χ(S-Forb(C+

k )∩S) = k−1.

Since any directed cycle of length at least k can be seen as a subdivision of C+
k ,

Cohen et al. [8] conjectured that Bondy’s theorem can be extended to all oriented
cycles:

Conjecture 1 (Cohen et al. [8]) For every oriented cycle C, there exists a constant
f(C) such that every strongly connected digraph with chromatic number at least f(C)
contains a subdivision of C.

For two positive integers k1 and k2, a cycle with two blocks C (k1, k2) is an oriented
cycle formed of two internally disjoint directed paths of lengths k1 and k2 respectively.
In their article, Cohen et al. [8] proved Conjecture 1 for the case of two-blocks
cycles, where they showed that the chromatic number of strong digraphs with no
subdivisions of a two-blocks cycle C (k1, k2) is bounded from above by O((k1 +k2)

4).
This upper bound was improved by Kim et al. [12] to O((k1 + k2)

2). In [2], Addario
et al. asked if the upper bound of such digraphs can be improved to O(k1 + k2),
which remains an open problem. However, this question is answered partially by
Kim et al. [12] for the class H of Hamiltonian digraphs (a digraph D is said to be
Hamiltonian if it contains a Hamiltonian directed cycle, that is, a directed cycle
passing through all the vertices of D) and by Al-Mniny et al. [4] for the class of
digraphs having a Hamiltonian directed path. Another contributions to Conjecture
1 were provided by Cohen et al. [8] for the case of four-blocks cycles C(1, 1, 1, 1)
and by Al-Mniny [3] for the case of four-blocks cycles C(k, 1, 1, 1) for an arbitrary
positive integer k.

A p-spindle is the union of p internally disjoint (x, y)-dipaths for some vertices x
and y. In this case, x is the tail of the spindle and y is its head. A (p+ q)-bispindle
is the internally disjoint union of a p-spindle with tail x and head y and a q-spindle
with tail y and head x. In other words, it is the union of p (x, y)-dipaths and q (y, x)-
dipaths, all of these dipaths being pairwise internally disjoint. In this case, x and
y are called the left extremity and the right extremity of the bispindle, respectively.
Since directed cycles and two-blocks cycles can be seen as (1 + 1)-bispindles and
2-spindles respectively, Cohen et al. [7] asked about the existence of spindles and
bispindles in strong digraphs with large chromatic number. First, they pointed out
the existence of strong digraphs with large chromatic number that contain neither
3-spindle nor (2 + 2)-bispindle. Undoubtedly, this result guides them to focus in
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their study on the existence of (2 + 1)-bispindles in strong digraphs. Denoting by
B (k1, k2; k3) the (2 + 1)-bispindle formed by the internally disjoint union of two
(x, y)-dipaths, one of length k1 and the other of length k2, and one (y, x)-dipath of
length k3, Cohen et al. [7] conjectured the following:

Conjecture 2 (Cohen et al. [7]) Let D be a digraph in S-Forb (B (k1, k2; k3)) ∩ S.
Then there exists an integer g (k1, k2, k3) such that χ(D) ≤ g (k1, k2, k3).

In fact, Cohen et al. [7] confirmed their conjecture for k2 = 1. The upper bound
provided by Cohen et al. for the chromatic number of digraphs in S-Forb (B (k1,1; k3))
∩S is very huge and certainly not the best possible. However, these authors attained
a better bound for the case where k1 (respectively, k2) is arbitrary and k2 = k3 = 1
(respectively, k1 = k3 = 1). In this paper, we confirm Conjecture 2 for k3 = 1,
by following the lines of the proof of Kim et al. [12] dealing with the existence of
subdivisions of two-blocks cycles C (k1, k2) in strong digraphs, where going deep in
their proofs leads us to generalize their work to the case of subdivisions of (2 + 1)-
bispindle B (k1, k2; 1). Indeed, we have noticed that the proof of Kim et al. [12] for
the existence of subdivisions of two-blocks cycles C (k1, k2) in strong digraphs proves
the existence of subdivisions of (2 + 1)-bispindles B (k1, k2; 1) in strong digraphs up
to some modifications. In Section 4, we follow the overall proof of Kim et al. to
show the existence of subdivisions of B (k1, k2; 1) and we make some changes so that
their proof is suitable for the digraphs we are interested in. Moreover, as a key step,
we prove the existence of subdivisions of B (k1, k2; 1) in Hamiltonian digraphs. This
result will be presented in Section 3 and will be essential to generalize the work of
Kim et al. on two-blocks cycles C (k1, k2) to the case of (2+1)-bispindles B (k1, k2; 1).

2 Preliminaries, Definitions and Notation

In what follows, we denote [l] := {1, 2, . . . , l} for every positive integer l. A graph G
is said to be d-degenerate if any subgraph of G contains a vertex having at most d
neighbors. Using an inductive argument, one may easily see the following statement:

Lemma 2.1 If G is a d-degenerate graph, then G is (d+ 1)-colorable.

The union of two digraphs D1 and D2, denoted by D1∪D2, is the digraph whose
vertex set is V (D1)∪V (D2) and whose arc set is A (D1)∪A (D2). Note that V (D1)
and V (D2) are not necessarily disjoint. The following statement is well-known:

Lemma 2.2 For any two digraphs D1 and D2, χ (D1 ∪D2) ≤ χ (D1)× χ (D2).

A consequence of the previous lemma is that, if we partition the arc set of a digraph D
into A1, A2, . . . , Al, then bounding the chromatic number of all spanning subdigraphs
Di of D with arc set Ai gives an upper bound for the chromatic number of D.

Given a digraph D and a subset S of V (D), the contraction of S (see Figure 1)
into a new vertex vS results in a new digraph D′, denoted by D/S, whose vertex set
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is V (D′) = (V (D)\S) ∪ {vS}, and whose arc set A (D′) contains the arcs (x, y) of
the following three kinds:

(i) x, y ∈ V (D)\S, if (x, y) ∈ A(D);

(ii) x = vS and y ∈ V (D)\S, if there is (z, y) ∈ A(D) for some z ∈ S;

(iii) x ∈ V (D)\S and y = vS, if there is (x, z) ∈ A(D) for some z ∈ S.

Going back from D/S to D through the un-contraction process, we define for
every vertex v ∈ V (D/S) the preimage φ(v) of v by φ(v) := S if v = vS and
φ(v) := {v} otherwise. For M ⊂ V (D/S), the preimage φ(M) of M is defined by
φ(M) :=

⋃
v∈M φ(v).

Figure 1: A tight example of the contraction and the un-contraction processes

The next lemma will be essential for the proof of our main result:

Lemma 2.3 Let D be a digraph and let S1, S2, . . . , Sl be disjoint subsets of V (D).
If D′ is the digraph obtained by contracting each Si into one vertex vSi

, then χ(D) ≤
χ (D′)×max {χ (D [Si]) ; i ∈ [l]}.

Proof. Set k1 = χ (D′) and k2 = max {χ (D [Si]) ; i ∈ [l]}. Let α be a proper k1-
coloring of D′ and let βi be a proper k2-coloring of D [Si] for all i ∈ [l]. Define ψ,
the coloring of V (D), as follows:

ψ(v) =

{
(α(v), 1) if v /∈ Si∀i ∈ [l];

(α (vSi
) , βi(v)) if ∃i ∈ [l] | v ∈ Si.

We verify now that ψ is a proper coloring of D with color-set [k1]× [k2]. Let u and
v be two adjacent vertices of D. If u, v ∈ Si for some 1 ≤ i ≤ l, then βi(u) 6= βi(v)
and so ψ(u) 6= ψ(v). Otherwise, the contraction definition implies that the vertices
corresponding to u and v in D′, say u′ and v′, are adjacent in D′ as well. Thus,
α (u′) 6= α (v′) and so ψ(u) 6= ψ(v). This completes the proof. �

Let D be a digraph. For a dipath or a directed cycle H of D and for any two
vertices u, v of H, we denote by H[u, v] the subdipath of H with initial vertex u
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and terminal vertex v. Also, we denote by H[u, v[, H]u, v] and H]u, v[ the dipaths
H[u, v]− v,H[u, v]− u and H[u, v]− {u, v}, respectively. For two dipaths P and Q
of D, if the terminal vertex of P is the initial vertex of Q, we denote by P �Q the
dipath P ∪ Q. Let G be a graph. For a vertex u of G, we denote by NG(u) the set
of all neighbors of u in G and by δ(G) = minu∈V (G) |NG(u)|. In what follows, by a
path or a cycle in a digraph we mean a directed one, unless otherwise specified.

In [12], Kim et al. introduced the notions of a circuit-tree and a circuit-path as
follows. A strong digraph D is said to be a circuit-tree, denoted by T , if D is covered
by the union of l circuits for a positive integer l, for which there exists an ordering
E := C1, C2, . . . , Cl of all cycles of T such that

∣∣V (Ci) ∩
(
∪j∈[i−1]V (Cj)

)∣∣ = 1 for
all 2 ≤ i ≤ l. Here, E is called a circuit-tree ordering of T . A circuit-tree T is
said to be a circuit-path, if there exists an ordering C1, C2, . . . , Cl of all cycles of T
such that |V (Ci) ∩ V (Cj)| ≤ 1 for all i, j ∈ [l] and |V (Ci) ∩ V (Cj)| = 1 if and only
if |i − j| = 1. Here, the circuits C1 and Cl are called the end-circuits of T . It is
important to note that circuit-trees have some properties similar to those of trees.
In fact, for any two distinct cycles C, C ′ of a circuit-tree T , there exists a unique
circuit-path in T , denoted by T [C,C ′], with end-circuits C and C ′. Consequently,
it follows that for any two vertices u, v ∈ V (T ), there exists a unique path in T from
u to v, denoted by T [u, v].

Given a spanning circuit-tree T of a digraph D with a circuit-tree ordering E :=
C1, C2, . . . , Cl, an arc (u, v) of D is called an internal arc with respect to T if there
is an integer 1 ≤ i ≤ l such that u, v ∈ V (Ci). Otherwise, (u, v) is called an external
arc with respect to T . In such case, u is called an external in-neighbor of v and v is
called an external out-neighbor of u. Given a cycle C in T with C 6= C1, the ancestor
cycle of C, denoted by a(C), is defined to be the second last cycle in T [C1, C]. The
ancestor vertex of C is the unique vertex of V (C)∩V (a(C)). For a vertex v of D,Cv

denotes the circuit of T containing v and having the shortest circuit-path to the
cycle C1 and av denotes the ancestor vertex of Cv.

3 On bounding χ(S-Forb(B(k1, k2; 1)) ∩H)

From now on, we consider k1 and k2 to be two positive integers and k = max {k1, k2}.
We assume that k ≥ 2. The main aim of this section is to find an integer f(k, k; 1)
such that every Hamiltonian digraph containing no subdivisions of B(k, k; 1) is
f(k, k; 1)-degenerate. By Lemma 2.1, this obviously implies an upper bound for
χ(S-Forb(B(k, k; 1)) ∩H.

Theorem 3.1 Let D be a digraph in S-Forb(B(k1,k2;1))∩H and let k = max{k1,k2}.
Then G(D) is (5k − 8)-degenerate and thus χ(D) ≤ 5k − 7.

Proof. To prove that G(D) is (5k − 8)-degenerate, we have to show that every
subgraph of G(D) has a vertex of degree at most 5k − 8. To this end, we are going
to show that δ(G) ≤ 5k−8 for every subgraph G of G(D). Suppose not. Then there
exists a subgraph G of G(D) such that δ(G) ≥ 5k − 7. Let H be the subdigraph
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of D whose underlying graph is G and let C be a Hamiltonian directed cycle of D.
Since δ(G) ≥ 5k − 7 and k ≥ 2, it follows that δ(G) ≥ 2k − 1. Thus this guarantees
the existence of two vertices u, v of G such that uv ∈ E(G)\E(C) and |V (C[u, v]) ∩
V (G)| ≥ 2k−1. Assume that u, v are chosen such that |V (C[u, v])∩V (G)| is minimal
but at least 2k − 1. Consider now the vertex w of G with |V (C[w, v]) ∩ V (G)| = k.
Due to the fact that |V (C[u, v])∩V (G)| ≥ 2k−1, we get that |V (C[u,w])∩V (G)| ≥ k
(see Figure 2).

To reach the final contradiction, we argue on the neighbors of w in G. First, by
the choice of the edge uv, note that w has at most 2k−3 neighbors in C[u,w]∩V (G).
Thus,

|NG(w) ∩ C[u, v]| = |NG(w) ∩ C[u,w]|+ |NG(w) ∩ C[w, v]| ≤ 3k − 4. (1)

Figure 2: Figure for Theorem 3.1

Claim 3.2 |N+
H (w) ∩ C]v, u[| ≤ k − 2.

Subproof. Assume the contrary is true and consider the possible directions of the
edge uv. For all i ≥ 1, we denote by pi the out-neighbor of w in C] v, u [∩H such
that | V (C]v, pi]) ∩ N+

H (w) |= i. If (u, v) ∈ E(H), then the union of (u, v) �
C [v, pk−1] , C[u,w] � (w, pk−1) and C [pk−1, u] is a subdivision of B(k, k; 1) in D,
contradicting the fact that D is B (k, k; 1)-subdivision-free (see Figure 3 (i)). Hence,
(v, u) ∈ E(H). But the union of C[w, v]� (v, u), (w, p1)�C [p1, u] and C[u,w] forms
a subdivision of B(k, k; 1) in D, a contradiction (see Figure 3 (ii)). This proves our
claim. ♦

Claim 3.3 |N−H (w) ∩ C]v, u[| ≤ k − 2.

Subproof. Assume the contrary is true and consider the possible directions of the
edge uv. For all i ≥ 1, we denote by qi the in-neighbor of w in C] v, u [∩H such
that | V (C]v, qi]) ∩ N−H (w) |= i. If (v, u) ∈ E(H), then the union of (v, u) �
C[u,w], C [v, qk−1] � (qk−1, w) and C[w, v] forms a subdivision of B(k, k; 1) in D
(see Figure 4 (i)), a contradiction. This means that (u, v) ∈ E(H). But the union
of (q1, w) � C[w, v], C [q1, u] � (u, v) and C [v, q1] is a subdivision of B(k, k; 1) in D
(see Figure 4 (ii)), a contradiction. This confirms our claim. ♦
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Figure 3: Figures for Claim 3.2

Figure 4: Figures for Claim 3.3

By the claims above, we conclude that

|NG(w) ∩ C]v, u[| ≤ 2k − 4. (2)

Consequently, combining (1) with (2), we i obtain dG(w) ≤ 5k − 8, which is a
contradiction to the assumption that δ(G) ≥ 5k−7. This implies that δ(G) ≤ 5k−8
for every subgraph G of G(D) and thus G(D) is (5k − 8)-degenerate. This ends the
proof. �

4 On bounding χ(S-Forb(B(k1, k2; 1)) ∩ S)

In this section, we study the chromatic number of strongly connected digraphs that
are B (k1, k2; 1)-subdivision-free, by following the lines of the result of Kim et al.
in [12] and making some changes so that the technique they developed can fit with
the digraphs of our interest. In what follows, for each subdivision of B(k, k; 1), we
denote by P1, P2 and P3 the three internally disjoint dipaths of lengths at least k, k
and 1 respectively.

Let D be a strongly connected digraph containing no subdivisions of B(k, k; 1).
We define a sequence of strong digraphs D0, D1, . . . , Dm and a sequence of cycles
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C0, C1, . . . , Cm−1 as follows: First, set D0 = D. If χ (D0) ≤ 2k − 3, there is nothing
to do. Otherwise, due to Theorem 1.4, D0 contains a directed cycle of length at least
2k − 2. Let C0 be a longest cycle of D0 and let D1 be the digraph obtained from
D0 by contracting V (C0). Clearly, D1 is a strong digraph. If χ (D1) ≤ 2k − 3, we
stop here. Otherwise, we keep proceeding in the same manner as before till reaching
a digraph Dm such that χ (Dm) ≤ 2k − 3.

Going backward from Dm to Dm−1, we define for each v ∈ V (Dm) the first
preimage φ1(v) by φ1(v) := φ(v). Recursively, we define for every v ∈ V (Dm) and
i ∈ {2, . . . ,m} the ith preimage φi(v) by φi(v) := φ (φi−1(v)). Clearly, φi(v) for each
v ∈ V (Dm) is a subset of the vertex-set of Dm−i, and for any two distinct vertices
u, v of Dm we have φi(u) ∩ φi(v) = ∅, implying that φi(v) for all v ∈ V (Dm) form
a partition of V (Dm−i). From now on, we denote by H i the subdigraph of Dm−i

induced by φi(v) for an arbitrary vertex v ∈ V (Dm).

4.1 Properties on Di and Ci

In this subsection, we introduce some properties on Di and Ci that will be essential
for the coming proofs. Keep in mind that Ci is a longest cycle of Di whose length is
at least 2k − 2 and that Di+1 := Di/V (Ci) for all 0 ≤ i ≤ m − 1. In what follows,
we denote by vCi the new vertex created in Di+1 by contracting V (Ci).

The following statements will be used frequently in the coming subsections:

Proposition 4.1 For all i ∈ {0, 1, . . . ,m− 2}, l (Ci) ≥ l (Ci+1) ≥ 2k − 2.

Proposition 4.2 For all i ∈ {0, 1, . . . ,m}, Di is B(k, k; 1)-subdivision-free.

Proof. We proceed by induction on i. The case i = 0 follows by our initial assump-
tion. We suppose now that Di contains no subdivisions of B(k, k; 1) and we assume
to the contrary that Di+1 contains a subdivision of B(k, k; 1), say F := P1 ∪P2 ∪P3.
If vCi /∈ F , then F is a subdigraph of Di, which yields a contradiction. Thus vCi ∈ F .
Denoting by x and y the left and the right extremities of F respectively, we consider
the following three possibilities: If vCi /∈ {x, y}, it is straightforward to see that
the subdigraph of Di obtained from F by un-contracting vCi into the cycle Ci con-
tains a subdivision of B(k, k; 1), a contradiction. Else if vCi = x, then there exists
xp ∈ V (Pp) for p ∈ [3] such that (x, x1) , (x, x2) and (x3, x) are the three arcs of F
incident to x. Note that probably x3 = y. Un-contracting back to Di, we see that
there exist three arcs (z1, x1), (z2, x2) and (x3, z3) of Di for some z1, z2, z3 ∈ V (Ci).
Possibly zp = zq for any 1 ≤ p 6= q ≤ 3. If z3 ∈ Ci [z1, z2], then the union of
Ci[z2, z1]�(z1, x1)�P1 [x1, y] , (z2, x2)�P2 [x2, y] and P3 [y, x3]�(x3, z3)�Ci [z3, z2] is a
subdivision of B(k, k; 1) in Di, a contradiction. Else if z3 ∈ Ci [z2, z1], then the union
of (z1, x1)�P1 [x1, y], Ci[z1, z2]�(z2, x2)�P2 [x2, y] and P3 [y, x3]�(x3, z3)�Ci [z3, z1]
is a subdivision of B(k, k; 1) in Di, a contradiction. Else if vCi = y, we proceed as
the case where vCi = x. In this case, there exists yp ∈ V (Pp) for p ∈ [3] such that
(y1, y) , (y2, y) and (y, y3) are the three arcs of F incident to y. Note that probably
y3 = x. Un-contracting back to Di, we see that there exist three arcs (y1, z1) , (y2, z2)
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and (z3, y3) of Di for some z1, z2, z3 ∈ V (Ci). Possibly zp = zq for any 1 ≤ p 6= q ≤ 3.
If z3 ∈ Ci [z1, z2], then the union of P1 [x, y1]� (y1, z1) , P2 [x, y2]� (y2, z2)�Ci [z2, z1]
and Ci [z1, z3] � (z3, y3) � P3 [y3, x] is a subdivision of B(k, k; 1) in Di, a contra-
diction. Else if z3 ∈ Ci [z2, z1], then the union of P1 [x, y1] � (y1, z1) � Ci [z1, z2],
P2 [x, y2]� (y2, z2) and Ci [z2, z3]� (z3, y3)�P3 [y3, x] is a subdivision of B(k, k; 1) in
Di, a contradiction. This completes the proof. �

Figure 5: Figure for Lemma 4.3

4.2 Properties on H i

The aim of this subsection is to study the structural properties of H i for each i ∈ [m].
In the following, we denote C := {C0, C1, . . . ., Cm−1}.

Lemma 4.3 If C is a cycle in Dm−i of length at least 2k − 2 such that vCm−i−1 ∈
V (C), then the cycle C ′ of the digraph Dm−i−1 obtained from C by un-contracting
vCm−i−1 has the vertex set V (C ′) = (V (C)\ {vCm−i−1}) ∪ {w} with w is a ver-
tex of Cm−i−1, and the arc set A (C ′) = (A(C)\ {(u, vCm−i−1) , (vCm−i−1 , v)}) ∪
{(u,w), (w, v)} with u, v are the unique in-neighbor and out-neighbor of vCm−i−1 in
C respectively. Consequently, l (C ′) = l(C).

Proof. Since vCm−i−1 ∈ V (C), there exist u, v ∈ V (C)\ {vCm−i−1} such that C[u, v] =
(u, vCm−i−1)� (vCm−i−1 , v). Un-contracting vCm−i−1 back to Dm−i−1, we guarantee
the existence of two arcs (u, u′) and (v′, v) in Dm−i−1 for some vertices u′, v′ ∈
V (Cm−i−1). Clearly, the cycle C ′ := Q�Cm−i−1 [u′, v′] with Q := (v′, v)�C[v, u]�
(u, u′) is the cycle of Dm−i−1 obtained from C by un-contracting vCm−i−1 .

To reach our goal, we need to prove that u′ = v′ = w. Suppose not; then Q is a
(v′, u′)-path of length at least k, because l(Q) = l(C[v, u])+2 = l(C)−l(C[u, v])+2 =
l(C) ≥ 2k − 2 ≥ k, where the last inequality follows from the fact that k ≥ 2. If
l (Cm−i−1 [v′, u′]) ≥ k, then the union of Q,Cm−i−1 [v′, u′] and Cm−i−1 [u′, v′] is a sub-
division of B(k, k; 1) in Dm−i−1 (see Figure 6 (i)), a contradiction to Proposition 4.2.
Thus l (Cm−i−1 [v′, u′]) ≤ k−1 and so l(Q)−l (Cm−i−1 [v′, u′]) ≥ k−1 > 0. This gives
l (C ′) = l(Q)+l (Cm−i−1 [u′, v′]) = l(Q)+ l (Cm−i−1)−l (Cm−i−1 [v′, u′]) > l (Cm−i−1),
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a contradiction to the fact that Cm−i−1 is a longest cycle in Dm−i−1 (see Figure 6
(ii)). This proves that u′ = v′ = w (see Figure 5), which yields the desired result.

�

Figure 6: Figures for the proof of Lemma 4.3

Given a cycle C in Dm−i for i ∈ {2, . . . ,m}, we say that C is a Cm−j-like cycle for
a cycle Cm−j of C with 1 ≤ j < i ≤ m if C is obtained from Cm−j by the successive
un-contraction back to Dm−l of the vertices vCm−l that belong to V (Cm−j) for each
j < l ≤ i. The next lemma shows that a cycle C of C and a C-like cycle have the
same length:

Lemma 4.4 Let C be a Cm−j-like cycle in Dm−i with 1 ≤ j < i ≤ m. Then V (C) =

(V (Cm−j) \
{⋃

j<l≤i vCm−l

})
∪
{⋃

j<l≤iwm−l

}
with vCm−l, wm−l being vertices of

Cm−j and Cm−l respectively, and

A(C)=
(
A(Cm−j)\

⋃
j<l≤i

{(um−l, vCm−l), (vCm−l , vm−l)}
)
∪
⋃

j<l≤i
{(um−l, wm−l), (wm−l, vm−l)},

where um−l, vm−l are the unique in-neighbor and out-neighbors of vCm−l in Cm−j

respectively. Consequently, l(C) = l (Cm−j).

Proof. Without loss of generality, we may assume that C is not a subdigraph of
Dm−p for all p < i. Due to this assumption, vCm−i ∈ V (Cm−j). The proof is by
induction on the number of the un-contraction of the contracted vertices that belong
to V (Cm−j) back to Dm−i, say t. For the base case t = 1, if i = j + 1, then
the result follows directly by applying Lemma 4.3, knowing that Cm−j is a cycle in
Dm−j of length at least 2k − 2. Else if i > j + 1, we may easily see that Cm−j

is a subdigraph of Dm−i+1, and so the result follows due to Lemma 4.3. Now we
assume that the statement of Lemma 4.4 is true for t and we consider the case t+ 1.
Let C ′ be the Cm−j-like cycle in Dm−q where q is the nearest integer to i for which
vCm−q ∈ V (Cm−j). Clearly, C ′ contains exactly one contracted vertex which is the
vertex vCm−i . Hence, C ′ satisfies the induction hypothesis. Thus l (C ′) = l (Cm−j)
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and so l (C ′) ≥ 2k− 2. Arguing on C ′ as in the base case, we prove it for t+ 1. This
ends the proof. �

Based on the two lemmas above, we are able to characterize the structure of H i

as follows.

Proposition 4.5 For all i ∈ [m], either H i = {v} or H i contains a spanning circuit-
tree Ti such that each cycle of Ti is either a cycle of C or a C-like cycle for a cycle
C of C.

Proof. We proceed by induction on i. For the sake of simplicity, for each H i

satisfying the statement above, we say that H i satisfies ~. The base case i = 1
follows directly from the fact that φ1(v) is either {v} if v 6= vCm−1 or the cycle
Cm−1 if v = vCm−1 . Now assume that H i satisfies ~ and let us consider H i+1. If
H i = {v}, it is obvious that H i+1 is either {v} or the cycle Cm−i−1. This means
that H i+1 satisfies ~ as well. Otherwise, H i contains a spanning circuit-tree Ti
such that each cycle of Ti is either a cycle of C or a C-like cycle for a cycle C of
C. If H i = H i+1, then H i+1 satisfies ~ with Ti = Ti+1. Else if H i 6= H i+1, then
vCm−i−1 must belong to V (H i) and thus vCm−i−1 belongs to a non-empty set R of
cycles in Ti. Let C ′ be a cycle of R and let C ′′ be the cycle of H i+1 obtained
from C ′ by un-contracting the vertex vCm−i−1 . First, by the definition of a C-like
cycle, it is clear that the cycle C ′′ is either a C ′-like cycle in case that C ′ is a cycle
of C, or a C-like cycle for a cycle C of C in case that C ′ is a C-like cycle. Now
observe that l (C ′) ≥ 2k − 2. In fact, if C ′ is a cycle of C, then Proposition 4.1
implies that l (C ′) ≥ 2k − 2. Else if C ′ is a C-like cycle for a cycle C of C, then
Lemma 4.4 implies that l (C ′) = l(C) ≥ 2k − 2, where the inequality follows from
Proposition 4.1. But C ′ is a cycle in Dm−i such that vCm−i−1 ∈ V (C ′), then Lemma
4.3 implies that V (C ′′) = (V (C ′) \ {vCm−i−1}) ∪ {w} with w is a vertex of Cm−i−1,
and A (C ′′) = (A (C ′) \ {(u, vCm−i−1) , (vCm−i−1 , v)})∪{(u,w), (w, v)} with u, v are the
unique in-neighbor and out-neighbor of vCm−i−1 in C ′ respectively. In view of what
precedes, it can be easily seen that the subdigraph Ti+1 of H i+1 obtained from Ti by
adding the cycle Cm−i−1 and by replacing each cycle C ′ of R by its corresponding
cycle C ′′ is a spanning circuit-tree of H i+1 with the described property. This ends
the proof. �

From now on, we assume that Hm 6= {v} and we fix a spanning circuit-tree Tm
of Hm with a circuit-tree ordering Em := C1, C2, . . . , Cl. Note that the existence of
Tm is guaranteed by Proposition 4.5. The next property will be fundamental for the
next subsection:

Proposition 4.6 Let (u, v) be an external arc of Hm and let Cu, Cv be the cycles
of Tm containing u and v respectively such that l (Tm [Cu, Cv]) is minimal. If x and
y are the common vertices of the first two and the last two cycles of the circuit-path
Tm [Cu, Cv] respectively, then l (Tm[y, u]) ≤ k − 2 and l (Tm[v, x]) ≤ k − 2.

Proof. Set Tm [Cu, Cv] = C1, C2, . . . , Ct for some positive integer t. Since (u, v) is an
external arc ofHm, then t 6= 1. Moreover, by the choices of the cycles Cu and Cv, note
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Figure 7: Tm [Cu, Cv] := C1, C2, . . . , Ct

that u /∈ {x, y} and v /∈ {x, y}. Keep in mind that Proposition 4.5 gives that Ci, for
all 1 ≤ i ≤ t, is either a cycle of C or a C-like cycle for a cycle C of C. Consequently,
according to Lemma 4.4 and Proposition 4.1, the length of each cycle of Tm [Cu, Cv]
is from L and thus at least 2k − 2, where L := {l (C0) , l (C1) , . . . , l (Cm−1)}. This
guarantees the existence of 0 ≤ l ≤ m− 1 such that l(C l) = γ, with γ = max{l(Ci) |
1 ≤ i ≤ t}. Set j = min{l | 0 ≤ l ≤ m − 1} for which l(Cj) = γ and let Ci0 be a
cycle of Tm [Cu, Cv] whose length is equal to γ.

In the rest of the proof, we will treat Hm [Tm [Cu, Cv]] as an induced subdigraph
of Dj. This is because of the following observations: A cycle in D0 exists in Dj if it
is not contracted while passing from D0 to Dj. But, by the minimality of j and due
to the way we paved to contract the cycles, a cycle is contracted before Dj only if it
has a length strictly greater than l(Cj). This implies that every cycle whose length
is less than or equal to l(Cj) is not contracted before Dj. As l(Ci) ≤ l(Cj) for all
1 ≤ i ≤ t, it follows that all the cycles of Tm [Cu, Cv] have not been contracted before
Dj, and as a result, Dj contains Hm [Tm [Cu, Cv]] as an induced subdigraph.

Let us prove now that l (Tm[y, u]) ≤ k−2. Suppose not, then l (Tm[y, v]) ≤ k−1,
since otherwise the union of Tm[y, v], Tm[y, u]� (u, v) and Tm[v, y] is a subdivision of
B(k, k; 1), a contradiction. This gives that l (Tm[v, y]) ≥ k − 1 as l (Cv) ≥ 2k − 2.
Similarly, we can prove that l (Tm[u, x]) ≤ k − 1 and l (Tm[x, u]) ≥ k − 1. Now
observe that Ci0 is neither C1 nor Ct. In fact, if i0 = 1, then we consider the cycle
C := (u, v)� Tm[v, y]� Tm[y, u]. As C is a subdigraph of Hm [Tm [Cu, Cv]] (which is
a subdigraph of Dj), then C is a subdigraph of Dj as well, with

l(C) = 1 + l(Tm[v, y]) + l(Tm[y, u])

≥ 1 + (k − 1) + l (Tm[y, x]) + l (Tm[x, u]) ,

(because l(Tm[v, y]) ≥ k − 1 and Tm[y, u] = Tm[y, x]� Tm[x, u])

= k + l (Tm[y, x]) + l(C1)− l(Tm[u, x]),

(because C1 = Tm[x, u]� Tm[u, x])

≥ k + l(Cj)− (k − 1), (l(Tm[u, x]) ≤ k − 1,

(because l(C1) = γ = l(Cj) and l(Tm[y, x]) ≥ 0)

> l
(
Cj
)
,
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a contradiction to the fact that Cj is a longest cycle of Dj. In a similar way, we can
prove that i0 6= t. Set α, β to be the vertices of Ci0 such that V (Ci0)∩V (Ci0−1) = {α}
and V (Ci0) ∩ V (Ci0+1) = {β}. Note that probably α = x and β = y. To reach the
final contradiction, we consider the possible lengths of Ci0 [α, β]. If l (Ci0 [α, β]) ≤
k− 1, then the cycle C ′ = (u, v)�Tm[v, y]∪Tm[y, β]�Ci0 [β, α]�Tm[α, x]�Tm[x, u]
is a cycle in Dj whose length

l(C ′) = 1 + l(Tm[v, y]) + l(Tm[y, β]) + l(Ci0 [β, α]) + l(Tm[α, x]) + l(Tm[x, u])

≥ 1 + (k−1) + l(Tm[y, β]) + l(Ci0)− l(Ci0 [α, β]) + l(Tm[α, x]) + l(Tm[x, u]),

(because l(Tm[v, y]) ≥ k − 1 and Ci0 = Ci0 [β, α]� Ci0 [α, β])

≥ k + l(Tm[y, β]) + l(Cj)− (k − 1) + l(Tm[α, x]) + (k − 1),

(because l(Ci0) = l(Cj), l(Ci0 [α, β]) ≤ k − 1 and l(Tm[x, u]) ≥ k − 1)

> l(Cj),

contradicting the maximality of l (Cj) in Dj. Else if l (Ci0 [α, β]) > k − 1, the union
of Ci0 [α, β], Tm[α, u]� (u, v)�Tm[v, β] and Ci0 [β, α] forms a subdivision of B(k, k; 1)
in Dj, a contradiction to Proposition 4.2. This proves that l (Tm[y, u]) ≤ k − 2.

Now we shall prove that l (Tm[v, x]) ≤ k − 2. Suppose the contrary is true; then
P := (u, v)� Tm[v, x] is a directed path of length at least k. Note that Tm[x, u] is a
proper subpath of Tm[y, u] and thus of length at most k− 3. But l (C1) ≥ 2k− 2, so
then l (Tm[u, x]) ≥ k. As a consequence, the union of P, Tm[u, x] and Tm[x, u] forms a
subdivision of B(k, k; 1) in Dj, a contradiction. This proves that l (Tm[v, x]) ≤ k−2.

�

4.3 Coloring Hm

This subsection is devoted finding a proper coloring of Hm. To this end, we partition
the vertex-set of Hm into two subsets V1 and V2, where V1 = {v ∈ Hm;Cv = C1 or
l (Cv [v, av]) ≥ k − 1} and V2 = V (Tm) \V1. Note that all the notation used in this
subsection are already introduced in Section 2. Now we partition the arc-set of Hm

into A1 = {(u, v) | (u, v) is an external arc of Hm and u, v are not vertices of the same
subset Vi} and A2 = A (Hm) \A1. For i = 1, 2, let Hm

i be the spanning subdigraph of
Hm whose arc set is Ai. According to Lemma 2.2, it is enough to color Hm

i properly
for each i ∈ [2] to get a proper coloring of Hm.

By assigning the vertices of V1 the color 1 and those of V2 the color 2, the next
lemma directly follows.

Lemma 4.7 χ (Hm
1 ) ≤ 2.

Now the rest of this subsection is dedicated to show that χ (Hm
2 ) ≤ 6k − 8. In

fact, Kim et al. [12] showed that for any digraph H with a spanning circuit-tree that
satisfies Proposition 4.6 (which is Hm in our case), then the spanning subdigraph of
H whose arc-set is A2 (which is Hm

2 in our case) satisfies the following properties. An
external arc (u, v) ofHm is called comparable if either Cu is a cycle in Tm [Cv, C1] or Cv
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is a cycle in Tm [Cu, C1]. Actually, Kim et al. proved that all the external arcs of Hm
2

are comparable. Recall that we have fixed a circuit-tree ordering Em := C1, C2, . . . , Cl

of Tm. For every i ∈ {2, . . . , l}, ai denotes the ancestor vertex of Ci. And for every
i ∈ [l], (Hm

2 )i denotes the subdigraph of Hm
2 induced by V (C1)∪V (C2)∪ . . .∪V (Ci).

Note that (Hm
2 )1 = Hm

2 [V (C1)] and (Hm
2 )l = Hm

2 . Denoting by E(v) the set of the
exterior neighbors of a vertex v ∈ V (Ci) \ {ai} in (Hm

2 )i, Kim et al. proved the
following:

Lemma 4.8 (Kim et al. [12]) For all i ∈ {2, . . . , l} and for any vertex v ∈
V (Ci)\{ai}, we have |E(v)| ≤ k − 2.

Based on what precedes, we are able to color Hm
2 properly by 6k − 8 colors:

Proposition 4.9 Hm
2 is (6k − 9)-degenerate and thus χ (Hm

2 ) ≤ 6k − 8.

Proof. The proof is exactly the same as that introduced by Kim et al. [12] to prove
that the spanning subdigraph with arc set A2 of a digraph having a circuit-tree and
containing no subdivisions of two-blocks cycles C(k, k) is (3k − 2)-degenerate.

If Hm has no external arcs, consider the reverse of the circuit-tree ordering Cl, . . . , C1

one by one. Due to Theorem 3.1, we may see easily that Hm
2 is (5k − 8)-degenerate

and thus (6k − 9)-degenerate. Otherwise, we prove by induction on i ∈ [l] that
(Hm

2 )i is (6k − 9)-degenerate. Note that this is sufficient as (Hm
2 )l = Hm

2 . The
base case i = 1 follows directly from Theorem 3.1, since (Hm

2 )1 = Hm
2 [V (C1)] is a

Hamiltonian digraph with no subdivisions of B(k, k; 1). Now suppose that (Hm
2 )i−1

is (6k − 9)-degenerate and let us consider (Hm
2 )i. Note that (Hm

2 )i is the union of
(Hm

2 )i−1 , H
m
2 [V (Ci)] and the external arcs between V (Ci) and (Hm

2 )i−1. Let F be
a subgraph of G ((Hm

2 )i). We shall prove that F contains a vertex whose degree is
at most 6k − 9. If F is a subgraph of G

(
(Hm

2 )i−1
)
, then the result follows directly

by the hypothesis induction. If F is a subgraph of G (Hm
2 [V (Ci)]), then we are

done due to Theorem 3.1. Otherwise, V (F ) = N ∪M where N ⊂ V
(
(Hm

2 )i−1
)

and
M ⊂ V (Ci). Since F [M ] is a subgraph of G (Hm

2 [V (Ci)]), then F [M ] contains a
vertex u 6= ai whose degree in F [M ] is at most 5k − 7. According to Lemma 4.8, u
has at most k − 2 neighbors in F [N ] and thus u has at most 6k − 9 neighbors in F .
This proves that Hm

2 is (6k − 9)-degenerate. Thus, due to Lemma 2.1, we get that
χ (Hm

2 ) ≤ 6k − 8. �

Now we are ready to state our main theorem on the existence of subdivisions of
B(k1, k2; 1) in strong digraphs:

Theorem 4.10 Let D be a digraph in S-Forb(B(k1, k2; 1)) ∩ S and let k =
max{k1, k2}. Then χ(D) ≤ 2(2k − 3)(6k − 8).

Proof. First, note that φm(v) for every v ∈ V (Dm) are disjoint subsets of V (D).
Since Dm is the digraph obtained by contracting each φm(v) into v, due to Lemma 2.3
we find that χ(D) ≤ (2k−3)×max{χ(D[φm(v)]); v ∈ V (Dm)}. Choose v ∈ V (Dm) to
maximize χ(Hm), where Hm = D [φm(v)]. Partition Hm into Hm

1 and Hm
2 as above.
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According to Lemmas 2.2, 4.7, and Proposition 4.9, we get that χ (Hm) ≤ 2(6k− 8).
This completes the proof. �

Since any subdivision of the (2+1)-bispindle B (k1, k2; 1) contains a subdivision
of the two-blocks cycle C (k1, k2), we get the following:

Corollary 4.11 Let D be a digraph in S-Forb(C(k1, k2))∩S and let k = max{k1,k2}.
Then χ(D) ≤ 2(2k − 3)(6k − 8).
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