
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 90(1) (2024), Pages 15–28

Assorted musings on dimension-critical graphs

Matt Noble

Department of Mathematics and Statistics
Middle Georgia State University

Macon, GA 31206, U.S.A.
matthew.noble@mga.edu

Abstract

Let G be a finite simple graph. We say G is of dimension n, writing
dim(G) = n, if n is the smallest integer such that G can be represented
as a unit-distance graph in Rn. Define G to be dimension-critical if
every proper subgraph of G has dimension less than G. In this article,
we determine exactly which complete multipartite graphs are dimension-
critical. It is then shown that for each n ≥ 2, there is an arbitrarily large
dimension-critical graph G with dim(G) = n. We then pose and expound
upon a number of questions related to this subject matter.

1 Introduction

Define a finite simple graph G to be representable (or alternately embeddable) in
Rn if G can be drawn with its vertices being points of Rn where any two adjacent
vertices are necessarily placed at a unit-distance apart. Say G is of dimension n, and
denote dim(G) = n, if G is representable in Rn but not in Rn−1. For a non-empty
graph G, define G to be dimension-critical if for every proper subgraph H of G,
dim(H) < dim(G).

This notion of graph dimension was initially put forth in a 1965 note by Erdős,
Harary, and Tutte [8]. There the authors establish the dimension of a few common
families of graphs and, as typical of a paper authored or co-authored by Erdős, con-
clude by stirring the pot with a number of questions for future investigation. Indeed,
one of these questions serves as an impetus for our present work. Erdős, Harary, and
Tutte ask the reader to “. . . characterize the critical n-dimensional graphs, at least
for n = 3 (this is trivial for n = 2).” Indeed, it takes only a moment’s thought to
conclude that if G is a dimension-critical graph with dim(G) = 2, then G is either
a cycle or the star K1,3. For higher dimensions, the situation is murkier, and for
an arbitrary graph G, an efficiently-computed condition that is both necessary and
sufficient for G to be dimension-critical seems unlikely to exist. We can, however,
claim success in characterizing the criticality of certain families of graphs.
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In Section 2, we give a full description of which complete multipartite graphs are
dimension-critical. To more succinctly phrase our result, we will implement notation
similar to that seen in [10]. For non-negative integers α, β, and γ, define G(α, β, γ)
to be the complete multipartite graph with α+β+γ parts, α of which are of size 1, β
of which are of size 2, and γ of which are of size 3. We first observe that any complete
multipartite graph having a part of size 4 or larger is in fact not dimension-critical,
and then determine exactly which assignments of α, β, and γ result in G(α, β, γ)
being dimension-critical.

In Section 3, for any n ≥ 2 and positive integer c, we show through an explicit
construction the existence of a dimension-critical graph G with dim(G) = n and
|E(G)| > c. This generalizes a result of Boza and Revuelta [2] where they show it is
possible for n = 3.

In Section 4, we conclude with a number of observations and questions that
will hopefully re-stir the pot and prompt future research. In particular, we make a
beginning foray into the problem of determining for which n, k there exists an arbi-
trarily large dimension-critical graph G having dim(G) = n and chromatic number
χ(G) = k.

2 Dimension-critical Complete Multipartite Graphs

In [10], Maehara determines the Euclidean dimension of all complete multipartite
graphs. We ourselves will not be concerned with this particular graph parameter,
however for those interested readers, we remark that the Euclidean dimension of a
graph G is defined similarly to the dimension of G with the added stipulation that
in any representation in Rn, non-adjacent vertices of G are forbidden to be placed
a unit-distance apart. Regardless, the following theorem is an easily established
corollary of the work done in [10].

Theorem 2.1 Let G be a complete (α+ β + γ)-partite graph having exactly α parts
of size one, exactly β parts of size two, and exactly γ parts of size greater than or
equal to three. If β + γ ≤ 1, then dim(G) = α + β + 2γ − 1. If β + γ ≥ 2, then
dim(G) = α + β + 2γ.

Theorem 2.1 will figure prominently in this section, and indeed it has an imme-
diate and relevant bearing. Letting G be a complete multipartite graph containing
a part of size four or larger, and letting G′ be the graph formed by deleting from G
a vertex of that part, we have that dim(G) = dim(G′). This gives us the corollary
below.

Corollary 2.2 Let G be a complete multipartite graph having at least one part of
size four or larger. Then G is not dimension-critical.

Now let G be equal to some G(α, β, γ), and let e ∈ E(G). In deciding whether
or not G is dimension-critical, we will often consider G − e as a subgraph of some
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other complete multipartite graph. As an example, consider G = G(1, 0, 2). Label
the partite sets of G as {a}, {b1, c1, d1}, {b2, c2, d2}, and let e = b1b2. Then G − e is
a subgraph of G(1, 3, 0) whose partite sets are {a}, {b1, b2}, {c1, d1}, {c2, d2}.

We list those dimension-critical complete multipartite graphs in the theorem be-
low.

Theorem 2.3 Each of the following complete multipartite graphs is dimension-
critical.

(i) Kα for α ≥ 3;

(ii) C4;

(iii) K1,3;

(iv) K2,3;

(v) G(α, 0, γ) for α ≥ 0 and γ ≥ 2.

Proof In [8], it is observed that dim(Kα) = α − 1 and that dim(Kα − e) = α − 2
for any e ∈ E(Kα), so we have that Kα is dimension-critical. It is obvious that
the cycle C4 and star K1,3 are dimension-critical. It is also fairly easy to see that
dim(K2,3) = 3 and dim(K2,3 − e) = 2, although it is noted as well in [6] that K2,3

is a dimension 3 graph with minimum edge-set, which in turn implies that K2,3 is
dimension-critical.

Now let G = G(α, 0, γ) for α ≥ 0 and γ ≥ 2, and note that Theorem 2.1 gives
dim(G) = α + 2γ. Label the partite sets of G as {a1}, . . . , {aα}, {b1, c1, d1}, . . . ,
{bγ, cγ, dγ}. Let e1 = a1a2, e2 = b1b2, and e3 = a1b1. For any e ∈ E(G), there is an
automorphism of G mapping e to one of e1, e2, or e3, so to show that G is dimension-
critical, we just need to show that for i ∈ {1, 2, 3}, dim(G) > dim(G−ei). First note
that G − e1 is a subgraph of G(α − 2, 1, γ) which by Theorem 2.1 is of dimension
α+ 2γ− 1. Secondly, note that G− e2 is a subgraph of G(α, 3, γ− 2) which again by
Theorem 2.1 is of dimension α+2γ−1. Finally, we have that G−e3 is a subgraph of
G(α−1, 2, γ−1) which is of dimension α+ 2γ−1 as well. Since for arbitrary graphs
H and K, H being a subgraph of K implies that dim(H) ≤ dim(K), we have now
shown that for any e ∈ E(G), dim(G − e) ≤ α + 2γ − 1 < dim(G). This completes
the proof that G is dimension-critical. 2

Theorem 2.4 Let G = G(α, β, γ) where α ≥ 0, β ≥ 1, and β + γ ≥ 3. Then G is
not dimension-critical.

Proof Let v ∈ V (G) where v is contained in a part of size 2. Then G \ {v} =
G(α+ 1, β − 1, γ) and by Theorem 2.1, dim(G \ {v}) = α+ β + 2γ. Since dim(G) =
α + β + 2γ as well, we have that G is not dimension-critical. 2

In light of Theorems 2.3 and 2.4, the only remaining complete multipartite graphs
that we must investigate are K2, G(α, 1, 0) for α ≥ 1, G(α, 1, 1) for α ≥ 1, G(α, 2, 0)
for α ≥ 1, and G(α, 0, 1) for α ≥ 2. We show that each of these graphs is not
dimension-critical in the theorem below.
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Theorem 2.5 Each of the following complete multipartite graphs is not dimension-
critical.

(i) K2;

(ii) G(α, 1, 0) for α ≥ 1;

(iii) G(α, 1, 1) for α ≥ 1;

(iv) G(α, 2, 0) for α ≥ 1;

(v) G(α, 0, 1) for α ≥ 2.

Proof We consider each of these cases individually and apply Theorem 2.1 through-
out.

(i) Quite obviously dim(K2) = 1, however deletion of the only edge of K2 results
in a graph just consisting of two isolated vertices which cannot be embedded
in R0 (which by convention consists of a single point). So K2 is not dimension-
critical.

(ii) Let G = G(α, 1, 0) for α ≥ 1. Then dim(G) = α. Letting v ∈ V (G) where v is
contained in the part of size 2, G\{v} is equal to Kα+1. Since dim(Kα+1) = α,
we have that G is not dimension-critical.

(iii) Let G = G(α, 1, 1) for α ≥ 1, and note that dim(G) = α + 3. Label the
partite sets of G as {a1}, . . . , {aα}, {b1, c1}, {b2, c2, d2}. Form a new graph G′

by deleting from G the edges a1b1 and a1c1. Observe that G′ = G(α − 1, 0, 2)
and dim(G′) = α + 3. Again, we have that G is not dimension-critical.

(iv) Let G = G(α, 2, 0) for α ≥ 1, and note that dim(G) = α + 2. Just as in the
last case, let G′ = G \ {a1b1, a1c1} where {a1} and {b1, c1} are parts of sizes
one and two, respectively, and note that G′ = G(α − 1, 1, 1). We have that
dim(G′) = α + 2 which implies that G is not dimension-critical.

(v) Finally, let G = G(α, 0, 1) for α ≥ 2, which gives dim(G) = α + 1. Let {a1}
and {a2} both be partite sets of size 1, and let G′ be formed by deleting edge
a1a2 from G. Then G′ = G(α−2, 1, 1) and dim(G′) = α+ 1. We conclude that
G is not dimension-critical. 2

Theorem 2.5 shows that the graphs shown to be dimension-critical by Theorem 2.3
are in fact the only dimension-critical complete multipartite graphs.

3 Arbitrarily Large Dimension-critical Graphs

In this section, we show that for any n ≥ 2, there exists an arbitrarily large dimension-
critical graph G with dim(G) = n. This is immediate for n = 2 as the cycle Ck is of
dimension 2 for any k ≥ 3, and deletion of any edge of Cm results in a path which has
a unit-distance representation on the real number line R. In [2], Boza and Revuelta
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construct an arbitrarily large dimension-critical graph of dimension 3. However, the
authors of [2] do not comment on the existence of such graphs in higher dimensions,
and it does not appear that their construction has a clear generalization.

We will obtain our result by considering the graph G = Kn + Cm. That is, G
is formed by starting with the cycle Cm for some m ≥ 3, then placing n vertices
adjacent to each other and to each of the vertices of the copy of Cm. Along the way,
we will employ a number of lemmas and theorems of a geometric sort, and we will
make frequent reference to the n-dimensional simplex, which is formally defined as the

convex hull of points P0, . . . , Pn having the property that the n vectors
−−→
P0P1, . . . ,

−−−→
P0Pn

are linearly independent. A simplex is deemed to be regular if all its edge lengths
are the same, or, in other words, if the distance |Pi − Pj| = d for some d > 0 and
all distinct i, j ∈ {0, . . . , n}. A unit simplex is regular with d = 1. Lemma 3.1 is
observed in the previously mentioned [8].

Lemma 3.1 For any n ≥ 1, dim(Kn) = n− 1.

Although proof of Lemma 3.1 is not given in [8], it follows from the fact that if
points p1, . . . , pn are such that |pi−pj| = 1 for distinct i, j, the vectors −−→p1p2, . . . ,−−→p1pn
are linearly independent, and if p1 is assumed to be the origin, then their span is
a subspace isomorphic to Rn−1. This observation is certainly known to the mathe-
matical community, but a direct citation has been tough to find, so in the interest
of completion, we include proof in Lemma 3.2. This lemma will then be used with
Lemmas 3.3 through 3.6 to characterize sets of points in some Rd that are at distance
1 from each vertex of a unit simplex. This characterization will play a central role
in Theorems 3.9 and 3.10, which together make up the main result of this section.

Lemma 3.2 Let v1, . . . , vn ∈ Rd for some d ≥ n where |vi| = 1 for all i ∈ {1, . . . n}
and |vi − vj| = 1 for all i 6= j. Then the vectors v1, . . . , vn are linearly independent.

Proof First, note that any distinct vi, vj form two edges of an equilateral triangle
and so the angle θ between them is equal to 60◦. The commonly used formula
cos θ =

vi·vj
|vi||vj | then gives vi · vj = 1

2
.

Now let α1v1 + · · · + αnvn = 0 for some α1, . . . , αn ∈ R. Select vi for any
i ∈ {1, . . . , n}, and then consider the dot product α1v1 · vi + · · ·+ αnvn · vi = 0. We
may then rewrite this expression to obtain

∑
j 6=i

1
2
αj = −αi =⇒

∑
j 6=i

αj = −2αi =⇒
n∑
j=1

αj = −αi.

Since the selection of vi was arbitrary, we have that α1 = · · · = αn. It then
follows that

n∑
j=1

αj = −αi =⇒ n

n∑
j=1

αj = −nαi =⇒ n(α1 + · · ·+ αn) = −(α1 + · · ·+ αn)
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which means α1 + · · · + αn = 0. Thus αi = 0 for all i ∈ {1, . . . , n} and the vectors
v1, . . . , vn are linearly independent. 2

Note that in the proof of the above lemma, the size of d (and specifically, whether
it was equal to or larger than n) did not come into play. We conclude that the span
of vectors v1, . . . , vn as described by Lemma 3.2 is either a linear or affine subspace
S of Rd with S being isomorphic to Rn.

Lemma 3.3 Let p0, . . . , pn ∈ Rn with |pi − pj| = 1 for distinct i, j. There is exactly
one point c ∈ Rn that is simultaneously equidistant to each of p0, . . . , pn.

Proof Without loss of generality, assume that p0 is the origin. Write pi = (ai,1, . . . ,
ai,n) for each i ∈ {1, . . . , n}. Note that for each i ∈ {1, . . . , n}, the set of all points
equidistant to p0 and pi consists of the hyperplane ai,1x1 + · · · + ai,nxn = 1

2
which

we designate as Hi. Note also that
⋂n
i=1Hi consists of all points in Rn that are

simultaneously equidistant to each of p0, . . . , pn. Let M be the n×n matrix given
below.

M =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

...
an−1,1 an−1,2 · · · an−1,n

 .

By Lemma 3.2, the vectors p1, . . . , pn are linearly independent, and so the system
of equations formed by augmenting M with the vector (1

2
, . . . , 1

2
) has a solution set

which consists of a single point c. 2

The point c is of course the circumcenter of the hypersphere circumscribed about
the unit simplex with vertices p0, . . . , pn. The distance from c to any of p0, . . . , pn
can be found as an extension of Lemma 3.4, which can be found, for example, in [3].

Lemma 3.4 Let S be a regular n-dimensional simplex embedded on a unit sphere in

Rn. Then for any vertices P1, P2 of S, |P1 − P2| =
√

2 + 2
n
.

Since, in any representation of a graph in Rn, we require edges to be of unit length,
a quick calculation allows Lemma 3.4 to be restated as the following corollary.

Corollary 3.5 Let Kn have a unit-distance representation in Rn−1 on a sphere S in

Rn−1 having radius r. Then r =
√

n−1
2n

.

Define an isometry as any transformation of Rd (or a subset of Rd) which preserves
distance. Lemma 3.6 is given with proof as Theorem 11.4 in [13].

Lemma 3.6 Let S ⊂ Rd. Let f : S → Rd be an isometry of S. There exists an
isometry g : Rd → Rd such that for all s ∈ S, g(s) = f(s).
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The above lemma will be used in upcoming arguments as follows. Let G be
a graph which has Kn as a subgraph, and suppose that we desire to show that
dim(G) > d for some value d. We assume to the contrary that G does have a unit-
distance representation in Rd with its vertices being placed at points v1, . . . , vm ∈ Rd.
If f is any isometry of Rd, then their images f(v1), . . . , f(vm) also give rise to a unit-
distance representation of G in Rd. Lemma 3.6 guarantees that, if it is useful in
eventually establishing a contradiction, we may without loss of generality assume
this isometry maps those vertices of Kn to the vertices of a regular simplex lying in
Rn−1.

Theorem 3.7 is found in [12] and will be implemented in the proof of Lemma 3.8
below.

Theorem 3.7 Let r ∈ Q with 0 ≤ r ≤ 1. The number 1
π

arcsin(
√
r) is rational if

and only if r is equal to 0, 1
4
, 1

2
, 3

4
, or 1.

Lemma 3.8 Let S be a circle of radius r =
√

n+1
2n

for some integer n ≥ 2. Then no

cycle of edge-length 1 is embeddable on S.

Proof Consider a cycle Cm, and assume to the contrary that Cm is embeddable on
S. We then must have that, for some integer z ∈ Z+, the angle θ given in Figure 1
satisfies mθ = z(2π).

1

r

r

θ

Figure 1

Solving for θ, we have sin( θ
2
) = 1

2r
. Combining this with the equality given above,

we have that
1
π

arcsin

(√
n

2(n+1)

)
= z

m
, or in other words, 1

π
arcsin

(√
n

2(n+1)

)
is rational. By

Theorem 3.7, we see n
2(n+1)

∈ {1
4
, 1
2
, 3
4
, 1}. However, letting f(x) = x

2(x+1)
, we have

f ′(x) = 1
2(x+1)2

which implies that f(x) is strictly increasing. Since f(2) = 1
3

and

lim
n→∞

f(n) = 1
2
, we have a contradiction. 2

We now determine the dimension of G = Kn + Cm.

Theorem 3.9 Let G = Kn + Cm for m ≥ 3, n ≥ 2. Then dim(G) = n+ 2.
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Proof Label the vertices of Kn as a1, . . . , an and those of Cm as w1, . . . , wm. Our
first goal is to find an embedding of G in Rn+2. We do this by representing a1, . . . , an
as the vertices of a regular (n− 1)-dimensional simplex of edge-length 1 centered at
the origin, which means that, for each ai, the last three coordinates of that point
are each zero. Let r1 be the radius of this simplex, and by Corollary 3.5, we have

r1 =
√

n−1
2n

. Each of the vertices w1, . . . , wm will then be represented as points in

Rn+2 of the form (0, . . . , 0, xi, yi, zi) where x2i + y2i + z2i = 1− r21 for i ∈ {1, . . . ,m}.
Let r2 =

√
1− r21, and note that r2 =

√
1
2

+ 1
2n

. To complete our embedding of G

in Rn+2, it now suffices to show that the cycle Cm is representable in R3 with each
of its vertices lying on a sphere of radius r2.

Designate by S a sphere of radius r2. First, we claim that for any points P1, P2

lying on S with |P1−P2| = 1, there exists a point P3 on S at distance 1 from each of
P1, P2. To see this, we will show that there exists a point on S at distance less than
1 from each of P1, P2 and also a point on S at distance greater than 1 from each of
P1, P2, whereby continuity guarantees the existence of the desired P3. Consider the
great circle of S containing both P1 and P2, and then label distances as in Figure 2
below.

r2 r2
h1

h2

1
2

1
2P1 P2

Q

Figure 2

We have the relationships h1 + h2 = r2, h1 =
√
r22 − 1

4
, and |P1 −Q|2 = |P2 −Q|2 =

h22 + 1
4
. We claim that |P1 − Q|2 < 1 which amounts to showing that h2 <

√
3
2

.

To see this, combine the above equalities to write h2 = r2 −
√
r22 − 1

4
. Letting

f(x) = x−
√
x2 − 1

4
, we have f ′(x) = 1− x√

x2− 1
4

< 0 which implies f(x) is decreasing.

Since
√
2
2
< r2, and f(

√
2
2

) =
√
2−1
2

<
√
3
2

, we have established that there is a point
on S at a distance less than 1 from each of P1 and P2. To see that there is a point
on S at a distance greater than 1 from each of P1 and P2, just take an endpoint of
the diameter of S that is orthogonal to the plane containing this great circle. The
distance from this point to each of P1 and P2 is r2

√
2, which is greater than 1 since

r2 =
√

1
2

+ 1
2n
>
√

1
2
. This completes proof of our claim. We note also that a similar
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argument shows that for any two points on S that are a distance less than 1 apart,
there is a point on S at distance 1 from each of them as well.

Now, to embed a cycle Cm on S, we perform the following procedure. If m is
odd, place w1, w3, w5, . . . , wm on a great circle of S where w1 and wm are a Euclidean
distance 1 apart, and w3, . . . , wm−2 lie on the arc of the great circle between w1

and wm. For each pair of consecutive vertices in {w1, w3, . . . , wm}, there is a point
on S at distance one from each of them. We may select these points to be the
w2, w4, . . . , wm−1 and we have completed the embedding. If m is even, we may
embed the cycle Cm−1 in the fashion as just described, then delete the edge w1w2,
and place new edges w1P and Pw2 where vertex P is a point on S at distance 1 from
each of w1 and w2. This completes the proof that G is representable in Rn+2.

Now suppose to the contrary that G is embeddable in Rn+1. In light of Lemma
3.6 and its accompanying discussion, we may without loss of generality assume that
a1, . . . , an are represented as the vertices of a regular (n − 1)-dimensional simplex
of edge-length 1 which lies in Rn−1 and is centered at the origin. Note that with
this assumption, the last two coordinates entries of each ai are both zero. Each of
w1, . . . , wm is simultaneously at distance 1 from each of a1, . . . , an, and we claim that
each wi is of the form (0, . . . , 0, xi, yi), for the following reason. Suppose for a moment
that we did in fact have some w ∈ {w1, . . . , wm} where w does not have each of its
first n − 1 coordinates equal to zero. Lemma 3.3 tells us that the origin is the only
point in Rn−1 that is equidistant from each of a1, . . . , an. So, for this hypothetical
w, there would exist ai, aj ∈ {a1, . . . , an} where |ai − w| 6= |aj − w|, a contradiction

completing the justification of our claim. By Corollary 3.5, each ai is distance
√

n−1
2n

from the origin, and it follows that n−1
2n

+ x2i + y2i = 1, which gives us x2i + y2i = n+1
2n

.
We conclude that the cycle Cm must have a unit-distance representation on a circle

of radius
√

n+1
2n

. This contradicts Lemma 3.8. 2

We are now ready for the main result of this section.

Theorem 3.10 Let n ≥ 2, and c ∈ Z+. Then there exists a dimension-critical graph
H satisfying dim(H) = n+ 2 and |E(H)| > c.

Proof Again, consider the graph G = Kn +Cm where m > c, and label the vertices
of G as in the proof of Theorem 3.9. For any edge of the form wiwj, there is an
automorphism of G mapping that edge to e = w1wm. We aim to show then that e
is critical to the dimension of G, or, in other words, that dim(G) > dim(G− e). In
light of Theorem 3.9, this amounts to showing that G− e is representable in Rn+1.

Just as in the proof of Theorem 3.9, we represent a1, . . . , an as the vertices of a unit

simplex which lies in Rn−1, is centered at the origin, and has radius r1 =
√

n−1
2n

. We

then represent each of the vertices w1, . . . , wm as points of the form (0, . . . , 0, xi, yi)
where x2i + y2i = n+1

2n
for i ∈ {1, . . . ,m}. To see that this does indeed give a valid

representation of G− e in Rn+1, we need only show that a path of arbitrary length

has a unit-distance embedding on a circle, call it S, of radius r2 =
√

n+1
2n

. Since
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r2 >
1
2
, for any point p on S, there are two points on S at distance 1 from p. Since

Lemma 3.8 guarantees that no cycle is embeddable on S, we have established that
G− e is embeddable in Rn+1.

To then create a dimension-critical graph H with dim(H) = n+ 2, start with G
and iteratively delete any edges that are not critical to the dimension of the graph. As
observed above, all edges of the form wiwj are critical, so no matter how many edges
of the form aiaj or aiwj are deleted, we have that dim(H) = n+ 2 and |E(H)| > c.2

4 Further Work

In this section we collect a few observations and questions that have arisen during our
investigations into the topic of dimension-critical graphs. To the best of our knowl-
edge, each of these is open. We begin with a question in computational complexity.
A full digression into the terminology, history, and methodology of this subject would
take us far afield, so we will make do with assuming some familiarity of our readers,
and point those uninitiated to the introductory texts [1] and [5].

Question 1 For an arbitrary graph G, what is the complexity of determining whether
G is dimension-critical?

In [11], Schaefer proves that for a general graph G, it is NP-complete to determine
whether or not G has a unit-distance representation in R2. An immediate extension
is the fact that it is NP-hard to precisely determine dim(G). However, one can also
use Schaefer’s result to prove that for a given e ∈ E(G), it is NP-hard to decide
whether dim(G) > dim(G− e). We do this below.

First, observe that a graph G has a unit-distance representation in R if and only
if G is acyclic and contains no vertices of degree greater than 2 — in other words,
if and only if every component of G is a path. There are linear-time algorithms for
deciding if G has either of these two properties. Secondly, we note the impossibility
of the existence of a graph H with dim(H) = 1 where the creation of a graph H ′

by placing an edge between two non-adjacent vertices of H results in dim(H ′) > 2.
This is easy to see considering that H ′ would have at most one non-path component
with that component being a tree, a cycle, or a cycle with one or two paths attached
to single vertices of the cycle. In either case, that component, and by extension the
entirety of H ′, is embeddable in R2.

Now suppose to the contrary that there does exist a polynomial-time algorithm
to decide whether e ∈ E(G) is critical to the dimension of G. Label the edges of G
as e1, . . . , em and, starting with i = 1, implement this algorithm to decide whether ei
is critical. If it is not, delete ei from G, and implement the algorithm again to decide
whether ei+1 is critical to the dimension of G\{e1, . . . , ei}. Eventually we must reach
some edge, call it ej, that is critical to the dimension of graph G′ = G\{e1, . . . , ej−1}.
We may now run polynomial-time algorithms to decide whether G′ is representable
in R. If dim(G′) = 1, we have that dim(G) = 2, and if dim(G′) 6= 1, we have that
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dim(G) 6= 2. The existence of this polynomial-time algorithm to determine whether
or not G has a representation in R2 contradicts Schaefer’s result.

From the above observations, the existence of a polynomial-time algorithm to
determine if G is dimension-critical seems very unlikely. However, we (somewhat
abashedly) remark that we see no way to completely resolve Question 1.

Question 2 For an arbitrary graph G and e ∈ E(G), is it true that dim(G) −
dim(G− e) ≤ 1?

Of course, one can produce myriad examples of G and e ∈ E(G) where the
deletion of e either does not change the dimension of the graph or reduces the di-
mension of the graph by 1. However, we were unable to find a single instance where
dim(G)− dim(G− e) ≥ 2. Our guess is that such graphs do not exist, and we would
be very interested to see a proof. Incidentally, if one instead considers the deletion
of a vertex of G, there is a little more that can be said.

Question 3 Does there exist an integer c such that for all graphs G and v ∈ V (G),
we are guaranteed to have dim(G)− dim(G \ {v}) ≤ c? If so, can we let c = 2?

Again, it is easy to construct examples of G and v ∈ V (G) where dim(G) −
dim(G \ {v}) is equal to 0 or 1. However, if we let G be the graph K2 + C6, we
have by Theorem 3.9 that dim(G) = 4. Designating by v one of the vertices of G of
degree 7, we have that G \ {v} is isomorphic to W6. The wheel W6 is embeddable in
R2 with the usual representation of a regular hexagon of edge-length 1 along with a
vertex placed at its center, so here, dim(G)− dim(G \ {v}) = 2. We were unable to
construct an example where dim(G)− dim(G \ {v}) ≥ 3.

Question 4 For which n does there exist an arbitrarily large bipartite graph G which
is dimension-critical with dim(G) = n?

The question above is the easiest non-trivial case of a very deep question that we
will present at the end of this section, yet even it appears to be rather thorny. In [8],
Erdős, Harary, and Tutte demonstrate that for any graph G, dim(G) ≤ 2χ(G) where
χ(G) denotes the vertex-chromatic number of G. It follows that any bipartite graph
G has dim(G) ∈ {1, 2, 3, 4}. Note that dim(G) = 1 if and only if every component of
G is isomorphic to a path or an isolated vertex, so Question 4 is trivially answered
in the negative when n = 1. Equally trivial is the case n = 2 where Question 4 is
answered in the affirmative. Just take an arbitrarily large even cycle as the desired
G. For n = 3, we will show that it has an affirmative answer in the theorem below.

Theorem 4.1 There exist arbitrarily large bipartite graphs G which are dimension-
critical with dim(G) = 3.

Proof For an integer n ≥ 2, define the Möbius Ladder M2n to be the graph of order
2n constructed by beginning with two copies of the path Pn, say with the standard
vertex sets {a1, . . . , an} and {b1, . . . , bn}, respectively, and then placing the additional
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edges aibi for i ∈ {1, . . . , n} along with a1bn and anb1. As a reference, M10 is drawn
in Figure 3.

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

Figure 3

Note that M2n is bipartite when when n is odd. We will now show that
dim(M2n) > 2. Indeed, suppose to the contrary that M2n has been drawn as a
unit-distance graph in R2. In such a representation, for i = 1, 2, . . . , n − 1, the
vertices ai, ai+1, bi, bi+1 form the vertices of a rhombus. Since opposite sides of a
rhombus are parallel, the vector with initial point ai+1 and terminal point bi+1 must
be a translate of the vector with initial point ai and terminal point bi. Without loss of
generality, we may assume that in this supposed unit-distance drawing of M2n in R2,
we have a1 placed at the origin and b1 placed at (1, 0). Now consider circles Ca1 and
Cb1 drawn in Figure 4, each of radius 1 and centered at (0, 0) and (1, 0), respectively.
Since a1bn ∈ E(G), we must have bn placed on Ca1 , and similarly, an placed on Cb1 .
However, by the rationale we described above, the line segment connecting an and
bn must be horizontal with an to the left and bn to the right. This is a contradiction
as it would force an to be placed in the exact same position as b1 (as well as bn being
placed in the same position as a1).

Ca1 Cb1

(0, 0) (1, 0)

Figure 4

When n = 3, the graphM2n is isomorphic toK3,3 and it has already been seen that
dim(K3,3) = 4. For all higher n, it is the case that dim(M2n) = 3 and furthermore,
M2n is dimension-critical. However, we do not need this fact to establish proof of
the theorem. One need only observe that, should one start with M2n and then
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delete vertices (if necessary) until a dimension-critical subgraph has been found, for
each i ∈ {1, . . . , n}, the vertices ai and bi would not both be deleted. The theorem
immediately follows. 2

We have been unable to resolve Question 4 when n = 4. In fact, other than
K3,3, we have not been able to supply any concrete examples of dimension-critical
bipartite graphs G with dim(G) = 4. As it turns out, though, such graphs do exist,
which can be seen by observing two major results in extremal combinatorics. In
[4], Brown constructs a family of bipartite graphs of order n which do not have
K3,3 as a subgraph, and whose number of edges is asymptotically on the order of

n
5
3 . It is independently shown by Kaplan, Matoušek, Safernová, and Sharir in [9]

and by Zahl in [14] that an upper bound for the number of edges in a graph G of

order n and satisfying dim(G) = 3 is asymptotically on the order of n
3
2 . Thus for

sufficiently large n, a graph G of order n produced via Brown’s construction will
automatically satisfy dim(G) = 4. Unfortunately (at least, from our point of view),
Brown’s construction is entirely algebraic, and it seems quite difficult to determine
what a dimension-critical subgraph of this G would actually be.

The general formulation of Question 4 is given below.

Question 5 For which n, k does there exist an arbitrarily large dimension-critical
graph G with χ(G) = k and dim(G) = n?

A full resolution of this question is far beyond our present reach. For example,
a torrent of work has been produced in the past few years on coloring unit-distance
graphs in R2, much of it stemming from de Grey’s stunning construction [7] of a
5-chromatic unit-distance graph in the plane. Yet still, it is unknown whether there
even exists G satisfying dim(G) = 2 and χ(G) ∈ {6, 7}, let alone an arbitrarily large
dimension-critical G with those properties. However, if a successful approach could
resolve Question 4, perhaps it could be applied to the more modest Question 6.

Question 6 For which k does there exist an arbitrarily large dimension-critical graph
G with χ(G) = k and dim(G) = 2k?
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