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Abstract

Let P be a set of n green and n — k red points in C2. A line determined
by i green and j red points such that ¢ + j > 2 and |i — j|< r is called
r-equichromatic. We establish lower bounds for 1-equichromatic and 2-
equichromatic lines. In particular, we show that if at most 2n — k — 2
points of P are collinear, then the number of 1-equichromatic lines passing
through at most six points is at least 1(6n — k(k + 3)), and if at most
%(Zn — k) points of P are collinear, then the number of 2-equichromatic
lines passing through at most four points is at least §(10n — k(k +5)).

1 Introduction

In this paper we study sets of n green points and n — k red points in the complex
plane. Let P be such a set. A line containing two or more points of P is said to
be determined by P. A line determined by at least one green and one red point is
called bichromatic. Otherwise, it is called monochromatic. A line determined by ¢
green and j red points such that ¢ + j > 2 and |i — j|< r is called r-equichromatic.
Note that every 1-equichromatic line is a bichromatic line.

In [8], Purdy and Smith studied lower bounds on the number of bichromatic
lines and on the number of 1-equichromatic lines in C? and R2. For brevity, we will
mention only the results on 1-equichromatic lines and we refer interested readers to
[7, 8] for some other results.

Theorem 1 (Purdy and Smith [8]) Let P be a set of n green and n—k red points in
R? such that the points of P are not all collinear. Let t be the total number of lines
determined by P. Then the number of 1-equichromatic lines is at least %l(t + 2n +
3—k(k+1)).
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Theorem 2 (Purdy and Smith [8]) Let P be a set of n green and n—k red points in
R? such that the points of P are not all collinear. Then the number of 1-equichromatic
lines determined by at most four points is at least +(2n + 6 — k(k + 1)).

Theorem 3 (Purdy and Smith [8]) Let P be a set of n green and n — k red points
in C? such that no 2n — k — 2 points of P are collinear. Then the number of 1-
equichromatic lines determined by at most five points is at least 3(6n — k(k + 3)).

Theorem 4 (Purdy and Smith [8]) Let P be a set of n green and n—k red points in
R? such that the points of P are not all collinear. Let t be the total number of lines
determined by P. Then the number of 1-equichromatic lines determined by at most
siz points is at least 75 (t +6n + 15 — 3k(k + 1)).

Purdy and Smith [8] asked whether one can prove a tight lower bound on the
number of 1-equichromatic or bichromatic lines determined by at most four points in
C2. This question motivated the current study. Unfortunately, the closest we have
come is 2-equichromatic lines. Table 2 in Purdy and Smith [8] contains the summary
of their results on 1-equichromatic lower bounds. In that table there is a lower bound
for the number of 1-equichromatic lines determined by at most six points in C2, but
there is no result in their paper justifying this claim. So, we prove a lower bound for
the number of 1-equichromatic lines determined by at most six points in C2. Our
lower bound is the same as the one claimed by Purdy and Smith [8] .

2 Incidence Inequalities

The main ingredients used by Purdy and Smith [8] and which also will be used in
the present paper, are incidence inequalities. We list some well-known incidence
inequalities. Let ¢ denote the number of lines that pass through exactly k points.

Theorem 5 (Melchior’s Inequality [4]) Let S be a set of n non-collinear points in
the plane. Then

> (3 -kt > 3. (1)

k>2

The proof for (1) uses Euler’s polyhedral formula. In [6], Langer proved this
inequality by working with pairs (P4, «D) where P2 is the complex projective plane
with a Q-effective (boundary) divisor D such that (P%,aD) is log canonical and
effective.

Theorem 6 (Langer’s Inequality [6]) Let S be a set of n points in P%, with at most
%n points collinear. Then
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Theorem 7 (Hirzebruch’s Inequality [2]) Let S be a set of n points in P%, with at
most n — 2 points collinear. Then

to + 13 2n+2(k‘—4)tk. (2)

k>5

Theorem 8 (Hirzebruch’s Inequality [3]) Let S be a set of n points in P%, with at
most n — 3 points collinear. Then

3
to + Zt3 >n+ Z(Qk — 9)t. (3)

k>5

Hirzebruch’s inequalities do not follow from Euler’s formula as one would suspect.
Instead, Hirzebruch’s inequalities were derived from the Bogomolov—Miyaoka—Yau
inequality, a deep result in algebraic geometry, and it is true for arrangements of
points in the complex plane.

Bojanowski [1] and Pokora [5] used Langer’s work [6] to prove the following
theorem.

Theorem 9 (Bojanowski-Pokora Inequality) Let S be a set of n points in P%, with
at most %n points collinear. Then

3 1,
t2+1t3 Z n—i—Z(Zk —/{Z)tk. (4)

k>5

Note that (4) is equivalent to

k>2

Remark 1 One should note that these inequalities (except (1)) were originally
proved for an arrangement of lines in the complex projective plane such that ¢
is the number of intersection points where exactly k lines of the arrangement are
incident.

Remark 2 Purdy and Smith [8] proved Theorems 1, 2 and 4 using Melchior’s in-
equality (1) and proved Theorem 3 using Hirzebruch’s inequality (3).

3 Lower Bounds for Lines in C?

The identities below can be found in [7, 8] and will be used in this section. Let ¢, ;
be the number of lines determined by P with exactly ¢ green points and j red points,
where we always assume 7+ j > 2. Assume that the number of green points is n and
the number of red points is n. Then the number of bichromatic point pairs is

Z Z]tz,j = n2

1,520
i+j=>2
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and the number of monochromatic point pairs is

S [(3) (Deums(2) v

4,520
i+j>2

In general, if we assume that the number of green points is n and the number of
red points is n — k, then the above identities become

Z ijti; =n(n — k) =n* — nk (6)

1,7>0
ity>2
and
i J o _(n n—Fk\_ o K+ k
1,j>0
i+j>2

We subtract (6) from (7) and then split the summation to get the following
identity:

E (i + )ty = E (i —j)%ti; +2n — (K + k). (8)
0,70 0,70
i5>2 i15>2

3.1 A Lower Bound for 1-Equichromatic lines through at most six points

As stated before, we are not able to find the claimed result of Purdy and Smith [§]
on l-equichromatic lines through at most six points in C2. Below we will prove the
result.

Theorem 10 Let P be a set of n green and n — k red points in C* such that at
most 2n — k — 2 points of P are collinear. Then the number of 1-equichromatic lines
passing through at most siz points is at least 3(6n — k(k + 3)).

Proof. First, we express (2) as

—(toa+tao) —t11— (tos+tse) — (i ttan)+ Y ((i+4) —4)ti; < —(2n—k). (9)
iz—i—jjé%

We subtract (6) from (7) and unwind the first few terms of the summation to get

(to2 +t20) —t11 + 3(tos +ts0) — (tr2 +ta1) + 6(toa + tao)

—2t22+ZK ) (‘;)—ij]ti,j:—wrw;k. (10)

i,j >0
147525
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Adding (9) and (10) produces

—2t11 + 2(tos +t30) — 2(t12 +t21) + 6(toa + tao)

e 2 [(3)+(3) e

,j20 (11)
1+7>5
k24 k
2 (D) =ty < —@n—k) —n+ 2* .
1,7 >0
i+j>5

Let o ; be the coefficient corresponding to ¢; ; produced by the left-hand side of the
inequality above. One can check that the only negative coefficients are o1 = a1 0 =

Qg1 = (g2 = —2, and Qg3 = (32 = (33 = —1. Thus
—6n + k(k+ 3
—2(tig +tio Ftog +log +tag+ 1t +133) < 2< )
The result follows immediately. O

3.2 A Lower Bound for 2-Equichromatic lines through at most four
points

We now consider 2-equichromatic lines through at most four points. To begin with,
we write (5) within our context and add that to (8) to obtain

> (Bli+j4) = (i—§)° = (i+5)) tiy > 10n — k(k +5).
%,j>0
i+j>2

(12)

Let «;; be the coefficient corresponding to ¢;; in (12). One can check that the
only positive coefficients are apo = o9 = 2,011 = 6,012 = a1 = 5, and as s = 4,
and therefore,

6(to2 +to0+tia+tio+ta1 +ta2) > 100 — k(k +5).
This gives us the following:

Theorem 11 Let P be a set of n green and n — k red points in C* such that at
most % (2n — k) points of P are collinear. Then the number of 2-equichromatic lines
passing through at most four points is at least %(107@ — k(k+5)).
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