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Abstract

A longest path in a graph is called a detour. It is not difficult to see that a
connected graph of minimum degree at least 2 and order at least 4 has at
least four detours. We prove that if the number of detours in such a graph
of order at least 9 is odd, then it is at least nine, and this lower bound can
be attained for every order. Thus the possibilities three, five and seven
are never attained. The reason for this interesting phenomenon does not
seem obvious, in view of the fact that the numbers four, six, eight and
nine can be attained. Two related problems are posed.

1 Introduction

We consider finite simple graphs and use terminology and notation from [7]. Follow-
ing Kapoor, Kronk, and Lick [6], we call a longest path in a graph G a detour of
G. This concise term has now been widely used (e.g. [1] and [3]). In 1966, Gallai [4]
asked whether all detours in a connected graph share a common vertex. The answer
is no in general. However, for some classes of special graphs, the answer is yes. See
[5] and the references therein. It is natural to consider the number of detours in a
graph, but the author cannot find any results on this problem in the literature. Even
results on the number of paths with a given length are few [2].

The order of a graph is its number of vertices. We denote by V (G) and E(G) the
vertex set and edge set of a graph G, respectively. For vertices x and y, an (x, y)-path
is a path with endpoints x and y. We denote by δ(G) the minimum degree of a graph
G, and by N(x) the neighborhood of a vertex x. If u, v are two vertices on a path
P, then P [u, v] denotes the subpath of P with i endpoints u and v. A basic fact
about detours [6] is that a detour of a connected graph G of order n has order at
least min{2δ(G) + 1, n}.

We will consider the minimum number of detours in a given class of graphs. If the
graph is disconnected, it suffices to consider its components, while if the minimum
degree of a graph is 1, then the graph may contain only one detour. Thus we will
consider only connected graphs of minimum degree at least 2. In Section 2 we prove
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Figure 1: The case i ≤ j

that a connected graph of minimum degree at least 2 and order at least 4 has at
least four detours and if the number of detours in such a graph of order at least 9 is
odd, then it is at least nine, and this lower bound can be attained for every order.
Thus the possibilities three, five and seven are excluded. In Section 3 we pose two
related unsolved problems.

2 Main results

Notation. f(G) denotes the number of detours in a graph G.

Theorem 1. The minimum number of detours in a connected graph of minimum
degree at least 2 and order at least 4 is four.

Proof. Let G be a connected graph of order at least 4 with δ(G) ≥ 2 and let
P : x1, x2, . . . , xk be a detour of G. Then N(x1) ⊆ V (P ) and N(xk) ⊆ V (P ). Since
δ(G) ≥ 2, x1 has a neighbor xi with i ≥ 3 and xk has a neighbor xj with j ≤ k − 2.
If i = k or j = 1, then G contains a k-cycle and we clearly have f(G) ≥ 4. Next
suppose 3 ≤ i ≤ k − 1 and 2 ≤ j ≤ k − 2.

Case 1. i ≤ j.

G has at least the following four detours:

P, P [x1, xj] ∪ xjxk ∪ P [xk, xj+1],

P [xi−1, x1] ∪ x1xi ∪ P [xi, xk], P [xi−1, x1] ∪ x1xi ∪ P [xi, xj] ∪ xjxk ∪ P [xk, xj+1].

See Figure 1.

Case 2. i > j.

G has at least the following six detours:

P, P [x1, xj] ∪ xjxk ∪ P [xk, xj+1], P [xi−1, x1] ∪ x1xi ∪ P [xi, xk],

P [xj−1, x1] ∪ x1xi ∪ P [xi, xk] ∪ xkxj ∪ P [xj, xi−1],

P [xi+1, xk] ∪ xkxj ∪ P [xj, x1] ∪ x1xi ∪ P [xi, xj+1],

P [xj−1, x1] ∪ x1xi ∪ P [xi, xj] ∪ xjxk ∪ P [xk, xi+1].

See Figure 2.

This shows f(G) ≥ 4. Conversely, for every order n ≥ 4 we construct a graph
Gn of order n with δ(G) ≥ 2 satisfying f(Gn) = 4. G4 = C4, the 4-cycle. G5 is the
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Figure 2: The case i > j

bowtie, the graph consisting of two triangles sharing one vertex. G6 consists of a
triangle and a 4-cycle sharing one vertex. G7, G8 and G9 are depicted in (a), (b) and
(c) of Figure 3, respectively.

Figure 3: The graphs G7, G8 and G9

G8 has the four detours:

(1) 1, 0, 6, 2, 7, 5, 4, 3; (2) 1, 0, 6, 2, 3, 4, 5, 7;

(3) 3, 4, 5, 7, 2, 1, 0, 6; (4) 6, 0, 1, 2, 3, 4, 5, 7

and G9 has the four detours:

(1) 2, 6, 3, 0, 8, 1, 5, 7, 4; (2) 2, 6, 3, 0, 8, 1, 4, 7, 5;

(3) 3, 6, 2, 0, 8, 1, 5, 7, 4; (4) 3, 6, 2, 0, 8, 1, 4, 7, 5.

Observe that each of the four detours in G9 contains the path 0, 8, 1. For n ≥ 10, Gn

is obtained from G9 in (c) of Figure 3 by replacing the path 0, 8, 1 by a (0, 1)-path
of order n− 6. 2

Remark 1. Note that for n ≥ 7, the graphs Gn in the above proof of Theorem 1
are 2-connected. Thus, if we replace “minimum degree at least 2” by “2-connected”
in Theorem 1, we obtain the same conclusion for graphs of order at least 7.

We make the following conventions: (1) For a positive integer r, “r detours”
means “r pair-wise distinct detours”; (2) for an edge e of G and a detour D, we say
that e appears on D if e ∈ E(D).

Lemma 2. Let P : x1, x2, . . . , xk be a detour in a graph of order at least 4 and
suppose that x1 has a neighbor xi with i ≥ 3 and xk has a neighbor xj with j ≤ k−2.
Then an edge e of P appears on at least four detours unless (1) i ≤ j and e = xi−1xi
or e = xjxj+1 or (2) i = j+1 and e = xixj. Each of the three edges in the exceptional
cases (1) and (2) appears on at least two detours.

Proof. This can be verified by checking the proof of Theorem 1. 2
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Recall that f(G) denotes the number of detours in a graph G.

Theorem 3. Let G be a connected graph of minimum degree at least 2 and order
at least 9. If f(G) is an odd number, then f(G) ≥ 9. Furthermore, the lower bound
9 can be attained for every order by both graphs of connectivity 1 and graphs of
connectivity 2.

Proof. We first prove that if f(G) is an odd number, then f(G) ≥ 9. By Theorem 1
it suffices to show that either f(G) ≥ 8 or f(G) = 4 or f(G) = 6.

Let P : x1, x2, . . . , xk be a detour of G. If there is another detour Q with V (Q) 6=
V (P ), by the proof of Theorem 1, there are at least four detours with the same vertex
set V (P ) and there are at least four detours with the same vertex set V (Q). These
detours are clearly distinct. Hence we have f(G) ≥ 8. Next suppose that all detours
of G have V (P ) as their vertex set.

Recall that an edge e of G is called a chord of a path R if the two endpoints of e
lie in R but e 6∈ E(R). A chord e of R is called an inner chord if both endpoints of
e are internal vertices of R. Otherwise e is called a boundary chord. A detour D is
called a basic detour if no inner chord of P is an edge of D; otherwise D is called a
non-basic detour.

Let the order of G be n. If G is hamiltonian, then f(G) ≥ n ≥ 9. Next assume
that G is non-hamiltonian.

Since P is a detour, N(x1) ⊆ V (P ) and N(xk) ⊆ V (P ). The condition δ(G) ≥ 2
implies that x1 has a neighbor xi with i ≥ 3 and xk has a neighbor xj with j ≤ k−2.
If i = k or j = 1, then G has a k-cycle C which contains P . Since P is a detour, C
must be a Hamilton cycle, contradicting our assumption that G is non-hamiltonian.
Hence 3 ≤ i ≤ k − 1 and 2 ≤ j ≤ k − 2. We distinguish two cases.

Case 1. Every detour of G is a basic detour.

We need consider only the boundary chords of P.

Subcase 1.1. P contains exactly two boundary chords.

As analyzed in the proof of Theorem 1, in this case f(G) = 4 or f(G) = 6, where
we have used the assumptions that all detours of G have V (P ) as their vertex set
and every detour of G is a basic detour.

Subcase 1.2. P contains exactly three boundary chords.

Without loss of generality, let x1xq be the third chord of P with q 6= i. Note that
the two boundary chords x1xi and x1xq are in symmetric positions. If q > i we may
interchange the roles of x1xi and x1xq. Thus we may and do assume that q < i.

Suppose i ≤ j. We have four basic detours not containing the edge x1xq. If
3 ≤ q ≤ i− 2, we have exactly the following two detours containing the edge x1xq:

P [xq−1, x1] ∪ x1xq ∪ P [xq, xk], P [xq−1, x1] ∪ x1xq ∪ P [xq, xj] ∪ xjxk ∪ P [xk, xj+1].

Hence f(G) = 6. If q = i− 1, we have exactly the following four detours containing
the edge x1xq:

P [x2, xq]∪xqx1∪x1xi∪P [xi, xk], P [x2, xq]∪xqx1∪x1xi∪P [xi, xj]∪xjxk∪P [xk, xj+1],
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P [xq−1, x1] ∪ x1xq ∪ P [xq, xk], P [xq−1, x1] ∪ x1xq ∪ P [xq, xj] ∪ xjxk ∪ P [xk, xj+1].

Hence f(G) = 8.

Suppose i > j. We have six basic detours not containing the edge x1xq. In this
case it is easy to check that there are at least two detours containing the edge x1xq
by considering the subgraph P ∪ x1xq ∪ xkxj. Thus f(G) ≥ 8.

Subcase 1.3. P contains at least four boundary chords.

Based on Subcase 1.2, we deduce that f(G) ≥ 8 in this case.

Case 2. G contains a non-basic detour.

Claim 1. Every edge in a detour appears on at least two detours.

This claim follows from Lemma 2.

Since G contains a non-basic detour, some inner chord e of P is an edge of
a detour. By Claim 1, there are at least two detours containing e as an edge.
Thus G has at least two non-basic detours. If i > j, we have six basic detours,
and consequently f(G) ≥ 8. By Subcases 1.2 and 1.3, if P contains at least three
boundary chords, then G contains at least six basic detours. Again we have f(G) ≥ 8.
If an inner chord of P appears on at least four detours, then we have at least four
non-basic detours. It follows that f(G) ≥ 8.

It remains to treat the case when (1) i ≤ j, (2) P contains exactly two boundary
chords, and (3) every inner chord of P appears on at most three detours. Next we
make these three assumptions.

Let D : y1, y2, . . . , yk be a detour of G. Suppose yc is a neighbor of y1 and yd
is a neighbor of yk with 3 ≤ c ≤ k − 1 and 2 ≤ d ≤ k − 2. As in the proof of
Theorem 1, there are four detours (if c ≤ d) or six detours (if c > d) whose edges
belong to E(D)∪{y1yc, ykyd}. We denote by Ψ(D) the set of these four or six detours
according as c ≤ d or c > d. When we write Ψ(D) we assume that the two boundary
chords y1yc and ykyd have been prescribed.

Claim 2. If an inner chord h of P appears on a detour D such that Ψ(D)∩Ψ(P ) 6= ∅,
then one of the two endpoints of h belongs to the set {xi−1, xj+1}.

Let D = y1, y2, . . . , yk with h ∈ E(D). Suppose yc is a neighbor of y1 and yd
is a neighbor of yk with 3 ≤ c ≤ k − 1 i and 2 ≤ d ≤ k − 2. Since h appears on
at most three detours, by Lemma 2, if c > d we must have c = d + 1 and then
V (D) is contained in a cycle which must be a Hamilton cycle since D is a detour,
contradicting our assumption that G is non-hamiltonian. Thus c ≤ d and then by
Lemma 2, either h = yc−1yc or h = ydyd+1. Note that since h is an inner chord
of P , the two endpoints of h cannot be x1 or xk. Let R ∈ Ψ(D) ∩ Ψ(P ). Then
R does not contain h. Each of the two detours in Ψ(D) not containing h has one
endpoint which is an endpoint of h. Thus one endpoint v of R is an endpoint of h.
Since the endpoints of the four detours in Ψ(P ) are x1, xk, xi−1, xj+1, we deduce that
v ∈ {x1, xk, xi−1, xj+1} but v 6∈ {x1, xk}. Hence v ∈ {xi−1, xj+1}.
Subcase 2.1. G has a detour which contains at least two inner chords of P .

Let h and e be two inner chords of P that appear on one common detour. Consider
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the subgraph G′ = P ∪x1xi∪xkxj∪h∪e. The path T = P [xi−1, x1]∪x1xi∪P [xi, xj]∪
xjxk ∪ P [xk, xj+1] is a detour of G′ with endpoints xi−1 and xj+1, which is also a
detour of G. Since we have assumed that G is non-hamiltonian, xi−1 and xj+1 are
non-adjacent. By Claim 2, each of h and e has exactly one endpoint in the set
{xi−1, xj+1}. Now in G′, the detour T has four boundary chords xi−1xi, xj+1xj, h
and e. By Subcase 1.3 above (replacing P there by T ), we obtain f(G) ≥ f(G′) ≥ 8.

Subcase 2.2. Every non-basic detour contains exactly one inner chord of P .

Denote by Ω the set of the inner chords of P that appear on at least one detour.
By the above Claim 1, if one inner chord of P appears on a detour, then there are
at least two detours containing that chord. Thus, if |Ω| ≥ 2 then we have at least
four non-basic detours, and consequently we have f(G) ≥ 8. Next suppose |Ω| = 1
and let Ω = {xsxt} with 2 ≤ s ≤ t − 2. Recall that we have assumed i ≤ j. Using
Claim 2, we deduce that f(G) = 6 if (1) t = i − 1; (2) s = j + 1; (3) s = i − 1 and
i + 2 ≤ t ≤ j; (4) i ≤ s ≤ j − 2 and t = j + 1. In all other cases f(G) ≥ 8. This
completes the proof that if f(G) is an odd number, then f(G) ≥ 9.

Next for every integer n ≥ 9 we construct a graphHn of order n and connectivity 1
which contains exactly nine detours. Every Hn is traceable. We depict H9, H10 and
H11 in Figure 4.

Figure 4: The graphs H9, H10 and H11

For n ≥ 11, Hn is obtained from H10 by subdividing the edge (4, 5) precisely
n− 10 times, i.e., replacing the edge (4, 5) by a (4, 5)-path of order n− 8. Note that
the vertex 4 is a cut-vertex of H9. The nine detours in H9 are

(0, 1, 2, 3, 4, 5, 6, 7, 8), (0, 1, 2, 3, 4, 5, 6, 8, 7), (0, 1, 2, 3, 4, 7, 8, 6, 5),
(1, 0, 2, 3, 4, 5, 6, 7, 8), (1, 0, 2, 3, 4, 5, 6, 8, 7), (1, 0, 2, 3, 4, 7, 8, 6, 5),
(3, 2, 0, 1, 4, 5, 6, 7, 8), (3, 2, 0, 1, 4, 5, 6, 8, 7), (3, 2, 0, 1, 4, 7, 8, 6, 5).

Finally, for every integer n ≥ 9 we construct a graph Mn of order n and connec-
tivity 2 which contains exactly nine detours. Every Mn is traceable. We depict M9

and M10 in Figure 5.

For n ≥ 10, Mn is obtained from M9 by subdividing the edge (7, 8) n− 9 times.
Observe that M9 is obtained from H9 in Figure 4(a) by adding the edge (2, 6), and
any detour of M9 cannot contain the edge (2, 6). Hence M9 and H9 have the same
set of detours, in particular, the same number of detours, i.e., nine. Note that each
detour of M9 contains the edge (7, 8). Thus for every n ≥ 10, Mn has the same
number of detours as M9. 2
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Figure 5: The graphs M9 and M10

Remark 2. The condition “of order at least 9” in Theorem 3 cannot be dropped.
A computer search shows that the minimum odd number of detours in a connected
graph of order 8 and minimum degree at least 2 is 11, and the minimum odd number
of detours in a connected graph of order 7 and minimum degree at least 2 is 7.

Next we show that the numbers six and eight can be attained.

Theorem 4. For every integer n ≥ 4, there exists a 2-connected graph of order n
with exactly six detours, and for every integer n ≥ 6, there exists a 2-connected graph
of order n with exactly eight detours.

Proof. For every integer n ≥ 4, we construct a 2-connected graph Dn of order n
with exactly six detours. We depict D4 and D5 in Figures 6(a) and (b), respectively.

Figure 6: The graphs D4 and D5

D4 has exactly the six detours:

(0, 3, 2, 1), (0, 1, 3, 2), (0, 3, 1, 2), (0, 1, 2, 3), (1, 0, 3, 2), (2, 1, 0, 3).

D5 has exactly the six detours:

(0, 2, 3, 4, 1), (0, 4, 3, 2, 1), (0, 2, 1, 4, 3), (0, 4, 1, 2, 3), (1, 2, 0, 4, 3), (1, 4, 0, 2, 3).

For n ≥ 6, Dn is obtained from D5 by replacing the edge (3, 4) by a path (3, 4, . . . ,
n − 1); i.e., subdividing the edge (3, 4) precisely n − 5 times. Clearly Dn has the
same number of detours as D5.

For every integer n ≥ 6, we construct a 2-connected graph Fn of order n with
exactly eight detours. We depict F6, F7 and F8 in Figures 7(a), (b), and (c), respec-
tively.
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Figure 7: The graphs F6, F7 and F8

Note that F6, F7 and F8 are all traceable. Thus every detour is a Hamilton path.
F6 has exactly the eight detours:
(0, 5, 4, 3, 2, 1), (0, 1, 5, 4, 3, 2), (0, 5, 1, 2, 3, 4), (0, 1, 2, 3, 4, 5),
(1, 0, 5, 4, 3, 2), (2, 1, 0, 5, 4, 3), (3, 2, 1, 0, 5, 4), (4, 3, 2, 1, 0, 5).

F7 has exactly the eight detours:
(0, 2, 3, 4, 5, 6, 1), (0, 2, 3, 1, 6, 5, 4), (1, 3, 4, 5, 6, 0, 2), (1, 6, 5, 4, 3, 0, 2),
(1, 3, 2, 0, 6, 5, 4), (1, 6, 0, 2, 3, 4, 5), (2, 0, 3, 1, 6, 5, 4), (2, 0, 6, 1, 3, 4, 5).

F8 has exactly the eight detours:
(0, 2, 3, 4, 5, 6, 7, 1), (0, 7, 6, 5, 4, 3, 2, 1), (0, 2, 1, 7, 6, 5, 4, 3), (0, 2, 1, 7, 6, 5, 3, 4),
(0, 7, 1, 2, 3, 4, 5, 6), (1, 2, 0, 7, 6, 5, 4, 3), (1, 2, 0, 7, 6, 5, 3, 4), (1, 7, 0, 2, 3, 4, 5, 6).

For n ≥ 9, Fn is obtained from F8 by replacing the edge (6, 7) by a path (6, 7, . . . ,
n− 1); i.e., subdividing the edge (6, 7) exactly n− 8 times. Fn has the same number
of detours as F8. This completes the proof. 2

3 Unsolved problems

Finally we pose two problems. Recall that f(G) denotes the number of detours in a
graph G.

Problem 1. Let k and n be integers with 3 ≤ k ≤ n− 2. Denote by Γ(k, n) the set
of connected graphs with minimum degree k and order n. Define

a(k, n) = min{f(G)|G ∈ Γ(k, n)}.

Determine a(k, n).

Problem 2. Let k, n and Γ(k, n) be as in Problem 1. Define

b(k, n) = min{f(G)|G ∈ Γ(k, n) and f(G) is odd}.

Determine b(k, n).

Perhaps for sufficiently large orders n, a(k, n) and b(k, n) are independent of n.
We may also ask the two corresponding problems by replacing “with minimum degree
k” in Problems 1 and 2 above by “with connectivity k”.
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