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Abstract

Given the symmetric group G = Sym(n) and a multiplicity-free subgroup
H ≤ G, the orbitals of the action of G on G/H by left multiplication
induce a commutative association scheme. The irreducible constituents of
the permutation character of G acting on G/H are indexed by partitions
of n and if λ ⊢ n is the second largest partition in dominance ordering
among these, then the Young subgroup Sym(λ) admits two orbits in
its action on G/H, which are Sλ and its complement. In their 2016
monograph, Godsil and Meagher asked whether Sλ is a coclique of a
graph in the commutative association scheme arising from the action of
G on G/H. If such a graph exists, they also asked whether its smallest
eigenvalue is afforded by the λ-module.

In this paper, we initiate the study of this question by taking λ =
[n − 1, 1]. We show that the answer to this question is affirmative for
the pair of groups (G,H), where G = Sym(2k + 1) and H = Sym(2) ≀
Sym(k), or G = Sym(n) and H is one of Alt(k)× Sym(n− k), Alt(k)×
Alt(n − k), or (Alt(k)× Alt(n− k)) ∩ Alt(n). For the pair (G,H) =
(Sym(2k), Sym(k) ≀ Sym(2)), we also prove that the answer to this ques-
tion of Godsil and Meagher is negative.
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1 Introduction

Let X be a finite non-empty set and let R = {R0, R1, . . . , Rk} be a collection of
relations on X. We say that the pair (X,R) is an association scheme if the following
statements are satisfied:

(i) {(x, x) : x ∈ X} ∈ R,

(ii) R is a partition of X ×X,

(iii) for any i ∈ {0, 1, . . . , k}, the relation {(y, x) : (x, y) ∈ Ri} belongs to R,

(iv) for any (x, y) ∈ Rk, the number | {z ∈ X : (x, z) ∈ Ri and (z, y) ∈ Rj} | is a
number pkij depending only on i, j and k and not the choice of x and y.

The size of X is the order of the association scheme (X,R) and the number of
relations, k+1, is its rank. It is worth noting that a non-empty set X and a relation
R on X determine a digraph whose vertex set is X and for any x, y ∈ V (X), an arc
between x and y occurs if and only if (x, y) ∈ R. Consequently, each relation in an
association scheme determines a digraph on X and therefore an adjacency matrix.
An association scheme (X,R) is symmetric if the adjacency matrices corresponding
to the relations are symmetric. Moreover, (X,R) is commutative if the corresponding
adjacency matrices commute with each other. A survey on commutative association
schemes can be found in [16].

An example of well-known association schemes is the triangular association scheme
(X,R), where X = {A ⊂ {1, 2, . . . , n} : |A| = 2} and R = {R0, R1, R2}, with Ri =
{(A,B) ∈ X ×X : |A ∩ B| = 2− i}, for i ∈ {0, 1, 2}.

Association schemes were introduced in the 1950s by Bose and Shimamoto [4],
and the study of these objects has developed into a major area of study in algebraic
combinatorics since then. A generalization of these objects known as coherent con-
figurations were also introduced by Higman [13] in the 1970s to study permutation
groups. Another well-known example of an association scheme arises from the action
of a finite transitive group G ≤ Sym(Ω), where Ω is a finite non-empty set. If O is
the set of all orbitals of the action of G on Ω, i.e., its orbits in the induced action on
Ω× Ω, then (Ω,O) is an association scheme.

The association scheme (Ω,O) is called the orbital scheme of G. In addition, an
association scheme arising as an orbital scheme is called schurian. The (di)-graphs in
an orbital scheme are called orbital (di)-graphs. An example of schurian association
schemes is again the triangular association scheme which arises from the action of
Sym(n) on the 2-subsets of {1, 2, . . . , n}.

Next, we recall a result about the commutativity of schurian association schemes.
Let H be a subgroup of a group G. We will denote the trivial character of H by 1H

and the induced character of 1H on the group G by 1G
H . Let Irr(G) = {φ1, φ2, . . . , φt}

be the set of (complex) irreducible characters of G. We say that H is a multiplicity-
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free subgroup of G if the irreducible decomposition

1G
H =

t
∑

i=1

miφi,

is such that mi ∈ {0, 1}, for i ∈ {1, . . . , t}. If H ≤ G is multiplicity-free, then we
say that the pair (G,H) is a Gelfand pair. Gelfand pairs are well studied and we
refer the reader to [6, Chapter 4] for details on them. A consequence of (G,H) being
a Gelfand pair is that the Bose-Mesner algebra of the schurian association scheme
induced by the action of G on G/H coincides with its Hecke algebra (also known as
the double centralizer algebra). The commutativity of schurian association schemes
is determined by the point stabilizer of the corresponding transitive groups. Let
G ≤ Sym(Ω) be a transitive group and let H be the point stabilizer of G. The
association scheme which arises from the transitive group G is commutative if and
only if (G,H) is a Gelfand pair (see [11, Chapter 13] for details).

As we will study commutative schurian association schemes arising from transi-
tive actions of the symmetric group, we need to review some facts on the represen-
tation theory of these groups. Recall that the irreducible submodules of C Sym(n)
are indexed by partitions of the integer n. For any partition λ ⊢ n, the irreducible
C Sym(n)-module corresponding to λ is the Specht module Sλ. Therefore, the irre-
ducible characters of Sym(n) are also indexed by the partitions of the integer n. Given
a partition λ ⊢ n, we will denote the corresponding irreducible character by χλ. For
any partition λ = [λ1, λ2, . . . , λk] of n, the Young subgroup Sym(λ) is the subgroup
Sym(λ1) × Sym(λ2) × . . . × Sym(λk). For any two partitions λ = [λ1, λ2, . . . , λk]
and µ = [µ1, µ2, . . . , µt] of n, we say that λ dominates µ and write µ E λ, if
∑j

i=1 λi ≥
∑j

i=1 µi, for all j ∈ {1, 2, . . . , t}.

Now, we will describe the problem considered in this paper. Henceforth, we
assume that G = Sym(n) and H is a multiplicity-free subgroup of G. Let

Λ(n,H) :=
{

λ ⊢ n : 〈1G
H , χ

λ〉 = 1
}

.

The eigenvalues of the orbital digraphs corresponding to (G,H) are indexed by the
partitions in Λ(n,H). In particular, an eigenspace of any orbital digraph is a direct
sum of certain irreducible C Sym(n)-modules, whose corresponding partitions appear
in Λ(n,H). For any λ ∈ Λ(n,H), we refer to the subspace given by the Specht
module Sλ as the λ-module. The partition [n] is always an element of Λ(n,H) due
to the fact that G acts transitively on G/H by left multiplication. Let λ 6= [n] be
the partition which is the second largest in dominance ordering in Λ(n,H). By [11,
Theorem 13.9.1], the Young subgroup Sym(λ) admits two orbits in its action on
G/H. In [11, Problem 16.13.1], Godsil and Meagher asked the following question.

Question 1.1 (Godsil-Meagher). Let G = Sym(n) and H be a multiplicity-free
subgroup of G, and define Ω = G/H. Assume that λ ⊢ n is the second largest in
dominance ordering in Λ(n,H) and {S,Ω \S} is the orbit partition of Sym(λ) on Ω.

(a) Is there an orbital graph of G acting on G/H in which S is a coclique?
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(b) Is the eigenvalue corresponding to the λ-module the least eigenvalue for such
graphs?

1.1 Motivation

Our motivation to study this question is closely related to a famous extremal set
theory theorem. The Erdős-Ko-Rado (EKR) theorem is one of the most important
results in extremal combinatorics. We say that a collection of k-subsets of [n] :=
{1, 2, . . . , n} is a t-intersecting family if |A ∩ B| ≥ t for all A,B ∈ F . The EKR
theorem is stated as follows.

Theorem 1.2 (EKR [8]). For any two positive integers k ≥ t, there exists n0(k, t)
such that if n ≥ n0(k, t) and F is a t-intersecting family of k-subsets of [n] :=
{1, 2, . . . , n}, then |F| ≤

(

n−t

k−t

)

. In addition, equality holds if and only if there exists
S ⊂ [n] of size t such that

F = {A ⊂ [n] : |A| = k and S ⊂ A}.

For the case where t = 1, Erdős, Ko and Rado also proved that n0(k, 1) = 2k+1.

The EKR theorem has been extensively studied and extended to other objects
such as vector spaces [14] and permutations [7]. There are various proofs of the
EKR theorem which range from purely combinatorial [8], to probabilistic [14] and
algebraic [19].

We now exhibit the relations between a certain association scheme and the EKR
theorem. Let n ≥ 2k be two positive integers and define

(

[n]
k

)

to be the collection of
all k-subsets of [n]. For any 0 ≤ i ≤ k, define

Oi =

{

(A,B) ∈

(

[n]

k

)

×

(

[n]

k

)

: |A ∩B| = k − i

}

.

The Johnson scheme J (n, k) is the association scheme given by

((

[n]

k

)

, {O0,O1, . . . ,Ok}

)

.

The Johnson scheme contains the Johnson graph J(n, k) and the Kneser graph
K(n, k), which are the orbital graphs of O1 and Ok, respectively. The Kneser graph
is important in the study of the EKR theorem since it encodes the 1-intersecting
sets of k-subsets of [n]. Given a coclique (or independent set) S of K(n, k), it is
not hard to check that S has the property that A ∩ B 6= ∅ for all A,B ∈ S, i.e.,
it is 1-intersecting. Conversely, any collection of k-subsets of [n] with the property
that any two elements intersect is a coclique of K(n, k). Hence, a collection F of
k-subsets of [n] is a maximum 1-intersecting family if and only if it is a maximum
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coclique in the Kneser graph K(n, k). Using the Johnson scheme, Wilson [19] also
gave an algebraic proof of the EKR theorem and described precisely the smallest
bound n0(k, t) in Theorem 1.2 for which the results of the EKR theorem hold.

One important aspect of the Johnson scheme is that it is schurian, that is, it
arises from the orbital scheme of a transitive group. The corresponding group action
for the case of the Johnson scheme is Sym(n) acting on the k-subsets of [n], or
equivalently, on the cosets of Sym(k)× Sym(n− k). Another important property of
Sym(k)×Sym(n−k) is that it is a multiplicity-free subgroup of Sym(n). Hence, the
Johnson scheme J (n, k) is a commutative association scheme. The second largest
partition in dominance ordering in the corresponding permutation character is [n−
1, 1]. Further, one of the two orbits of the Young subgroup Sym([n − 1, 1]) is a
maximum coclique in the Kneser graphK(n, k) and its smallest eigenvalue is afforded
by the [n − 1, 1]-module. In other words, Question 1.1 is true for the Gelfand pair
(G,H) = (Sym(n), Sym(k)× Sym(n− k)).

Now, let (G = Sym(n), H) be a Gelfand pair for which λ ∈ Λ(n,H) is the second
largest in dominance ordering. If Question 1.1 is true for (G,H), then we obtain
an EKR type theorem on G/H or on the corresponding combinatorial objects as
follows. Since Question 1.1 (a) is true, there exists an orbital graph in which an
orbit of Sym(λ) acting on the cosets G/H is a coclique. Let K(G,H) be the union
of all orbital graphs with this property. Let us consider the following terminologies.

Definition 1.3.

(1) Two cosets xH and yH of H are (G,H)-intersecting if they are not adjacent in
K(G,H).

(2) A collection F of cosets in G/H is (G,H)-intersecting if any pair of its elements
are (G,H)-intersecting.

(3) The orbit of a conjugate of Sym(λ) on G/H which is a (G,H)-intersecting family
is called a (G,H)-canonical intersecting family.

As Question 1.1 (b) is also true, one can prove that any maximum (G,H)-
intersecting family (i.e., a maximum coclique in K(G,H)) has size equal to the size
of the (G,H)-intersecting orbit of Sym(λ). Using these terminologies, one can pose
the following question.

Problem 1.4. Assume that (G,H) is a Gelfand pair for which Question 1.1 is true.
Are the (G,H)-canonical intersecting families the only (G,H)-intersecting families
of maximum size?

If the answer to Problem 1.4 is true, then we obtain a full EKR theorem for the
cosets G/H in the sense that the (G,H)-intersecting families have size at most the
size of a (G,H)-canonical intersecting family, and those attaining this bound must
be a (G,H)-canonical intersecting family.
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Line Group n Index Rank

1 Sym(k)× Sym(n− k) (2k ≤ n) n
(

n

k

)

k + 1

2 Alt(k)× Sym(n− k) (2k ≤ n, k 6= 2) n 2
(

n

k

)

k + 3

3 Sym(k)×Alt(n− k) (2k ≤ n, k 6= n− 2) n 2
(

n

k

)

k + 3

4 Alt(k)×Alt(n− k) (k ≥ 3, 2k ≤ n− 2) n 4
(

n

k

)

2k + 6

5 (Sym(k)× Sym(n− k)) ∩Alt(n) (2k ≤ n, (n, k) 6= (4, 2)) n 2
(

n

k

)

2k + 2

6 (Sym(2) ≀ Sym(k))× Sym(1) 2k + 1

Table 1: Multiplicity-free intransitive groups

1.2 Main results

For the case where G = Sym(2k) and H = Sym(2) ≀ Sym(k), the association scheme
corresponding to the Gelfand pair (G,H) is the perfect matching scheme of the
complete graph K2k (see [11] for details on this). An EKR type theorem on perfect
matchings of the complete graph K2n was proved by Godsil and Meagher in [10],
and also Lindzey in [15]. The main technique used in the proof of this EKR type
theorem can be extended to prove that the answer to Question 1.1 for the Gelfand
pair (Sym(2k), Sym(2) ≀ Sym(k)) is affirmative.

The answer to Question 1.1 is however not always affirmative. The Gelfand
pair (G,H) = (Sym(8), Sym(4) ≀ Sym(2)) induces a commutative rank 3 association
scheme. The character table of this scheme is





1 16 18 1
1 −4 3 14
1 2 −3 20



 .

Using the Ratio Bound (see Theorem 2.5), it is not hard to see that a coclique in
either of the two non-trivial orbital graphs is of size at most 7. Moreover, since
Λ(8, H) = {[8], [6, 2], [4, 4]}, the second largest in dominance ordering is [6, 2] which
induces two orbits of size 15 and 20. Consequently, we have a negative answer to
Question 1.1. Our first result, which is a generalization of this example, is stated as
follows.

Theorem 1.5. The answer to Question 1.1 is negative for the multiplicity-free sub-
group Sym(k) ≀ Sym(2) of Sym(2k).

In this paper, we initiate the study of Question 1.1 by considering the Gelfand
pair (Sym(n), H) for which the second largest partition in dominance ordering is
[n − 1, 1]. The multiplicity-free subgroups of Sym(n) were classified in [9]. We will
focus on the families of multiplicity-free subgroups of Sym(n) given in Table 1 in this
work.

We state our next main result.

Theorem 1.6. The answer to Question 1.1 is affirmative for the Gelfand pairs
(Sym(n), H), where H is the group in lines 2-6 of Table 1.
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1.3 Structure of the paper

This paper is organized as follows. In Sections 2 and 3, we give some background
results on permutation groups, spectral graph theory techniques and association
schemes. In Section 4, we give a proof of Theorem 1.5. In Section 5, we review the
proof that Question 1.1 is true for (Sym(n), Sym(k) × Sym(n − k)). The proof of
Theorem 1.6 is spread in Sections 6, 7, 8, and 9. We conclude this paper by stating
some interesting questions and problems in Section 10.

2 Background results

2.1 Permutation groups

Let G be a group and H ≤ G be a subgroup. The group G acts on G/H through
g(xH) = gxH, for any g ∈ G and xH ∈ G/H. It is not hard to see that this action is
transitive since for any xH, yH ∈ G/H, we have (yx−1)(xH) = yH. We will denote
the stabilizer of xH in this action of G on G/H by Stab(G, xH). It is clear that
Stab(G,H) = H. It is well known that any finite transitive group G ≤ Sym(Ω)
is permutation equivalent to G in its action on G/H, where H is the stabilizer of
any ω ∈ Ω. This correspondence enables us to switch between the cosets or a set of
specific combinatorial objects, whichever is easier. For any ω ∈ Ω, we let Stab(G,ω)
be the stabilizer of ω in G. Since transitive permutation groups are faithful, we will
always assume that H is a core-free subgroup of G.

The transitive group G acting on G/H induces an action on G/H × G/H by
componentwise multiplication. The orbits of this action are called the orbitals of G
and the rank of G is the number of orbitals. We note that if (xH, yH) belongs to an
orbital O, then

O = G.(xH, yH) = {(gxH, gyH) : g ∈ G} .

By transitivity of G, the set {(xH, xH) : xH ∈ G/H} is always an orbital of G.
Other orbitals of G must partition the set {(xH, yH) : xH 6= yH ∈ G/H}. If O is
an orbital of G such that O = {(yH, xH) : (xH, yH) ∈ O}, then we say that O is
self-paired, otherwise, it is called non-self-paired.

The next lemma gives a well-known correspondence between orbitals and suborbits
(i.e., orbits of a point stabilizer). Its proof can be found in any standard textbook
on permutation groups.

Lemma 2.1. The map which takes any orbital O to the suborbit {xH : (H, xH) ∈ O}
is a bijection.

For any g ∈ G, define

fixGH(g) = |{xH ∈ G/H : g (xH) = xH}| . (2.1)
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The permutation character of the action of G on G/H is the character fixGH : G→
C which takes any g ∈ G to fixGH(g).

The next lemma gives the number of orbitals.

Lemma 2.2. The number of orbitals of G acting on G/H is

1

|G|

∑

g∈G

fixGH(g)
2.

We will denote the set of complex irreducible characters of G by Irr(G). Recall
that given φ, ψ ∈ Irr(G), a natural inner product between φ and ψ is given by

〈φ, ψ〉 =
1

|G|

∑

g∈G

φ(g)ψ(g).

It is not hard to see that, in fact, fixGH = 1G
H . Moreover, the trivial character 1G

of G is always a constituent of 1G
H and its multiplicity is equal to 1 since

〈

1G
H ,1G

〉

=
1

|G|

∑

g∈G

fixGH(g) = 1.

Using Lemma 2.2, it is easy to see that the rank of the transitive group G (or the
corresponding association scheme) is

〈

1G
H ,1

G
H

〉

.

2.2 Equitable partitions

Let X = (V,E) be a graph. A partition π = {V1, V2, . . . , Vk} of the vertex set of X is
called equitable if for any 1 ≤ i, j ≤ k there exists a number aij such that the number
of neighbours in Vj of any vertex of Vi is equal to aij. If π is an equitable partition of
X, then the quotient graph X/π is the directed multigraph with vertex set equal to
the elements of π and for any i, j ∈ {1, 2, . . . , k}, there are exactly aij arcs from Vi
to Vj. The quotient matrix of an equitable partition π is the k × k matrix A(X/π)
indexed in its rows and columns by {1, 2, . . . , k} and whose ij-entry is aij.

Equitable partitions are important in spectral graph theory due to the following
result.

Theorem 2.3. [11, Lemma 2.2.2] If π is an equitable partition of X, then the charac-
teristic polynomial of A(X/π) divides the characteristic polynomial of the adjacency
matrix of X. In particular, an eigenvalue of A(X/π) is an eigenvalue of X.

The above theorem enables one to determine certain eigenvalues of the graph X
through X/π. Given an eigenvalue of A(X/π) and a corresponding eigenvector v, one
can lift v into an eigenvector of X. For any equitable partition π = {V1, V2, . . . , Vk},
define the |V (X)| × k matrix Pπ whose rows and columns are respectively indexed
by vertices of X and the partition π, and whose (x, Vj)-entry is equal to 1 if x ∈ Vj
and 0 otherwise. The matrix Pπ is called the characteristic matrix of π. The next
lemma shows the importance of the matrix Pπ.
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Lemma 2.4. If v is an eigenvector of A(X/π) corresponding to the eigenvalue θ,
then Pπv is an eigenvector of X with the same eigenvalue.

The proof of this lemma is given in [11, Lemma 2.2.1].

2.3 Hoffman’s Ratio Bound

We recall the well-known Ratio Bound which is due to Hoffman. Let X = (V,E)
be a k-regular graph. It is well known that k is an eigenvalue of X. The vector of
all-ones, denoted by 1, is an eigenvector of X corresponding to the eigenvalue k and
it is an easy exercise to prove that the multiplicity of k is the number of components
of X. For any S ⊂ V (X), the characteristic vector of S is the vector vS ∈ R

|V (X)|

which is indexed by vertices of X and such that the x-entry of vS is equal to 1 if
x ∈ S, and 0 otherwise.

We state the Ratio Bound in the next theorem.

Theorem 2.5 (Ratio Bound). If X = (V,E) is a k-regular graph with least eigen-
value τ , then the independence number of X satisfies

α(X) ≤
|V (X)|

1− k
τ

.

A set S is a coclique for which equality holds if and only if vS − |S|
|V (X)|

1 is an eigen-
vector of the eigenvalue τ .

A proof and the history about the Ratio Bound can be found in [12].

2.4 Graph products

In this subsection, we will recall some important graph products that are used later
in this work.

Definition 2.6. Let X = (V (X), E(X)) and Y = (V (Y ), E(Y )) be two graphs.
The direct product X × Y of the graphs X and Y is the graph whose vertex set is
V (X)× V (Y ) and

(x, y) ∼X×Y (u, v) ⇔ x ∼X u and y ∼Y v.

Definition 2.7. Let X = (V (X), E(X)) and Y = (V (Y ), E(Y )) be two graphs.
The strong product X ⊠ Y of the graphs X and Y is the graph whose vertex set is
V (X)× V (Y ) and

(x, y) ∼X⊠Y (u, v) ⇔











x = u and y ∼Y v

y = v and x ∼X u

x ∼X u and y ∼Y v.
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For any n ≥ 2, let In be the n × n identity matrix and Jn be the n × n matrix
whose entries consist of 1. The next proposition gives the adjacency matrices of the
graph products defined above.

Proposition 2.8. Let X and Y be two graphs with adjacency matrices A and B,
respectively.

(a) The adjacency matrix of X×Y is A⊗B. In particular, the eigenvalues of X×Y
are of the form ab, where a and b are eigenvalues of A and B, respectively.

(b) The adjacency matrix of X ⊠ Y is (A+ I|V (X)|)⊗ (B + I|V (Y )|)− I|V (X)||V (Y )|. In
particular, the eigenvalues of X ⊠ Y are of the form (1 + a)(1 + b)− 1.

Let us now introduce a new graph that is crucial to the main results of this paper.

Definition 2.9. Let X = (V (X), E(X)) be a graph. The graph product X ⊲⊳ K2

is defined to be the graph obtained by taking two disjoint copies of X, and a vertex
from one copy is adjacent to a vertex from the other copy if they are adjacent in
X ×K2.

Note that the graph X ⊲⊳ K2 is exactly the graph X ⊠K2 in which the perfect
matching {(x, 1) ∼ (x, 0) : x ∈ V (X)} is removed.

Proposition 2.10. Let X be a graph with adjacency matrix A. The adjacency matrix
of X ⊲⊳ K2 is J2 ⊗ A.

Proof. Let A be the adjacency matrix of X = (V,E) and assume that |V | = n. The
adjacency matrix of X ⊲⊳ K2 can be viewed as a block matrix, whose blocks are
indexed by V . Hence, the matrix is

[

A A

A A

]

=

[

1 1

1 1

]

⊗ A.

3 The association scheme arising from a Gelfand pair

(Sym(n), H)

3.1 Eigenvalues

Let G be a group and H ≤ G be a multiplicity-free subgroup. In this subsection, we
recall the formula giving the eigenvalues of each digraph in the association scheme
arising from the Gelfand pair (G,H). Assume that k = 〈1G

H ,1
G
H〉 and let O =

{O0, O1, . . . , Ok−1} be the set of all orbitals of G acting on G/H. For any 0 ≤ i ≤
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k− 1, let Xi be the orbital digraph determined by Oi and let A(Xi) be its adjacency
matrix. Define

Λ(G,H) :=
{

φ ∈ Irr(G) :
〈

1G
H , φ

〉

= 1
}

.

For any 0 ≤ i ≤ k − 1, let

ki := | {yH ∈ G/H : (H, yH) ∈ Oi} |. (3.1)

The next theorem gives the eigenvalues of Xi for 0 ≤ i ≤ k − 1. Its proof is given in
[11, Lemma 13.8.3] or [1, Theorem 11.10].

Theorem 3.1. The eigenvalues of Xi are uniquely determined by the irreducible
characters in Λ(G,H). For any φ ∈ Λ(G,H), the eigenvalue of Xi afforded by φ is
given by

ξφ(Xi) :=
ki
|H|

∑

h∈H

φ(xℓh),

where xℓ ∈ G such that (H, xℓH) ∈ Oi.

The formula for the eigenvalues given in the previous theorem is usually hard to
manipulate since there is no way to control the elements of the coset xℓH, which in
turn makes the corresponding character value difficult to determine. It is sometimes
possible to compute certain eigenvalues via special techniques. In the next subsection,
we will compute certain eigenvalues using equitable partitions for the case when
G = Sym(n).

Let G = Sym(n). It is well known that the representations of G are indexed
by the partitions of the integer n. For any λ ⊢ n, the corresponding irreducible
CG-module is the Specht module Sλ and we denote its irreducible character by χλ.
If (G,H) is a Gelfand pair, then the eigenvalues of a graph in the corresponding
orbital scheme are indexed by the partitions in Λ(n,H). For any λ ∈ Λ(n,H), we
let ξλ be the eigenvalue afforded by χλ. In addition, we will refer to the irreducible
CG-module Sλ as the λ-module.

An important property of the symmetric group is that all its irreducible characters
are realized over Z. Therefore, the eigenvalues of an orbital graph arising from a
Gelfand pair (Sym(n), H) are rational. As an orbital scheme arising from the action
of G on the cosets G/H is symmetric if and only if (G,H) is a Gelfand pair and each
irreducible constituent (of the permutation character) is real-valued, we conclude the
following proposition.

Proposition 3.2. If (Sym(n), H) is a Gelfand pair, then every orbital digraph from
the orbital scheme of (Sym(n), H) is an undirected graph.

3.2 Equitable partitions

We assume henceforth that G = Sym(n) and let H ≤ G such that (G,H) is a
Gelfand pair. Let k be the rank of the group G acting on G/H. Recall that O =
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{O0, O1, . . . , Ok−1} is the set of all orbitals of G acting on G/H and for any 0 ≤ i ≤
k − 1, the graph Xi is the orbital graph determined by Oi and the matrix A(Xi) is
its adjacency matrix. Recall also that ki is the degree of the orbital graph Xi, for
0 ≤ i ≤ k − 1 (see (3.1)). Let λ ⊢ n be the partition which is the second largest in
dominance ordering in Λ(n,H). Let K = Sym(λ). We state the following theorem
whose proof is given in [11, Theorem 13.9.1].

Lemma 3.3. The action of K on G/H by left multiplication admits exactly two
orbits.

Using these orbits, we can sometimes easily compute certain eigenvalues of the
graphs Xi defined in the previous section. Let Ω = G/H. First, we note that the
set of orbits π = {S,Ω \ S} forms a partition of Ω which is equitable, for all orbital
graphs in the orbital scheme. The quotient matrix of each orbital graph in the orbital
scheme is given in the next lemma.

Lemma 3.4. For any 0 ≤ i ≤ k− 1, there exists a number 0 ≤ ai ≤ ki− 1 such that
the quotient matrix corresponding to Xi/π is

A(Xi/π) =

[

ai ki − ai
(ki−ai)|S|
|Ω|−|S|

ki|Ω|+ai|S|−2ki|S|
|Ω|−|S|

]

.

Proof. Since π is equitable with two parts, let ai be the number of vertices in S
adjacent to a given vertex in S. If the rows and columns of A(Xi/π) are arranged with
respect to {S,Ω \ S}, then it is clear that A(Xi/π)11 = ai and A(Xi/π)12 = ki − ai,
by regularity of Xi. The entry A(Xi/π)21 can be computed using double counting.
Consider the set

V = {(xH, yH) : xH ∈ Ω \ S and yH ∈ S}.

On the one hand, given xH ∈ Ω \ S we have

A(Xi/π)21 = |{(xH, yH) : yH ∈ S}| .

Moreover,

|V | =

∣

∣

∣

∣

∣

∣

⋃

xH∈Ω\S

{(xH, yH) : yH ∈ S}

∣

∣

∣

∣

∣

∣

= A(Xi/π)12|Ω \ S| = A(Xi/π)21 (|Ω| − |S|) .

On the other hand, we have

|V | =

∣

∣

∣

∣

∣

⋃

yH∈S

{(xH, yH) : xH ∈ Ω \ S}

∣

∣

∣

∣

∣

= |S|A(Xi/π)12 = |S|(ki − ai).

Therefore, we have A(Xi/π)21 = |S|(ki−ai)
|Ω|−|S|

. The entry A(Xi/π)22 can be easily de-

duced since it is equal to ki − A(Xi/π)21.
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By Theorem 2.2, the eigenvalues of A(Xi/π) are also eigenvalues of the graph Xi,
for any 0 ≤ i ≤ k − 1. The eigenvalues of A(Xi/π) are

ki and ai −
(ki − ai)|S|

|Ω| − |S|
.

We now present some consequences of Lemma 3.4 that are crucial to the main result
of this paper.

Lemma 3.5. Let Ω = G/H and π = {S,Ω \ S} be the set of orbits of K = Sym(λ).
For 0 ≤ i ≤ k − 1, the set S is a coclique of Xi if and only if ai = 0.

The proof of this lemma is straightforward, thus it is omitted. The next lemma
is an easy exercise from [11, Exercise 13.7].

Lemma 3.6. Let λ ⊢ n and let X be an orbital graph of the transitive action of
Sym(n) on Ω. If π is the orbits partition of Sym(λ) on Ω, then an eigenvalue η of
A(X/π) belongs to a certain µ-module, where λ E µ.

The next corollary gives more details on the relation between cocliques from
orbit partitions and the λ-module, whenever λ = [n − 1, 1] is the second largest in
dominance ordering in Λ(n,H). Its proof follows immediately from the above lemma.

Corollary 3.7. Let G = Sym(n) and (G,H) be a Gelfand pair such that [n − 1, 1]
is the second largest in dominance ordering in Λ(n,H). Let Ω = G/H and π =
{S,Ω \ S} be the set of orbits of K = Sym([n− 1, 1]). For any 0 ≤ i ≤ k − 1, if the

set S is a coclique of Xi, then − ki|S|
|Ω|−|S|

is the eigenvalue afforded by the [n − 1, 1]-
module.

4 Proof of Theorem 1.5

Let G = Sym(2k) and H = Sym(k) ≀ Sym(2). The rank of the group G acting on
G/H is ⌊k

2
⌋+ 1 since by [9], we have

1G
H =

⌊ k

2
⌋

∑

i=0

χ[2k−2i,2i].

Therefore, the second largest in dominance ordering in Λ(n,H) is [2k − 2, 2]. We
note that the combinatorial objects that correspond to the cosets of H in G are the
uniform partitions of [2k] into 2 blocks of size k. That is, the collections

Uk := {{B1, B2} : B1 ∪ B2 = [2k], B1 ∩ B2 = ∅, |B1| = |B2| = k} .

The action of the symmetric group Sym(2k) on [2k] induces an action on Uk. It
is not hard to see that H = Sym(k) ≀ Sym(2) is the stabilizer of the partition
{{1, 2, . . . , k}, {k + 1, k + 2, . . . , 2k}} ∈ Uk. Moreover, this action is permutation
equivalent to that of G on G/H since there is a unique conjugacy class of subgroups
isomorphic to H..

For any A ∈
(

[2k]
k

)

, we let A be the complement of A in [2k].
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Lemma 4.1. The orbitals of G = Sym(2k) in its action on Uk are of the form

Oi = {(B,B′) ∈ Uk × Uk : there exists B ∈ B, B′ ∈ B′ such that |B ∩ B′| = k − i} ,

for 0 ≤ i ≤ ⌊k
2
⌋.

Proof. It is worth noting that if two partitions B = {B,B} and B′ = {B′, B′} of Uk

are such that |B ∩ B′| = k − i, then we must have |B ∩ B′| = i.

For any 0 ≤ i ≤ k, let Xi = {1, 2, . . . , k − i, k + 1, k + 2, . . . , k + i}. Note that
X0 = {1, 2, . . . , k} and Xk = {k + 1, k + 2, . . . , 2k}. Let ℓ = ⌊k

2
⌋ and for 0 ≤ i ≤ ℓ,

define Bi := {Xi, X i}. We claim that {Bi : 0 ≤ i ≤ ℓ} consists of a complete list of
representatives from distinct suborbits of Stab(Sym(2k),B0) = Sym(k) ≀ Sym(2). It
is clear that X0 is in a single orbit of Sym(k) ≀Sym(2). Assume that there exists i < j
in the set {1, . . . , ℓ} such that Bi and Bj are in the same orbit of Sym(k) ≀Sym(2). If
σ ∈ Sym(k) ≀ Sym(2) such that σ(Bi) = Bj, then either σ(Xi) = Xj or σ(Xi) = Xj.

Case 1: Assume that σ(Xi) = Xj . If σ(X0) = X0, then σ must map the elements
Xi∩X0 = {1, 2, . . . , k−i} to Xj∩X0 = {1, 2, . . . , k−j}. By the Pigeonhole Principle,
this cannot happen since i < j. Similarly, if σ(X0) = X0 = Xk, then σ has to map
{k + 1, k + 2, . . . , k + i} to {1, 2, . . . , k − j}. This is only possible if k − j = i. As i
and j are distinct and at most ℓ ≤ k

2
, we conclude this case also cannot happen.

Case 2: Assume that σ(Xi) = Xj. Note that Xj = {k−j+1, . . . , k, k+j+1, . . . , 2k}.
By a careful analysis of the image of X0 by σ, we also conclude that this case is not
possible.

Consequently, the set {Bi : 0 ≤ i ≤ ℓ} consists of elements in different orbits of
Sym(k) ≀ Sym(2). Since the cardinality of this set and the rank of G acting on Uk

coincide, we conclude that the orbitals of G on Uk are those listed in the statement
of the lemma. We obtain the rest by making Sym(2k) act on every representative of
the orbitals.

Using this lemma, we can show that the orbits of K = Sym([2k − 2, 2]) are not
cocliques of any orbital graph in this association scheme. The orbits of K are S and
Uk \ S, where

S = {{B,B} : 2k − 1, 2k ∈ B} .

In the next theorem, we claim that neither of S nor Uk \ S is a coclique of a graph
in the orbital scheme corresponding to Sym(2k) acting on Uk.

Theorem 4.2. The collection S is not a coclique of the orbital graph corresponding
to Oi, for any 0 ≤ i ≤ ⌊k

2
⌋.

Proof. Let 1 ≤ i < ℓ = ⌊k
2
⌋. In the orbital graph of Oi, by definition, there is an

edge between {B1, B2} and {B′
1, B

′
2} if |B1 ∩ B

′
1| ∈ {i, k − i}. Consider the sets

A = {1, 2, . . . , k − i− 2, k + 1, k + 2, . . . , k + i, 2k − 1, 2k}

B = {1, 2, . . . , k − i− 2, k + i+ 1, k + i+ 2, . . . , k + 2i, 2k − 1, 2k}.
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Since |A ∩ B| = k − i, the partitions {A,A} and {B,B} are adjacent in the orbital
graph of Oi. As these partitions are in S, we conclude that S is not a coclique of
the orbital graph of Oi, for any 1 ≤ i < ℓ.

For the orbital graph Oℓ, the sets

A =
{

k + 1, k + 2, . . . , k + ⌊k
2
⌋, k + ⌊k

2
⌋+ 1, . . . , 2k − 1, 2k

}

∈ S, and

B =
{

1, 2, . . . , ⌊k
2
⌋, k + ⌊k

2
⌋+ 1, . . . , 2k − 1, 2k

}

∈ S

are such that |A∩B| = k− ℓ = ℓ. Therefore, {A,A} and {B,B} are adjacent in Oℓ.
This completes the proof.

Remark 4.3. The orbital graph of O1 is called the folded Johnson graph J(2k, k)
(see [5, Section 9.1] for details). This graph encodes certain combinatorial objects as
its cocliques. Two partitions B and B′ of Uk are called partially 2-intersecting if there
exists B ∈ B and B′ ∈ B′ such that |B ∩B′| ≥ 2. It is straightforward to verify that
a maximum partially 2-intersecting family of Uk is a coclique in the orbital graph
of O1 (i.e., the folded Johnson graph J(2k, k)), and vice versa. As far as we know,
there is nothing known about the cocliques of this graph.

5 The orbital scheme from line 1 of Table 1

In this section, we will consider the schurian association scheme obtained from the
action of Sym(n) on the cosets of Sym(k) × Sym(n − k). We will exhibit an action
on certain combinatorial objects that is permutation equivalent to the latter. To
this end, we will recall a way of constructing the k-subsets of [n] with an equivalence
relation.

Let n be a positive integer and 2 ≤ k ≤ n. Consider the set

In,k := {f : [k] → [n] : f is injective} .

An element of In,k can be represented as a sequence of the form (a1, a2, . . . , ak).
Define the relation R on In,k such that (a1, a2, . . . , ak)R(b1, b2, . . . , bk) if there exists
σ ∈ Sym(k) such that

ai = bσ(i), for i ∈ {1, 2, . . . , k}.

It is not hard to prove that the relation R is in fact an equivalence relation. The
equivalence classes of R are of the form

(a1, a2, . . . , ak) =
{

(aσ(1), aσ(2), . . . , aσ(k)) ∈ In,k : σ ∈ Sym(k)
}

.

These equivalence classes are naturally identified (or in bijection) with the k-subsets
of [n]. We will denote the equivalence class (a1, a2, . . . , ak) by {a1, a2, . . . , ak} from
now on. We will also define

(

[n]
k

)

to be the set of all k-subsets of [n].

Given a k-subset A = {a1, a2, . . . , ak} of [n], it is clear that the setwise stabilizer
of A in the symmetric group Sym(n) is equal to Sym(A)× Sym([n] \A) ∼= Sym(k)×
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Sym(n − k). In fact, it is not hard to see that the action of Sym(n) on the cosets
of Sym(k) × Sym(n − k) is permutation equivalent to the action of Sym(n) on the
k-subsets of [n].

The association scheme which arises from the action of Sym(n) on the k-subsets
of [n] is well known and well studied. The orbitals of this action are

Oi =
{

(A,B) : A,B ∈
(

[n]
k

)

such that |A ∩ B| = k − i
}

,

for 0 ≤ i ≤ k. The corresponding association scheme is the Johnson scheme J (n, k).
The permutation character corresponding to the action of Sym(n) on the k-subsets
is given by

1
Sym(n)
Sym(k)×Sym(n−k) =

k
∑

i=0

χ[n−i,i].

Hence, the second largest partition of Λ(n, Sym(k)×Sym(n−k)) is equal to [n−1, 1].
The orbits of the Young subgroup Sym([n−1, 1]) on the k-subsets are S and

(

[n]
k

)

\S,
where

S =

{

A ∈

(

[n]

k

)

: n ∈ A

}

. (5.1)

The graph obtained from the orbital Ok has the property that two k-subsets
of [n], A and B, are adjacent if A ∩ B = ∅. This graph is known as the Kneser
graph K(n, k). By the well-known Erdős-Ko-Rado theorem, the set S in (5.1) is a
maximum coclique of K(n, k). It is also well known that the eigenvalue afforded by
the [n− 1, 1]-module is the least eigenvalue of K(n, k), which is equal to

−

(

n−k

k

)(

n−1
k−1

)

(

n−1
k

) .

6 The orbital scheme from line 2 and line 3 of Table 1

In this section, we prove that the answer to Question 1.1 is affirmative for the
Gelfand pair (G,H), where G = Sym(n) and H is a subgroup belonging to the
set {Alt(k)× Sym(n− k), Sym(k)× Alt(n− k)}. We will only give the proof for the
case H = Alt(k)× Sym(n− k) since the other case is similar.

6.1 The quasi k-subsets of [n]

Let n be a positive integer and k ≤ n. Recall that In,k is the set of all injective maps
from [k] to [n]. Define the relation on In,k by

(a1, a2, . . . , ak)R(b1, b2, . . . , bk) ⇔ ∃σ ∈ Alt(k) such that bi = aσ(i),
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for all i ∈ {1, 2, . . . , k}. It is clear that R is an equivalence relation on In,k. For any
(a1, a2, . . . , ak) ∈ In,k, define the corresponding equivalence class of R to be

(a1, a2, . . . , ak) :=
{(

aσ(1), aσ(2), . . . , aσ(k)
)

: σ ∈ Alt(k)
}

.

Next, let us compute the number of equivalence classes of R. We claim that each
k-subset {a1, a2, . . . , ak} determines two equivalence classes of R. To see this, let T
be the set of all injective maps from [k] to A = {a1, a2, . . . , ak} (i.e., bijections). The
group Sym(k) acts naturally on T by permuting the entries. By the orbit-counting
lemma on the action of Alt(k) on T , we know that

2

k!

∑

σ∈Alt(k)

∣

∣

{

(b1, b2, . . . , bk) ∈ T : bσ(i) = bi, ∀i ∈ {1, 2, . . . , k}
}∣

∣ =
2

k!
k! = 2.

In other words, the alternating group Alt(k) admits two orbits on T . The two
equivalence classes of R determined by A = {a1, a2, . . . , ak} with a1 < a2 < . . . < ak
are

{a1, a2, a3 . . . , ak}
+ := (a1, a2, a3 . . . , ak)

and

{a1, a2, a3 . . . , ak}
− := (a2, a1, a3, . . . , ak).

We will call the collection of all equivalence classes of R the quasi k-subset of [n] and

we will denote it by
(

[n]
k

)±
. The classes {a1, a2, a3 . . . , ak}

+ and {a1, a2, a3 . . . , ak}
−

are called the even and odd quasi k-subsets of {a1, a2, a3 . . . , ak}, respectively. Note
that the number of quasi k-subsets of [n] is 2

(

n

k

)

.

6.2 Action of the Sym(n) on quasi k-subsets

Let n ≥ 3. Given a k-tuple A = (a1, a2, . . . , ak) ∈ In,k and σ ∈ Sym(n), the
permutation σ acts naturally on A via σ(A) := (σ(a1), σ(a2), . . . , σ(ak)). Assume
that the elements of A are ordered in an increasing way, i.e., a1 < a2 < . . . < ak.

• Assume σ(ai1) < σ(ai2) < . . . < σ(aik). There is of course a unique permu-
tation ρ = ρ(σ,A) of {1, 2, . . . , k} that reorders (σ(a1), σ(a2), . . . , σ(ak)) in an
increasing order by permuting the indices. More precisely, ρ ∈ Sym(k) is the
unique permutation such that

ρ(1) = i1, ρ(2) = i2, . . . , ρ(k) = ik.

• For any σ ∈ Sym(n) and A = (a1, a2, . . . , ak), define

σ(A∗) =



















σ(A)+ if ∗ = + and ρ(σ,A) ∈ Alt(k)

σ(A)− if ∗ = − and ρ(σ,A) ∈ Alt(k)

σ(A)− if ∗ = + and ρ(σ,A) 6∈ Alt(k)

σ(A)+ if ∗ = − and ρ(σ,A) 6∈ Alt(k).

(6.1)

This yields an action of Sym(n) on the quasi k-subsets of [n].
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Let A = {1, 2, . . . , k} and let us determine the stabilizer of A+ for this action of
Sym(n). If σ ∈ Sym(n) fixes A+, then it must fix the set A = {1, 2, . . . , k} setwise.
Hence, σ ∈ Sym(k)× Sym(n− k). By definition, we have σ(A+) = A+ if and only if
ρ = ρ(σ,A) ∈ Alt(k). By noting that ρ = σ−1

|Alt(k), it is clear that σ|Alt(k) ∈ Alt(k).
Therefore,

Stab(Sym(n), A+) = Stab(Sym(n), A−) = Alt(k)× Sym(n− k).

Using the fact that there is a unique conjugacy class of groups isomorphic to Alt(k)×
Sym(n− k) in Sym(n), the next result follows immediately.

Lemma 6.1. The action of Sym(n) on the cosets of Alt(k)× Sym(n− k) is permu-
tation equivalent to the action of Sym(n) on quasi k-subsets of [n].

6.3 The quasi Johnson scheme

In this subsection, we describe the association scheme obtained from the action of
Sym(n) on cosets of Alt(k) × Sym(n − k). We first characterize all orbitals of the
action of Sym(n) on quasi k-subsets of [n].

Theorem 6.2. An orbital of G = Sym(n) acting on the quasi k-subsets of [n] is one
of the following types.

1) O+
0 := G.(A+, A+) where A ∈

(

[n]
k

)

. This set is

O+
0 =

{

(A+, A+) : A ∈

(

[n]

k

)}

∪

{

(A−, A−) : A ∈

(

[n]

k

)}

2) O−
0 := G.(A+, A−), where A ∈

(

[n]
k

)

. This set is

O−
0 =

{

(A+, A−) : A ∈

(

[n]

k

)}

∪

{

(A−, A+) : A ∈

(

[n]

k

)}

.

3) O−
1 := G.(A+, B−), where A,B ∈

(

[n]
k

)

such that |A ∩ B| = k − 1. This set is

O−
1 =

{

(A+, B−), (A−, B+) : A,B ∈

(

[n]

k

)

, |A ∩B| = k − 1

}

.

4) O+
1 := G.(A+, B+), where A,B ∈

(

[n]
k

)

such that |A ∩ B| = k − 1. This set is

O+
1 =

{

(A+, B+), (A−, B−) : A,B ∈

(

[n]

k

)

, |A ∩ B| = k − 1

}

5) Oi := G.(A+, B+), for 2 ≤ i ≤ k, where A,B ∈
(

[n]
k

)

such that |A ∩ B| = k − i.
This set is

Oi =

{

(A+, B+), (A+, B−), (A−, B+), (A−, B−) : A,B ∈

(

[n]

k

)

, |A ∩ B| = k − i

}

.
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Proof. By [9], the permutation character of the group Sym(n) acting on quasi k-
subsets of [n] is

1
Sym(n)
Alt(k)×Sym(n−k) =

k
∑

i=0

χ[n−i,i] + χ[n−k,1k] + χ[n−k+1,1k−1].

Hence, the number of orbitals of the corresponding group action is k + 3.

Let X = {1, 2, 3, . . . , k}. Consider some distinct elements x1 < x2 < . . . < xk of
the set [n] \ {1, 2, . . . , k}. For any 1 ≤ i ≤ k, we define

Xi = {1, 2, . . . , k − i, x1, x2, . . . , xi}.

It is not hard to verify that (X+, X+), (X+, X+
1 ), (X+, X−

1 ), (X
+, X−), and

(X+, X+
i ), for 2 ≤ i ≤ k, are elements belonging to the five types sets listed in the

statement of the theorem. To prove the theorem, it is enough to prove that S =
{X+, X+

1 , X
−
1 , X

−} ∪ {X+
2 , X

+
3 , . . . , X

+
k } are in different suborbits of the subgroup

Stab(Sym(n), X+) = Alt(k)× Sym(n− k).

It is clear that X+ cannot be in the same orbit of Stab(Sym(n), X+) as any other
element of S. We claim that for any A∗, B† ∈ S, where ∗, † ∈ {+,−}, such that
|A ∩X| 6= |B ∩X|, there exist no σ ∈ Alt(k) × Sym(n − k) such that σ(A∗) = B†.
This is clear since assuming that |A ∩X| < |B ∩X|, there would be an element of
X \A that is mapped to an element of X by such permutation, which is not possible
for any element σ of Alt(k)× Sym(n− k).

By this claim, it is enough to verify the cases where the intersections with X have
the same size, i.e., those with the same index.

We claim that X+
1 and X−

1 are not in the same suborbit. To see this, assume
that there exists σ ∈ Alt(k)×Sym(n−k) such that σ(X+

1 ) = X−
1 . As σ(X

+) = X+,
we must have that σ|X is an even permutation and also that σ(x1) = x1 and σ(k) =
k. Hence, σ|{1,2,...,k−1} = σ|X1

is an even permutation, which makes σ(X+
1 ) = X−

1

impossible.

Consequently, the set {(X+, A) : A ∈ S} is a complete set of representatives
of orbitals of Sym(n) acting on the quasi k-subsets of [n]. It is straightforward to
verify that the elements of this set yields the five lists of orbitals. This completes
the proof.

Using Theorem 6.2, we can explicitly define the schurian association scheme cor-
responding to the action of Sym(n) on the cosets of the multiplicity-free subgroup
Alt(k) × Sym(n − k). The association scheme corresponding to this action is the
quasi Johnson scheme, denoted by J +±(n, k), which is determined by the relations

{

O±
0 ,O

±
1 ,O2,O3, . . . ,Ok

}

.

6.4 The graphs in J +±(n, k)

For 2 ≤ i ≤ k, we define the graph J±(n, k, i) to be the graph on
(

[n]
k

)±
whose edge

set is Oi. We will call the graph K±(n, k) := J±(n, k, k) the quasi Kneser graph.
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The graph determined by O−
0 is a perfect matching. We will denote the latter by

J−(n, k, 0). The graphs determined by O+
1 and O−

1 are called the quasi Johnson
graph of type + and quasi Johnson graph of type −, respectively and we will denote
them by J+(n, k, 1) and J−(n, k, 1), respectively.

In this subsection, we determine the structure of some graphs in the quasi Johnson
scheme J +±(n, k) in terms of a graph product. We prove the next proposition.

Proposition 6.3. For any 2 ≤ i ≤ k, we have J±(n, k, i) = J(n, k, i) ⊲⊳ K2.

Proof. Let i ∈ {2, 3, . . . , k}, V + = {A+ : A ∈
(

[n]
k

)

} and V − = {A− : A ∈
(

[n]
k

)

}.

Since (A+, B+), (A−, B−) ∈ Oi for any A,B ∈
(

[n]
k

)

such that |A ∩ B| = k − i, it is
clear that the subgraph induced by V + and V − are both isomorphic to J(n, k, i). The
edges of the form (A+, B−) are exactly those in K2 × J(n, k, i). Hence, J±(n, k, i) =
J(n, k, i) ⊲⊳ K2.

Corollary 6.4. Let 2 ≤ i ≤ k. The eigenvalues of J±(n, k, i) are equal to 0 or of
the form 2λ, where λ is an eigenvalue of J(n, k, i).

Proof. Let An,k,i and A±
n,k,i be the adjacency matrices of the graphs J(n, k, i) and

J±(n, k, i), respectively. Since J±(n, k, i) = J(n, k, i) ⊲⊳ K2, the adjacency matrix of
J±(n, k, i) is

A±
n,k,i =

[

An,k,i An,k,i

An,k,i An,k,i

]

=

[

1 1

1 1

]

⊗ An,k,i.

Since the spectrum of 2× 2 all-ones matrix is {0, 2}, the result follows.

Corollary 6.5. The eigenvalues of the quasi Kneser graph K±(n, k) are 0 or

2(−1)j
(

n− k − j

k − j

)

,

for 0 ≤ j ≤ k.

The graphs J+(n, k, 1) and J−(n, k, 1) are respectively two copies of the Johnson
graph J(n, k, 1), and the bipartite double cover of J(n, k, 1). Consequently, the
eigenvalues of J+(n, k, 1) are the eigenvalues of J(n, k, 1), and the multiplicities are
twice of that of J(n, k, 1). The eigenvalues of J−(n, k, 1) are all ±θ, where θ is an
eigenvalue of J(n, k, 1).

6.5 The [n− 1, 1]-module

Let K = Sym([n − 1, 1]) and let Ω =
(

[n]
k

)±
. The group K has two orbits on the

quasi k-subsets of [n]. These two orbits of K are

S =

{

A± : A ∈

(

[n]

k

)

and n ∈ A

}

and Ω \ S.
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Proposition 6.6. The family S is a maximum coclique of K±(n, k).

Proof. For any A,B ∈
(

[n]
k

)

such that |A ∩ B| = 1, we know that (A±, B±) 6∈ Ok.
Therefore, S is a coclique of K±(n, k).

To prove that S is a maximum coclique, we use the Ratio Bound. By Corol-
lary 6.5, the largest and the least eigenvalues of K±(n, k) are respectively

2

(

n− k

k

)

and − 2

(

n− k − 1

k − 1

)

.

By the Ratio Bound, we have

α(K±(n, k)) ≤
2
(

n

k

)

1−
2(n−k

k
)

−2(n−k−1

k−1 )

=
2
(

n

k

)

1 + n−k
k

= 2

(

n− 1

k − 1

)

= |S|.

By Theorem 3.7, we deduce the following corollary.

Corollary 6.7. The eigenvalue −2
(

n−k−1
k−1

)

is afforded by the [n− 1, 1]-module.

Therefore, the answer to Question 1.1 is affirmative for association scheme corre-
sponding to the Gelfand pair (G,H), where G = Sym(n) and H = Alt(k)×Sym(n−
k).

In the next theorem, we find the maximum cocliques of K±(n, k).

Theorem 6.8. The maximum cocliques of K±(n, k) are of the form

{

A± : A ∈

(

[n]

k

)

and x ∈ A

}

,

for some x ∈ [n].

Proof. Let S be a maximum coclique of K±(n, k) and define

S+ = S ∩
{

A+ : A ∈
(

[n]
k

)

}

and S− = S ∩
{

A− : A ∈
(

[n]
k

)

}

.

Note that |S| = 2
(

n−1
k−1

)

. Moreover, since K±(n, k) = K(n, k) ⊲⊳ K2 and the maximum

cocliques of K(n, k) have size
(

n−1
k−1

)

, we have |S+| = |S−| =
(

n−1
k−1

)

. That is, S− and
S+ are maximum cocliques in the two copies of K(n, k) in K±(n, k). Therefore, there
exists a, b ∈ [n] such that

S+ =
{

A+ : A ∈
(

[n]
k

)

and a ∈ A
}

and S− =
{

A− : A ∈
(

[n]
k

)

and b ∈ A
}

.

It is clear that S = S− ∪ S+ is a coclique of K±(n, k) if and only if a = b. This
completes the proof.
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7 The orbital scheme from line 4 of Table 1

Consider the Gelfand pair (G,H) = (Sym(n),Alt(k) × Alt(n − k)). First, we will
determine certain combinatorial objects that correspond to G/H. Then, we will
prove the main result.

By [9], we first recall that

1G
H =

k
∑

i=0

(

χ[n−i,i] + χ[2i,1n−2i]
)

+ χ[n−k,1k] + χ[k,1n−k] + χ[n−k+1,1k−1] + χ[k+1,1n−k−1].

Hence, [n− 1, 1] is the second largest in dominance ordering in Λ(n,H).

7.1 Combinatorial objects

For any k-subset A, let A be the complement of A in [n]. Consider the set

Ωn,k =

{

(A±, A±) : A ∈

(

[n]

k

)}

.

Note that |Ω| = 4
(

n

k

)

. We claim that the action of G on G/H is permutation equiva-
lent to a certain action of Sym(n) on Ωn,k. For any σ ∈ Sym(n) and (A∗1 , A∗2) ∈ Ωn,k,
define

σ ((A∗1 , A∗2)) := (σ(A∗1), σ(A∗2)) .

Note that this is an induced action from the action given in (6.1). This gives an
action of Sym(n) on Ωn,k. Let us now prove that the stabilizer of an element of Ωn,k

is conjugate to H. Consider the element (A+, A+) ∈ Ωn,k, where A = {1, 2, . . . , k}.
If σ ∈ Sym(n) fixes (A+, A+), then we have

σ(A+) = A+ and σ(A+) = A+.

In other words, σ|A and σ|A must be even permutations. Consequently, the stabilizer
of (A+, A+) is equal to H. One can also prove that H is also the stabilizer of
(A−, A−), (A+, A−), and (A−, A+).

We omit the proof of the following proposition since it straightforward.

Proposition 7.1. The action of G on G/H is permutation isomorphic to the action
of G on Ωn,k.

7.2 The orbital scheme J ++(n, k)

In this subsection, we determine the graphs in the orbital scheme corresponding to
(G,H).

Theorem 7.2. An orbital of G = Sym(n) in its action on Ωn,k is one of the following.
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1) O+,+
0 := G.

(

(A+, A+), (A+, A+)
)

, where A ∈
(

[n]
k

)

, which is the diagonal orbital.

2) O−,−
0 := G.

(

(A+, A+), (A−, A−)
)

, where A ∈
(

[n]
k

)

.

3) O+,−
0 := G.

(

(A+, A+), (A+, A−)
)

, where A ∈
(

[n]
k

)

.

4) O−,+
0 := G.

(

(A+, A+), (A−, A+)
)

, where A ∈
(

[n]
k

)

5) O+,+
1 := G.

(

(A+, A+), (B+, B+)
)

, where A,B ∈
(

[n]
k

)

and |A ∩B| = k − 1.

6) O−,−
1 := G.

(

(A+, A+), (B−, B−)
)

, where A,B ∈
(

[n]
k

)

and |A ∩ B| = k − 1.

7) O+,−
1 := G.

(

(A+, A+), (B+, B−)
)

, where A,B ∈
(

[n]
k

)

and |A ∩ B| = k − 1.

8) O−,+
1 := G.

(

(A+, A+), (B−, B+)
)

, where A,B ∈
(

[n]
k

)

and |A ∩ B| = k − 1.

9) O+
i := G.

(

(A+, A+), (B+, B+)
)

for 2 ≤ i ≤ k and for A,B ∈
(

[n]
k

)

such that
|A ∩B| = k − i. In particular,

(

(X+, X+), (Y −, Y −)
)

,
(

(X−, X−), (Y +, Y +)
)

∈ O+
i

for any X, Y ∈
(

[n]
k

)

and |X ∩ Y | = k − i.

10) O−
i := G.

(

(A+, A+), (B+, B−)
)

for 2 ≤ i ≤ k and A,B ∈
(

[n]
k

)

such that |A∩B| =
k − i. In particular,

(

(X+, X+), (Y −, Y +)
)

,
(

(X−, X−), (Y +, Y −)
)

,
(

(X−, X−), (Y −, Y +)
)

∈ O−
i

for any X, Y ∈
(

[n]
k

)

and |X ∩ Y | = k − i.

Proof. Let x1 < x2 < . . . < xk be distinct elements of [n] \ [k]. Define

Xi = {1, 2, . . . , k − i, x1, x2, . . . , xi} , for 0 ≤ i ≤ k.

Note that X0 = {1, 2 . . . , k} and Xk = {x1, x2, . . . , xk}. It is enough to prove that
the set

S =
{

(X±
i , X

±
i ) : 0 ≤ i ≤ 1

}

∪
{

(X+
i , X

+
i ) : 2 ≤ i ≤ k

}

∪
{

(X+
i , X

−
i ) : 2 ≤ i ≤ k

}

,

consists of elements from distinct suborbits of (X+
0 , X

+
0 ). Recall that the stabilizer

of (X+
0 , X

+
0 ) is Alt(k)×Alt(n− k). Similar to what we saw in the previous section,

it is clear that an element of Alt(k)×Alt(n−k) cannot map (X±
i , X

±
i ) to (X±

j , X
±
j ),

unless i = j.

Since Alt(k) × Alt(n − k) stabilizes (X+
0 , X

+
0 ) and

(

X−
0 , X

−
0

)

, these two cannot
be in the same suborbit. If σ ∈ Sym(n) such that σ(X+

0 , X
−
0 ) = (X−

0 , X
+
0 ), then it

is straightforward that σ 6∈ Alt(k)×Alt(n− k). Hence, the four elements (X±
0 , X

±
0 )

are in different suborbits.
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Assume now that there exists σ ∈ Alt(k) × Alt(n − k) such that (X+
1 , X

+
1 ) is

mapped to (X−
1 , X

−
1 ) by σ. It is necessary that the set X1 is fixed by σ setwise. It

is clear that σ(k) = k and σ(x1) = x1 since σ also fixes X0 = {1, 2, . . . , k} and X0.
We conclude that

σ|X1
= σ|X0\{k} is an even permutation.

Consequently, σ cannot map X+
0 to X−

0 . The other cases can be proved in the same
way. Consequently, the elements (X±

1 , X
±
1 ) are in different suborbits of Alt(k) ×

Sym(n− k).

Finally, we assume that 2 ≤ i ≤ k. We prove that (X+
i , X

+
i ) and (X+

i , X
−
i ) are

not in the same suborbits by contradiction. Assume that σ ∈ Alt(k)×Alt(n−k) maps
(X+

i , X
+
i ) to (X+

i , X
−
i ). Again, we note that σ fixes Xi and X i setwise. Combining

this with the fact that σ permutes the elements ofX0 and σ|Xi
is an even permutation,

we deduce that

σ|{1,2...,k−i} and σ|{x1,x2,...,xi}

must be both even or both odd permutations. Without loss of generality, assume
that they are both even permutations. Noting that σ|X

i
is an odd permutation (it

maps X+
i to X−

i ), by a similar argument as above, we deduce that one of

σ|{k−i+1,...,k} and σ|X0\{x1,x2,...,xi}

must be even and the other one is an odd permutation. As σ|{1,2...,k−i} is an even
permutation and σ(X+

0 ) = X+
0 , we conclude that σ|{k−i+1,...,k} must be an even

permutation and σ|X0\{x1,x2,...,xi} is an odd permutation. In summary, σ|{x1,x2,...,xi} is
an even permutation and σ|X0\{x1,x2,...,xi} is an odd permutation. This implies that
σ|X0

is an odd permutation. The latter is impossible. Therefore, the two elements
that we started with cannot be in the same orbital.

Since the corresponding action of G has rank 2k + 6, the set S consists of an
element from each suborbits. It is easy to check that each element of S is a rep-
resentative of the ten sets in the statement of the theorem. The rest of the proof
follows by making the symmetric group Sym(n) act on the pairs

(

(X+
0 , X

+
0 ), T

)

,
where T ∈ S.

We will denote the association scheme given by the orbitals in the previous theo-
rem by J ++(n, k). It is not hard to check that all orbitals listed above are self-paired.
Let K(n, k) be the graph corresponding to the orbital O+

k .

Proposition 7.3. The graph K(n, k) is isomorphic to two disjoint copies of the graph
K(n, k) ⊲⊳ K2.
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Proof. Partition the vertices of K(n, k) into {V +,+, V +,−, V −,+, V −,−}, where

V +,+ =

{

(A+, A+) : A ∈

(

[n]

k

)}

,

V +,− =

{

(A+, A−) : A ∈

(

[n]

k

)}

,

V −,+ =

{

(A−, A+) : A ∈

(

[n]

k

)}

,

V −,− =

{

(A−, A−) : A ∈

(

[n]

k

)}

.

By definition of O+
k , it is clear that there is no edge between a vertex in V +,+∪V −,−

and a vertex in V +,− ∪ V −,+. In other words, K(n, k) is disconnected. A vertex
(A+, A+) is adjacent to all vertices of the form (B+, B+) and (B−, B−), for all k-
subsets B with the property that A ∩ B = ∅. This proves that the subgraph of
K(n, k) induced by V +,+∪V −,− is in fact isomorphic to K(n, k) ⊲⊳ K2. One can also
prove with the same argument that the subgraph induced by V −,+ ∪ V +,− is also
isomorphic to K(n, k) ⊲⊳ K2.

7.3 The [n− 1, 1]-module

By Lemma 3.3, K = Sym([n− 1, 1]) has two orbits on Ωn,k. It is immediate that the
partition from these orbits is π = {S,Ω \ S}, where

S =

{

(

A±, A±
)

: A ∈

(

[n]

k

)

and n ∈ A

}

.

It is clear that S is a coclique of K(n, k) since for any (A±, A±), (B±, B±) ∈ S,
|A∩B| ≥ 1. We claim that S is also a maximum coclique of K(n, k). To do this, we
use the Ratio Bound as follows.

The proof of the following proposition is identical to the proof of Corollary 6.5.

Proposition 7.4. The eigenvalues of K(n, k) are either 0 or

2(−1)j
(

n− k − j

k − j

)

,

for 0 ≤ j ≤ k.

From this proposition, we deduce that the smallest eigenvalue of the graphK(n, k)
is −2

(

n−k−1
k−1

)

and the largest eigenvalue is 2
(

n−k

k

)

. By the Ratio Bound, we have

α(K(n, k)) ≤
4
(

n

4

)

1−
2(n−k

k
)

−2(n−k−1

k−1 )

= 4

(

n− 1

k − 1

)

.

Consequently, S is a coclique of maximum size. By Theorem 3.7, we deduce that
the least eigenvalue −2

(

n−k−1
k−1

)

is the eigenvalue afforded by the [n− 1, 1]-module.
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Remark 7.5. In this subsection, we proved that the [n−1, 1]-module is a subspace of
the eigenspace corresponding to the eigenvalue −2

(

n−k−1
k−1

)

. However, this eigenspace
is much larger than the [n − 1, 1]-module since the graph is a disjoint union of two
copies of the same graph. The other subspace of the eigenspace is the [2, 1n−2]-module
since the eigenvalue afforded by the [2, 1n−2]-module is also equal to −2

(

n−k−1
k−1

)

. To
prove this, consider the (2k + 1)-cycle

x = (1, k + 1, 2, k + 2, . . . , i, k + i, i+ 1, . . . , k, 2k, 2k + 1).

Note that if A = {1, 2, . . . , k} and B = {k + 1, . . . , 2k}, then x.A = B. Since |A ∩
B| = 0, there exists an edge between (A+, A+) and (B+, B+) in K(n, k). Moreover,
since x.A = B we can identify (A+, A+) and (B+, B+) respectively with the cosets
H = Alt(k) × Alt(n − k) and xH. Clearly xH ⊂ Alt(n) and (H, xH) corresponds
to an edge in K(n, k). Now, note that the smallest eigenvalue is afforded by the
[n− 1, 1]-module so we have

∑

h∈H

χ[n−1,1](xh) =
|H|

2
(

n−k

k

)

(

−2

(

n− k − 1

k − 1

))

.

Using this equality, the eigenvalue corresponding to [2, 1n−2]-module is

2
(

n−k

k

)

|H|

∑

h∈H

χ[2,1
n−2](xh) =

2
(

n−k

k

)

|H|

∑

h∈H

χ[1n](xh)χ[n−1,1](xh) = −2

(

n− k − 1

k − 1

)

.

8 The orbital scheme from line 5 of Table 1

Let G = Sym(n), H = (Sym(k)× Sym(n− k)) ∩ Alt(n) and consider the Gelfand
pair (G,H). Similar to the previous cases, we will introduce certain combinatorial
objects that correspond to G/H. Then, we will find an orbital graph in the orbital
scheme that gives an affirmative answer to Question 1.1.

8.1 Combinatorial objects

Recall that In,k is the set of all injections from [k] to [n]. Given A ∈ In,k, let Im(A)
be the image of the map A and define

In,k(A) := {g : [n− k] → [n] \ Im(A) : g is injective} .

Since we may view an element of In,k as a sequence of the form A = (a1, a2, . . . , ak)
with distinct entries, we have an action of Sym(k) on In,k through

σ(A) :=
(

aσ(1), aσ(2), . . . , aσ(k)
)

,

for any σ ∈ Sym(k). Similarly, the group Sym(n − k) also acts on any element
of In,n−k by permuting the indices. These two actions give an induced action of
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Sym(k) × Sym(n − k) on {A} × In,k(A), for any A ∈ In,k. Now, define Tn,k :=
{

(A,B) : A ∈ In,k and B ∈ In,k(A)
}

and consider the relation R on Tn,k such that
(A,B)R(C,D) if and only if there exists σ ∈ (Sym(k)× Sym(n− k)) ∩ Alt(n) such
that

σ(A) = C and σ(B) = D.

Let us compute the number of equivalence classes of R. For any (A,B) ∈ Tn,k, the
equivalence class of R that contains (A,B) is

(A,B) := {(σ(A), σ(B)) : σ ∈ (Sym(k)× Sym(n− k)) ∩ Alt(n)}

Let S = {a1, a2, . . . , ak} such that a1 < a2 < . . . < ak and S := [n] \ S =
{b1, b2, . . . , bn−k}. Consider the set T = {(A,B) ∈ Tn,k : Im(A) = S}. The group
(Sym(k)× Sym(n− k)) ∩ Alt(n) acts intransitively on T since the orbit counting
lemma gives

2

k!(n− k)!

∑

σ∈(Sym(k)×Sym(n−k))∩Alt(n)

|{(A,B) ∈ T : σ.A = A and σ.B = B}|

=
2

k!(n− k)!
k!(n− k)! = 2.

Therefore, the set S determines two orbits which are

(S, S)+ := ((a1, a2, . . . , ak), (b1, b2, . . . , bn−k)),

(S, S)− := ((a2, a1, . . . , ak), (b1, b2, . . . , bn−k)).

Note that (S, S)+ and (S, S)− are both fixed by (Sym(k)× Sym(n− k))∩Alt(n) and
they are swapped by any odd permutation in (Sym(k)× Sym(n− k)).

For the remainder of this section, we let

Ωn,k :=

{

(S, S)± : S ∈

(

[n]

k

)}

.

8.2 Action of the symmetric group

For any A = {a1, a2, . . . , ak} such that a1 < a2 < . . . < ak, and σ ∈ Sym(n),
let ρ(σ,A) ∈ Sym(k) × Sym(n − k) be the unique permutation that acts on the
indices {1, 2, . . . , k}×{k+1, . . . , n} by reordering the entries of σ(A) and σ(A) in an
increasing order. To see this in more details, assume A = {bk+1, bk+2, . . . , bn} such
that bk+1 < bk+2 < . . . < bn. If

σ(ai1) < σ(ai2) < . . . < σ(aik) and σ(bjk+1
) < σ(bjk+2

) < . . . < σ(bjn),

then ρ = ρ(σ,A) ∈ Sym(k)× Sym(n− k) such that

ρ(ℓ) = iℓ for ℓ ∈ {1, 2, . . . , k} and ρ(t) = jt for t ∈ {k + 1, k + 2, . . . , n}.
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Recall thatH = (Alt(k)×Alt(n− k))∩Alt(n). For any σ ∈ Sym(n) and S ∈
(

[n]
k

)

,
define

σ ((S, S)∗) :=



















(σ(S), σ(S))+ if ρ(σ, S) ∈ H and ∗ = +

(σ(S), σ(S))− if ρ(σ, S) ∈ H and ∗ = −

(σ(S), σ(S))+ if ρ(σ, S) 6∈ H and ∗ = −

(σ(S), σ(S))− if ρ(σ, S) 6∈ H and ∗ = +.

This yields a transitive action of Sym(n) on Ωn,k. Moreover, if S = {1, 2, . . . , k},
then a permutation σ is in the stabilizer of (S, S)+ if and only if σ(S) = S and
ρ(σ, S) ∈ H. Since the unique permutation that reorders the entries of σ(S) and
σ(S) in an increasing order is σ−1, we deduce that σ = ρ(σ, S)−1. Consequently, σ
fixes (S, S)+ if and only if σ ∈ H. Hence,

Stab(Sym(n), (S, S)+) = (Sym(k)× Sym(n− k)) ∩ Alt(n).

Similarly,

Stab(Sym(n), (S, S)−) = (Sym(k)× Sym(n− k)) ∩ Alt(n).

The following proposition can be easily verified by using the fact that there is a
unique conjugacy class of subgroups isomorphic to H in Sym(n).

Proposition 8.1. The action of Sym(n) on the cosets of (Sym(k)× Sym(n− k))∩
Alt(n) is permutation equivalent to the action of Sym(n) on Ωn,k.

8.3 The orbital scheme J ±(n, k)

We will denote the orbital scheme obtained from the Gelfand pair (G,H), where G =
Sym(n), and H = (Sym(k)× Sym(n− k)) ∩ Alt(n) by J ±(n, k). This association
scheme is also known as the bipartite double of the Johnson scheme J (n, k).

Theorem 8.2. An orbital of G = Sym(n) acting on the Ωn,k is one of the following.

1) O+
0 := G. ((A,A)+, (A,A)+), where A ∈

(

[n]
k

)

.

2) O−
0 := G. ((A,A)+, (A,A)−), where A ∈

(

[n]
k

)

.

3) O−
i := G. ((A,A)+, (B,B)−), for 1 ≤ i ≤ k and for A,B ∈

(

[n]
k

)

such that

|A∩B| = k−i. In particular, O−
i contains ((X,X)−, (Y, Y )+) for any X, Y ∈

(

[n]
k

)

such that |A ∩ B| = k − i.

4) O+
i := G. ((A,A)+, (B,B)+), for 1 ≤ i ≤ k and for A,B ∈

(

[n]
k

)

such that
|A ∩ B| = k − i. In particular, O+

i contains ((X,X)−, (Y, Y )−), for any X, Y ∈
(

[n]
k

)

such that |X ∩ Y | = k − i.
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Proof. We note first that the action of Sym(n) on Ωn,k has rank 2k + 2 (see [9] for
details). Consider the k distinct elements x1 < x2 < . . . < xk of [n]\{1, 2, . . . , k}. Let
Xi = {1, 2, . . . , k−i, x1, x2, . . . , xi} for 0 ≤ i ≤ k. Note thatX0 = {1, 2, . . . , k}, Xk =
{x1, x2, . . . , xk}. We claim that the set

S =
{

(Xi, Xi)
+ : 0 ≤ i ≤ k

}

∪
{

(Xi, Xi)
− : 0 ≤ i ≤ k

}

has 2k + 2 elements in different suborbits of H = (Sym(k)× Sym(n− k)) ∩ Alt(k).

First, note that if A ∈
(

[n]
k

)

such that |A∩X| = i, then ((X,X)+, (A,A)∗) can only
be mapped by H to an element of the form ((X,X)+, (B,B)†), where |B ∩X| = i.
Now, if σ ∈ Sym(n) such that σ

(

(Xi, Xi)
+
)

= (Xi, Xi)
−, then by definition we must

have ρ(σ,Xi) 6∈ H. Hence, we can assume without loss of generality that σ|Xi
is an

even permutation and σ|Xi
is an odd permutation. Therefore, σ|X0∩Xi

and σ|X0∩Xi

must have the same sign, whereas σ|X0∩Xi
and σ|X0∩Xi

have opposite signs. Using

this, one can easily prove that σ ((X0, X0))
+ cannot be equal to (X0, X0)

+, which is
a contradiction. This completes the proof.

Let K+(n, k) and K−(n, k) be the two orbital graphs corresponding to O+
k and

O−
k , respectively. By definition of the orbital O±

k , the following lemma follows im-
mediately.

Lemma 8.3. We have K−(n, k) = K2 ×K(n, k) and K+(n, k) is a disjoint union of
two copies of K(n, k).

Proof. InK−(n, k), the edges are of the form ((A,A)+, (B,B)−) or ((A,A)−, (B,B)+),
where |A ∩ B| = 0. Since this graph is bipartite, we clearly have K−(n, k) =
K2 ×K(n, k).

The graph K+(n, k) is disconnected since there is no edge between vertices of the
form (A,A)+ and (B,B)−, for any A,B ∈

(

[n]
k

)

. The subgraph of K−(n, k) induced

by all vertices of the form (A,A)+, for all A ∈
(

[n]
k

)

, is isomorphic to K(n, k). The

same holds for the vertices of the form (A,A)−, for all A ∈
(

[n]
k

)

. This completes the
proof.

8.4 The [n− 1, 1]-module

Let K = Sym([n− 1, 1]). The orbit partition induced by K on Ωn,k is π = {S,Ωn,k \
S}, where

S =

{

(A,A)± : A ∈

(

[n]

k

)

and n ∈ A

}

.

We note that |S| = 2
(

n−1
k−1

)

. It is clear that S is a coclique of both orbital graphs
of K−(n, k) and K+(n, k), however, it is not a maximum coclique of the one corre-
sponding to K−(n, k) since the latter is bipartite. That is, the graph K−(n, k) gives
an affirmative answer to the first part of Question 1.1, however, the second part of
the question is not satisfied.
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Theorem 8.4. The least eigenvalue of K−(n, k) is afforded by the [1n]-module.

Proof. By Theorem 3.7, the eigenvalue afforded by the [n− 1, 1]-module is

−
2
(

n−k

k

)(

n−1
k−1

)

2
(

n

k

)

− 2
(

n−1
k−1

) .

Since K−(n, k) is bipartite, its smallest eigenvalue is equal to −
(

n−k

k

)

. One can verify
that this eigenvalue is afforded by the [1n]-module by using Theorem 3.1.

Theorem 8.5. The least eigenvalue of K+(n, k) is afforded by the [n− 1, 1]-module.

Proof. Since S is a coclique, by Theorem 3.7, the eigenvalue −2
(n−k

k
)(n−1

k−1)
2(n−1

k
)

is the

eigenvalue afforded by the [n − 1, 1]-module. As K+(n, k) is a disjoint union of two

copies of K(n, k), its smallest eigenvalue is −
(

n−k−1
k−1

)

= −
(n−k

k
)(n−1

k−1)
(n−1

k
)

.

9 The orbital scheme from line 6 of Table 1

In this section, we prove that the answer to Question 1.1 is affirmative for the group
in line 6 of Table 1. First, we prove that Question 1.1 is affirmative for the Gelfand
pair (Sym(2k), Sym(2) ≀ Sym(k)). Then, we use a graph isomorphism to prove that
Question 1.1 also holds for the Gelfand pair (Sym(2k + 1), Sym(2) ≀ Sym(k)).

9.1 Question 1.1 for the Gelfand pair (Sym(2k), Sym(2) ≀ Sym(k)

For any k ≥ 2, the action of Sym(2k) on the cosets of Sym(2) ≀Sym(k) is multiplicity-
free (see [9]). We note that the second largest in dominance ordering in Λ(2k, Sym(2)≀
Sym(k)) is [2k − 2, 2]. The action of Sym(2k) on the cosets of Sym(2) ≀ Sym(k) is
equivalent to the action of Sym(2k) on the perfect matchings of the complete graph
K2k. A perfect matching of K2k is a partition of the set [2k] into k subsets of size 2.
We will denote the set of all perfect matchings of K2k by Pk.

For any λ = [λ1, λ2, . . . , λt], let O[2λ1,2λ2,...,2λt] be the set of all pairs (P,Q) of
elements of Pk such that P ∪Q is a union of t cycles of length 2λ1, 2λ2, . . . , 2λt. We
note that an edge is considered a 2-cycle in this definition.

For any λ = [λ1, λ2, . . . , λk] ⊢ k, we define 2λ := [2λ1, 2λ2, . . . , 2λk]. The as-
sociation scheme arising from (Sym(2k), Sym(2) ≀ Sym(k)) is the well-known perfect
matching association scheme. The orbitals of the corresponding group action are all
O2λ, where λ ⊢ k. Next, we prove that the answer to Question 1.1 follows from a
result in [10, 15].

For any n, we let

n!! =

{

n× (n− 2)× . . .× 3× 1 if n is odd

n× (n− 2)× . . .× 4× 2 otherwise.
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Using this notation, it is not hard to see that

|Pk| = (2k − 1)!!.

For any F ⊂ Pk, we say that F is intersecting if |P ∩ Q| ≥ 1, for any P and Q
in F . We state the following theorem about intersecting families of Pk.

Theorem 9.1 ([10, 15]). If F ⊂ Pk is intersecting, then |F| ≤ (2k−3)!!. Moreover,
equality holds if and only if F consists of all perfect matchings with a fixed edge, i.e.,
an orbit of size (2k − 3)!! of a conjugate of Sym(2k − 2)× Sym(2).

To prove Theorem 9.1, the authors relied on cocliques in the so-called perfect
matching derangement graph P (k). The vertices of this graph consist of the elements
of Pk and two perfect matchings are adjacent if they are not intersecting. The graph
P (k) is the union of all orbital graphs corresponding to O2λ, where λ ⊢ k and 2λ
does not contain any part of size 2. It follows from Theorem 9.1 that any orbital
graph which is a subgraph of P (k) gives an affirmative answer to Question 1.1 (a).
Using the upper bound on the dimension of the Specht modules in Λ(2k, Sym(2) ≀
Sym(k)) given in [3, Lemma 3.7] (or [2, Lemma 3.2]) and the “trace trick” as given
in [10, Theorem 7.2], one can prove that the smallest eigenvalue of perfect matching
derangement graph P (k) is equal to −(2k − 2)!!, and the latter is afforded by the
[2k − 2, 2]-module.

However, when considering the subgraphs of P (k) corresponding to orbital graphs
in the association scheme, the trace trick fails. In [15], Lindzey showed that in the
orbital graph O[2k], the least eigenvalue is afforded by [2k − 2, 2], and is equal to
−(2k − 2)!!. Thus Question 1.1 (b) is affirmative.

9.2 Question 1.1 for the Gelfand pair (Sym(2k + 1), Sym(2) ≀ Sym(k))

Let k be a positive integer. For any λ = [λ1, λ2, . . . , λt] ⊢ k, under the assumption
that λ0 = k + 1, we let

I(λ) := {i ∈ {1, 2, . . . , t} | λi−1 > λi} .

For any λ = [λ1, λ2, . . . , λt] ⊢ k, define the partitions of 2k + 1 given by
{

2λ(i) + 1 := [2λ1, 2λ2, . . . , 2λi + 1, . . . , 2λt], for i ∈ I(λ)

2λ(t+1) + 1 := [2λ1, 2λ2, . . . , 2λt, 1].

Further, for any λ = [λ1, λ2, . . . , λt] ⊢ k we define the set

2λ+ 1 =
{

2λ(i) + 1 : i ∈ I(λ) ∪ {t+ 1}
}

.

Finally, define the set

Λk :=
⋃

λ⊢k

2λ+ 1.
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The group Sym(2) ≀ Sym(k) is a multiplicity-free subgroup of Sym(2k + 1) [9].
Using [9], we know that

1
Sym(2k+1)
Sym(2)≀Sym(k) =

∑

µ∈Λk

χµ.

The action of Sym(2k+1) on cosets of Sym(2) ≀Sym(k) is equivalent to its action
on the set Qk of all partitions of [2k+1] into k sets of size two and a singleton. Such
a partition in Qk is called a quasi-perfect matching of K2k+1. It is clear that

|Qk| = (2k + 1)!!.

In the next lemma, we determine the orbitals of Sym(2k + 1) in its action on
quasi-perfect matchings of K2k+1. We omit the proof of this lemma since it is similar
to how the orbital graphs of the action of Sym(2k) on cosets of Sym(2) ≀ Sym(k) are
obtained (see [11] for details).

Lemma 9.2. An orbital of Sym(2k + 1) in its action on quasi-perfect matchings of
K2k+1 is of the form:

(i) O[2λ1,...,2λi+1,...,2λt], for some partition [λ1, λ2, . . . , λt] ⊢ k, where
(P, P ′) ∈ O[2λ1,...,2λi+1,...,2λt] if and only if P ∪ P ′ is a disjoint union of t − 1
cycles of length 2λ1, . . . , 2λi−1, 2λi+1, . . . , 2λt and a path of length 2λi + 1.

(ii) O[2λ1,...,2λt,1], for some partition [λ1, . . . , λt] ⊢ k, where (P, P ′) ∈ O[2λ1,...,2λt,1] if
and only if P ∪ P ′ is a disjoint union of t− 1 cycles of length 2λ1, . . . , 2λt and
an isolated vertex.

For any k ≥ 2, let Q(k) be the graph consisting of the union of all orbital graphs
corresponding to Oµ, such that µ ∈ Λk does not contain any part of size 1 or 2.
We prove the next result about the relation between Q(k) and the perfect matching
derangement graph.

Lemma 9.3. For any k ≥ 2, there exists graph isomorphism ϕ from Q(k) to P (k+1).

Proof. Consider the map ϕ : Qk → Pk+1 such that any Q ∈ Qk is mapped to
the element ϕ(Q) of Pk+1 obtained from Q by replacing the singleton {a} ∈ Q
by {a, 2k + 2}. It is clear ϕ(Q)∈ Pk+1 and ϕ is well defined. By uniqueness of
the singleton in any element Qk, it is clear that ϕ is injective. The surjectivity is
obtained by replacing the 2-subset {a, 2k+2} in any element of Pk+1 by {a}. Hence,
ϕ is a bijection.

It remains to prove that ϕ preserves adjacency and non-adjacency. For any
Q,Q′ ∈ Qk such that Q ∼Q(k) Q

′, it is clear that ϕ(Q) ∪ ϕ(Q′) does not contain
any isolated edge, otherwise, Q ∪ Q′ would contain a 2-cycle or an isolated vertex.
If P = ϕ(Q), P ′ = ϕ(Q′) ∈ P (k + 1) are adjacent, then P ∪ P ′ does not contain
a 2-cycle, so the removal of the vertex 2k + 2 cannot give rise to a graph with an
isolated vertex or a graph with 2-cycle. Consequently, ϕ is an isomorphism.
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It is not hard to see that the isomorphism ϕ also induces an isomorphism on the
orbital graphs that are subgraphs of Q(k) and P (k + 1).

An immediate corollary of the above lemma and Theorem 9.1 is the following.

Theorem 9.4. If F ⊂ Qk is intersecting, then |F| ≤ (2k−1)!!. Equality holds if and
only if F is an orbit of size (2k − 1)!! of a conjugate of Sym([2k, 1]) or a conjugate
of Sym([2k − 1, 2]).

We note that the partitions [2k, 1] and [2k − 1, 2] are exactly the two resulting
partitions obtained by applying the Branching Rule from Sym(2k+2) to Sym(2k+1)
(see [17] for details) on the partition [2k, 2], which is the one that determines the
smallest eigenvalue of P (k + 1).

Since Q(k) is a union of orbital graphs of Sym(2k+1) acting on Qk, we conclude
that the orbit of Sym([2k, 1]) of size (2k − 1)!! is a coclique of any orbital graph
contained in Q(k). Hence, Question 1.1 (a) is affirmative.

For Question 1.1 (b), we consider the orbital graph X corresponding to O[2k+1].
Due to Question 1.1 (a) being affirmative, −(2k−2)!! is the eigenvalue of X afforded
by [2k, 1]-module. Let Y be the subgraph of P (k + 1) which is the orbital graph of
Sym(2k+2) acting on Pk+1 corresponding to the partition [2k+2]. It is known that
the smallest eigenvalue −(2k − 2)!! of Y is afforded by the [2k, 2]-module and is the
least eigenvalue of Y . Therefore, −(2k − 2)!! is also the smallest eigenvalue of X,
since X and Y are isomorphic.

10 Conclusion and future work

In this paper, we proved in Theorem 1.6 that for any Gelfand pair (G,H), where
G = Sym(n) and H is listed in lines 1-6 of Table 1, there exists a graph in the
corresponding orbital scheme for which Question 1.1 is affirmative. We also gave an
example where the answer to Question 1.1 is negative.

We do not know if Question 1.1 is true in general for all multiplicity-free subgroups
H of Sym(n) such that the second largest in dominance ordering in Λ(n,H) is [n−
1, 1]. Therefore, we pose the following problem.

Problem 10.1. Determine whether Question 1.1 is true for all other Gelfand pairs
(Sym(n), H) in which [n− 1, 1] is the second largest in Λ(n,H).

For orbital schemes arising from other multiplicity-free subgroups, we expect
the case where the second largest in dominance ordering in Λ(n,H) is not equal to
[n− 1, 1] to be more complicated than the case considered in this paper. We provide
some computational results on the small multiplicity-free subgroups obtained from
Sagemath [18] in Table 2.

We also ask the following problem.

Problem 10.2. Find an EKR type theorem for partially 2-intersecting families of
Uk. That is, determine the maximum cocliques of the folded Johnson graph J(2k, k).
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Group n index rank Second largest Question 1.1(a) Question 1.1(b)

AGL(1, 5) ∩A5 5 12 4 [3, 2] Yes Yes

AGL(1, 5) 5 6 2 [22, 1] No No

PSL(2, 5) 6 12 4 [32] Yes Yes

PGL(2, 5) 6 6 2 [23] No No

AGL(1, 7) 7 120 7 [4, 3] No No

PSL(3, 2) 7 30 4 [4, 3] Yes No

AΓL(1, 8) 8 240 8 [5, 13] No No

PGL(2, 7) 8 120 5 [4, 4] No No

AGL(3, 2) 8 30 4 [42] Yes No

Sym(2) ≀Alt(3) 6 30 5 [4, 2] Yes No

Sym(2) ≀Alt(4) 6 30 5 [6, 2] Yes No

Table 2: Answer to Question 1.1 for small multiplicity-free subgroup.
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