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Abstract

We obtain a differential equation for the enumeration of the path length
of general increasing trees. By using differential operators and their com-
binatorial interpretation we give a bijective proof of a version of Faà di
Bruno formula, and model the generation of ballot and Dyck paths. We
get formulas for its enumeration according with the height of their lattice
points. Recursive formulas for the enumeration of enriched increasing
trees and forests with respect to the height of their internal and external
vertices are also obtained. Finally we present a generalized form of all
those results using one-parameter groups in the general context of formal
power series in an arbitrary number of variables.

1 Introduction and preliminaries

Throughout this article a rooted tree will be thought of as a directed graph by
orienting the edges toward the root. Given a rooted tree T on the set of vertices [n],
denote by dT (k), k ∈ [n], the indegree of vertex k.

Let φ(x) be a formal power series φ(x) =
∑∞

k=0 φk
xk

k!
, with φ0 6= 0. We also

denote the kth coefficient φk by φ[k]. Define the φ-weight of a rooted tree T on the
set of vertices [n] as the product

wφ(T ) =
n∏
k=1

φ[dT (k)]. (1)

Recall that an increasing rooted tree is one whose vertices (with labels in a totally
ordered set) increase along any path from the root to the leaves. When φ enumerates
a family of structures, wφ(T ) enumerates all the trees obtained by enriching the
vertices of T with those structures. For example, if we choose φ(t) = E(t) = et,
since its coefficients as an exponential generating function are all equal to one, then
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the corresponding trees are enriched with a trivial structure. They are called in the
literature recursive trees. If instead we choose φ(t) = L(t) = 1

1−t =
∑∞

n=0 n!x
n

n!
, the

exponential generating function of linear orders, it gives rise to the plane increasing
trees. Sometimes they are also called plane recursive trees. For φ(t) = 1 + t2 we get
the complete plane binary trees. More generally, φ(t) = 1 + tr gives us the complete
plane r-ary trees. The binary plane trees (not necessarily complete) are obtained
from φ(t) = (1 + t)2. Increasing trees have a variety of applications. Recursive trees
have been used in models of the spread of infections [38], pyramid schemes [24], and
as a simplified model for the world wide web. Plane recursive trees are a special
instance of the Albert-Barabási free of scale networks model [3]. Increasing binary
trees are closely related to binary search trees and sorting algorithms.

Consider the autonomous differential equation{
y′ = φ(y)

y(0) = 0.
(2)

It is well known that its solution y(t) = A↑φ(t) has the following interesting combi-

natorial interpretation in terms of increasing rooted trees. The coefficient A↑φ[n] of
the formal power series

A↑φ(t) =
∞∑
n=1

A↑φ[n]
tn

n!

is the inventory of the set of φ-enriched increasing rooted trees in n vertices [4–6,34].

A↑φ[n] =
∑
T

wφ(T )

Definition 1.1. The height of a vertex in a rooted tree is defined to be its distance
from the root, i.e., the number of edges in the unique path from the vertex to the
root. The path length of a tree is the sum of the heights of all its vertices.

The height of vertices and the path length are very important statistics, and
their distribution in random trees have been studied by a number of authors (see for
example [13–17, 31, 35–37, 40, 42, 43] and references therein). The path length is of
much importance for the analysis of algorithms since it is frequently related to the
execution time [29]. However, the solution of differential equations giving rise to the
generating functions of families of increasing rooted trees does not give information
about those items. We found here a differential equation with an additional param-
eter q, whose generating function give us the number of trees classified with respect
to their path length. The path length polynomial pφn(q) so obtained is a q-analog of
the coefficient A↑φ[n].

A very simple formula for the chain rule for higher derivatives (Faà di Bruno
type formula) was found in [20]. We present a proof of it by using the species
combinatorial interpretation of differential operators [5, 28, 32–34]. In particular we
use sums of operators of the form xi+1∂i (dart operators) acting on formal power
series in a finite number of variables x0, x1, x2, . . . , xn. This lead us to go further and
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find many other applications to this kind of operators. In this way, by considering
sum of dart operators xi+1∂i and of their adjoints xi∂i+1 we show that they model
the generation of upper-diagonal (ballot) paths, and the special case of Dyck paths.
It allows us to get generating functions that give information about the heights at
different stages of the path, and to the associated generalized Bell polynomials, that
count assemblies of upper diagonal lattice paths, according with their heights. Other
versions of lattice paths can be modeled by similar operators.

By considering operators of the form φ(xi+1)∂i (Shift corolla operators) we get
recursive formulas for the enumeration of increasing trees and forests according with
the height (depth) of their vertices. The framework we use here is equivalent to the
formalism of weighted species over totally ordered sets. However for simplicity we
avoid the use of categorical language, unnecessary in this context.

After obtaining the results of Sections 2, 3, and 4 we realized that the operators
considered here are closely related the grammar approach of Chen [8, 18]. However,
they are not equivalent. Differential operators that are not derivations, i.e., those
that involve higher order partial derivatives, do not have free of context grammar
counterpart. In Section 5 we translate, reinterpret and give new proofs in this context
of Chen’s interesting results about enumeration of rooted trees, and Faà di Bruno
grammar. Inspired on those, we give a new formula for the enumeration of Cayley’s
(non rooted) trees. In Section 6 we present a generalized form of all those results
using one-parameter groups in the general context of formal power series in an ar-
bitrary number of variables. In this way we obtain a wide scope generalization of
Chen’s formula (16), that allows us to enumerate enriched rooted trees associated to
differential operators (see Corollary 6.3).

Definition 1.2. Let F (t) ∈ R[[t]] be an exponential formal power series

F (t) :=
∞∑
k=0

fn
tn

n!

with coefficients in a ring R that contains Q. For a finite totally ordered set V =
{v1, v2, . . . , vn} of cardinal n we define F [V ] to be the coefficient fn of the series,

F [V ] := f|V |. (3)

Remark 1.1. We have to be careful, in that the usual notation of species F [V ]
denotes a set of combinatorial structures in a family F . Here, as a coefficient of
the series F (t), it is an element of the ring R. This coefficient is thought of as
the total weight (inventory) of a set of combinatorial structures, or combinatorial
configurations belonging to a family WF and having labels in the set V . More
precisely, we assume that for every set V , there exists a weighted set WF [V ] such
that

F [V ] = |WF [V ]|w =
∑

O∈WF [V ]

w(O) = f|V |.

There could possibly be many families of weighted sets giving rise to different com-
binatorial interpretations of the same series F (t). But we are sure that there exists
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at least one, the trivial configuration, i.e., the family of unitary sets

WF [V ] = {V }

having as weight the coefficient of the series itself

w(V ) = f|V |.

More interesting configurations come into play by defining them directly, or by the
use of combinatorial operations on the trivial ones. We use Labelle’s corollas [5, 32]
to represent the coefficient F [V ].

The coefficients of the sum, product, derivative and substitution of formal power
series are given by the recipes

(F +G)[V ] = F [V ] +G[V ]

(F.G)[V ] =
∑

V1]V2=V

F [V1]G[V2] (4)

F ′[V ] = F [{∗} ] V ] (5)

F (G)[V ] =
∑

π∈Π[V ]

F [π]
∏
B∈π

G[B] (6)

The sum in Eq. (4) is over all decompositions of V into a pair of disjoint sets (V1, V2),
V1 ] V2 = V . In Eq. (5), ∗ is a ghost vertex that we add to V as first element. In
Eq. (6) the sum is over all the set partitions of the vertices V and we assume that
the series G(t) has zero constant term.

With the set theoretical notation for the coefficients of a formal power series we
can rewrite the weight of a φ-enriched rooted tree, Eq. (1). Recall we assume that
the edges of a rooted tree T are oriented towards the root. In a rooted tree T with
vertices in V , denote by T−1(v) the (possible empty) set of immediate predecessors
of v (fiber of v). The weight is now defined by

wφ(T ) =
∏
v∈V

φ[T−1(v)].

2 Path length generating function

Let T be an increasing tree with vertex labels in a totally ordered set V . We define
the weight νφ, in order to include information about the height of their vertices, as

νφ(T ) :=
∏
v∈V

φ[T−1(v)]qht(v) = qpl(T )
∏
v∈V

φ[T−1(v)].

where pl(T ) is the path length of T and ht(v) is the height of vertex v in T . We define
Pφ(t, q) as the exponential generating function of the inventory of the φ-enriched trees
according with their path length, which is a polynomial in q,

pφn(q) := Pφ[n] =
∑
T

νφ(T ).
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The sum runs over all increasing trees with vertices in [n]. The polynomial pφn(q) is
a q-analog of the inventory of φ-enriched increasing trees A↑φ[n].

Theorem 2.1. The generating function Pφ(t, q) of the φ-enriched increasing trees
with respect to the path length satisfies the differential equation{

∂Pφ(t,q)

∂t
= φ(Pφ(tq, q))

Pφ(0, q) = 0.

Proof. The coefficient of
∂Pφ
∂t

[V ] on a totally ordered set V is equal to Pφ[{∗} + V ].
Since the configurations of WPφ [V ] are increasing φ-enriched trees, for a tree T of
WPφ [{∗} + V ] the ghost vertex takes the place of the root. The remaining vertices
constitute a φ-forest of weighted increasing trees. Their weight is equal to

φ[π]×
∏
B∈π

ν̂(TB),

where ν̂φ(TB) = q|B|νφ(TB), since the height of each vertex in TB is one less its
original height on T . The total weight of the configurations in WPφ [{∗}+ V ] is

q|V |
∑

π∈Π[V ]

φ[π]×
∏
B∈π

Pφ[B].

By Eq. (6), it is equal to
q|V |φ(Pφ)[V ],

and we have

∂Pφ
∂t

(t, q) =
∞∑
n=0

qnφ(Pφ)[n]
tn

n!
=
∞∑
n=0

φ(Pφ)[n]
(qt)n

n!
= φ(Pφ(tq, q)).

As an immediate consequence we get

Corollary 2.1. Denote by

Fφ(t, q) = φ(Pφ(t, q)) =
∞∑
n=0

fφn (q)
tn

n!

the generating function of φ-forests of φ-enriched increasing trees enumerated accord-
ing with their pathlength. We have

Fφ(t, q) =
∂Pφ(u, q)

∂u

∣∣∣u= t
q
.

Equivalently, the respective coefficients satisfy the identity

fφn (q) = q−npφn+1(q), n ≥ 0.
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Example 2.1. The path length generating function of the recursive trees (φ = exp)
satisfies the equation

∂Pexp(t, q)

∂t
= ePexp(tq,q). (7)

Taking derivatives in Eq. (7) we obtain

∂2Pexp(t, q)

∂t2
=
∂Pexp(t, q)

∂t

∂Pexp(u, q)

∂u
|u=tq × q,

and from that, the recursive formula{
pexp
n+1(q) =

∑n−1
k=0

(
n−1
k

)
pexp
k+1(q)pexp

n−k(q)q
n−k

pexp
1 (q) = 1, pexp

2 (q) = q.

Fexp(t, q) = ePexp(t,q) is the path length generating function of forests of recursive
trees. It satisfies the equation

∂Fexp(t, q)

∂t
= ePexp(t,q)∂Pexp(t, q)

∂t
= ePexp(t,q)ePexp(tq,q) = Fexp(t, q)Fexp(tq, q).

Example 2.2. The path length generating function of the plane increasing trees
(φ = L) satisfies the differential equation

∂PL(t, q)

∂t
=

1

1− PL(tq, q)

From that we get
∂PL(t, q)

∂t
= 1 +

∂PL(t, q)

∂t
PL(tq, q)

and we obtain the recursive formula{
pLn+1(q) =

∑n−1
k=0

(
n
k

)
pLk+1(q)pLn−k(q)q

n−k

pL1 (q) = 1.

FL(t, q) = 1
1−PL(t,q)

is the path length generating function of the linearly ordered
forests of increasing plane trees. It clearly satisfies the differential equation

∂FL(t, q)

∂t
= F 2

L(t, q)
∂PL(t, q)

∂t
= F 2

L(t, q)FL(tq, q).

The polynomials f exp
n (q) and fL

n (q) are respectively those in sequences A126470
and A232433 of the OEIS. We have provided here combinatorial interpretations for
both of them.

1. The polynomial f exp
n (q), sequence A126470, enumerates forests of recursive

trees over n vertices, according with their pathlength.

2. The polynomial fL
n (q), sequence A232433, enumerates linearly ordered forests

of plane increasing trees on n vertices, according with their pathlength.
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Example 2.3. The plane binary increasing trees are obtained as the solution of
Eq. (2) for φ(x) = (1 + x)2. More generally, the r-ary plane increasing trees are
obtained from φ(x) = (1 + x)r =: ρr(x). Their path length generating function then
satisfies

∂Pρr(t, q)

∂t
= (1 + Pρr(tq, q))

r.

For the binary case we obtain{
pρ2n+1(q) = qn(2pρ2n (q) +

∑n−1
k=1

(
n
k

)
pρ2k (q)pρ2n−k(q))

pρ21 (q) = 1.

With this recursive formula, we compute

Pρ2(t, q) = t+ 2q
t2

2
+
(
4q3 + 2q2

) t3
6

+
(
8q6 + 4q5 + 12q4

) t4
24

+
(
16q10 + 8q9 + 24q8 + 32q7 + 40q6

) t5

120
+
(
32q15 + 16q14 + 48q13 + 64q12 + 160q11

+40q10 + 280q9 + 80q8
) t6

720
+ . . .

Example 2.4. The plane (complete) binary trees are obtained by enriching with
the function β(t) = 1 + t2. We have

∂Pβ(t, q)

∂t
= 1 + P 2

β (tq, q).

From that we get the recursive formula for the path length polynomials{
pβn+1(q) = qn

∑n−1
k=1

(
n
k

)
pβk(q)pβn−k(q)

pβ1 (q) = 1.

The function tan(t) is the solution of the original autonomous differential equation
y′(t) = 1 + y2, y(0) = 0, which enumerates the alternating permutations of odd
length [1]. The polynomials pβn(q) are a new kind of q-analogs of the tangent numbers.

3 Chain rule for higher derivatives and enumeration of
lattice paths

Let W and Z be Banach spaces over K, K being either R or C. Assume that we
have two functions f : Ψ → Ω and g : Ω → Z, Ψ and Ω being open subsets of
K and W respectively. Assume also that f and g have both n continuous Fréchet
derivatives, for some n ∈ N. The following formula, alternative to the classical Faà
di Bruno’s [22], was obtained in [20]

(f ◦ g)(n)(t) = δnf(g(t), g′(t), . . . , g(n)(t)), (8)
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where δn is defined recursively as follows

δ0f(x0) = f(x0)

δj+1f(x0, x1, . . . , xj+1) = lim
t→0

1

t
[δjf(x0 + tx1, x1 + tx2, . . . , xj + txj+1)].

Observe that δjf goes from Ω × Xj to Y . The operator δj is called the higher-
order directional derivative. To the best of our knowledge the notion of higher-
order directional derivatives and Eq. (8) together with two other versions of it, were
introduced in [20]. For the classical version of Faà di Bruno Formula and historical
remarks see for example [11, 19]. In [7] the author gives a more complete picture,
pointing out that the formula appeared for the first time in a paper by Arbogast
(see [2]), published as early as 1800. For multivariate generalizations see [12, 39]).
We will call Eq. (8) the HMY formula (because it is due to Huang, Marcantognini
and Young [21]). The HMY formula was required in order to study the spectral
Carathéodory-Fejér problem. This problem consists in determining whether there
exists an analytical matrix function F on the unit disc D with prescribed derivatives
F (j)(0) (1 ≤ j ≤ n) and such that the eigenvalues of F (λ) lie in D for all λ ∈ D. In
spite of its simplicity, the HMY formula is not well known to the combinatorialist
audience. We first translate it into the context of formal power series. Let R be a
ring that contains Q. Define for each n ≥ 1 the operator Dn : R[[x0, x1, . . . , xn−1]]→
R[[x0, x1, . . . , xn]], Dn =

∑n−1
j=0 xj+1∂j. For example,

D1 = x1∂0,

D2 = x2∂1 + x1∂0,

D3 = x3∂2 + x2∂1 + x1∂0.

The reader may check that the correct translation of the operator δn to this context
of formal power series is by means of ∆n, defined as follows,

∆n := DnDn−1 . . .D1.

Let F (x) and G(x) be two formal power series with G(0) = 0. Observe that if
we apply the operator ∆n to the formal power series F (x0), then we get a formal
power series in the variables x0, x1, . . . , xn, (∆nF )(x0, x1, . . . , xn). HMY formula then
becomes

F (G)(n)(x) = (∆nF )(G(x), G′(x), . . . , G(n)(x)).

Closely related to this, Chen [8] defined a grammar to obtain the nth coefficient zn
of the composition of two formal power series P (Q(t)), P (t) =

∑∞
k=0 yk

tk

k!
, Q(t) =∑∞

k=1 xk
tk

k!
. By translating that to the differential operators language we get that

zn = Γny0,

where
Γn := FnFn−1 . . .F1,
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Fn being the differential operator

Fn = Dxn + x1Dyn =
n−1∑
i=0

(xi+1∂xi + x1yi+1∂yi).

We give a combinatorial (bijective) proof of (3) by reducing it to the classical
Faà di Bruno formula by means of a combinatorial device that we called dart op-
erators. The dart operators are a special type of corolla operators [34]. They can
be readily adapted to give a direct visual proof of (3), as well as to several other
identities in [8] and in [18]. By using shift corolla operators, we construct a family of
generating functions that enumerates trees and forests of increasing trees according
to the height of their vertices. A special kind of them are the r-ary plane increasing
trees. For r = 1 we get back the classical Bell polynomials.
We begin by giving the combinatorial description of operations among exponential
generating function in a finite set of variables, following the colored species conven-
tions as in [41].

3.1 The combinatorics of formal power series in many variables

We shall deal with exponential formal power series in a set of variables x0, x1 . . . , xn,
over a ring R that contains Q:

F (x0, x1, x2, . . . , xn) =
∑

k0,k1,k2...,kn

fk0,k1...,kn
xk00 x

k1
1 . . . xknn

k0!k1! . . . , kn!
.

In order to write in a more compact way this kind of formal power series we shall
use the following notation. Bold letters like k will represent vectors of non-negative
integers (k0, k1, . . . , kn). The vector of variables (x0, x1, . . . , xn) will be denoted by
x, and the monomial xn0

0 x
n1
1 . . . xknn by xn. The factorial k! will denote the (finite)

product of factorials k0!k1! . . . kn!.
The series (3.1) looks as follows:

F (x) =
∑
k

fk
xk

k!
. (9)

A colored set is a pair (V, κ), where V is a finite totally ordered set, and κ is a
function from V to the set N. The type or cardinal of (V, κ) is defined to be the
vector of the cardinalities of the pre-images by κ of each of the colors,

|(V, κ)| = (|κ−1(0)|, |κ−1(1)|, . . . , |κ−1(n)|).

Definition 3.1. For F (x) ∈ R[[x0, x1, x2, . . . , xn]] we define F [V, κ] to be the coeffi-
cient fk, where k is the type of (V, κ),

F [V, κ] := f|(V,κ)|.
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Figure 1: Corolla operator φ(x)∂1 applied to F (x).

Similarly as in Remark 1.1, the coefficient is interpreted as the weight of a family
of combinatorial structures, or combinatorial configurations on the set of colored
vertices (V, κ).

It is trivial to check that

(F +G)[V, κ] = F [V, κ] +G[V, κ].

At the set theoretical level, the coefficient of the series of the partial derivative is the
coefficient of the original series on the colored set plus a ‘ghost’ element colored with
the color corresponding to the variable of the partial derivative

∂iF [V, κ] = F [{∗}+ V, κ+i].

Here, {∗} + V is the totally ordered set obtained by adding ∗ as first element, and
κ+i is the extension of κ that colors ∗ with the color i. the combinatorial formula
for the coefficient of the product is given by

(F.G)[V, κ] =
∑

V1]V2=V

F [V1, κV1 ]G[V2, κV2 ], (10)

where the sum in Eq. (10) is over all decompositions of V into a pair of disjoint sets
(V1, V2), V1 ] V2 = V , and κVi is the restriction of κ to Vi, i = 1, 2.

3.2 The Faà di Bruno formula

Let F (x) and G(x) be two exponential formal power series F (x) =
∑∞

k=0 fk
xk

k!
and

G(x) =
∑∞

k=0 gk
xk

k!
, with g0 = 0. Then, the nth derivative of F (G(x)) is given by

F (G)(n)(x) =
n∑
k=1

F (k)(G(x)).Bn,k(G
′(x), G′′(x), . . . , G(n)(x)),
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where

Bn,k(x1, x2, . . . , xn) =
∑

k1+k2+···+kn=k,k1+2k2+···+nkn=n

n!

1!k1k1!2!k2k2! . . .
xk,

is the partial Bell polynomial. The type of a set partition π is defined to be the tuple
k, ki being the number of blocks of size i in π. Since n!

1!k1k1!2!k2k2!...
counts the number

of partitions of [n] of type k, the Bell polynomials can be written in a set theoretical
way as

Bn,k(x) =
∑

π∈Π[n],|π|=k

∏
B∈π

x|B|.

Expressing the Bell polynomials as an exponential power series,

Bn,k(x1, x2, . . . , xn) =
∑
k

n!

1!k1k1!2!k2k2! . . .
k!

x

k!
,

the coefficient Bn,k[V, κ] counts the pairs (π, h), where π is a partition of [n] having
exactly k blocks, k = |V |, and h is a bijection from π to V such that the color of the
image of each block equals its size:

κ(h(B)) = |B|, B ∈ π.

The Faà di Bruno formula can be rewritten in a set theoretical way as (see Riordan
[44])

F (G)(n)(x) =
∑
π∈Π[n]

F (|π|)(G(x))
∏
B∈π

G(|B|)(x).

3.3 Corolla and dart operators

Definition 3.2. Let φ(x) be a formal power series in a finite number of variables.
An operator of the form φ(x)∂i for some i = 0, 1, . . . is called a corolla operator. It
acts on the coefficients of a formal power series F as follows

(φ(x) · ∂iF )[V, κ] =
∑

V1]V2=V

φ[V1, κ1]× F [{∗} ] V2, κ
+i
2 ].

The configurations of φ(x) · ∂iF are then pairs: the first element of the pair a
configuration of φ over a colored set, and the second a configuration F over a second
colored set. The first element of the second colored set being a ghost element of color
i (due to the partial derivative ∂iF ). This can be represented in a more pictorial
way as a φ-enriched corolla standing over the ghost element ∗ (of color i) in the
F -configuration (see Fig. 1).

As a special case, the operator xj.∂i is called the dart operator of type (i, j). Since

xj[V1, κ1] =

{
1 if (V1, κ1) is a singleton of color j

0 otherwise
,

the structures of (xj · ∂i)F can be represented by drawing an edge (dart) from a
singleton vertex (of color j) to the ghost element ∗ (of color i) in a configuration of
F . (see Fig. 2). Such a dart is said to be of type (i, j).
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Figure 2: Structure of the dart operator x1∂3 acting on the generic combinatorial
family enumerated by F (x)

For a formal power series on many variables, the configurations of

DnF (x) =
n−1∑
i=0

xi+1∂iF (x)

are configurations of F (x) with (at most) one dart of type (i, i+ 1) for some i from
0 to n− 1.
We have the following

Theorem 3.1. Let F (x0) be a formal power series in one variable. Then we have
the identity

(∆nF )(x0, x1, . . . , xn) =
n∑
k=1

F (k)(x0)Bn,k(x1, x2, . . . , xn).

Proof. The operator D1 adds to the configurations of F a dart of type (0, 1). The
operator D2 = x2∂1 +x1∂0 adds to the structures of D1F either a dart of type (1, 2),
or one of type (0, 1) whose ghost element takes the place of a label of the original
structure in F . Since configurations of F (x0) have only vertices of color 0, the ghost
element of darts of type (1, 2) has to be on the top of a dart of type (0, 1) already in
the structure of D1F , forming a tower of darts of size two. Iterating this procedure
it can be easily seen that the structures of ∆nF [V, κ] are configurations of F with
k towers of darts, for some k between 1 and n (k-towered F -configurations, see Fig.
3.(a)). The labels of the ghost elements in each tower increase from bottom to top.
The number of ghost elements between bottom and top of each tower is equal to the
color of the label on the top. The total number of ghost elements in each structure
is equal to n. Let (V2, κ2) be the colored set given by the labels on the top of the
towers. The towers clearly define a partition on the set of ghost elements, plus a type-
preserving bijection from the partition to (V2, κ2) (see Fig. 3.(b)). In other words,
one of the structures is counted by Bn,k[V2, κ2]. Over the colored set of the remaining
vertices (V1, κ1), V1 = V − V2, κ1(V1) = 0, we have a structure of the kth derivative
of F , F (k)[V1, κ1] = ∂k0F (x0)[V1, κ1]. This correspondence between k-towered F -
structures associated to ∆nF and configurations of F (k)(x0) · Bn,k(x1, x2, . . . , xn) is
clearly reversible.

The following corollary (HMY formula) follows directly from the previous theorem
and the Faà di Bruno formula.
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Figure 3: A configuration of ∆9Gc(x0) =
∑9

k=1G
(k)
c (x0)B9,k(x), Gc(x) being the

series that enumerates simple and connected graphs.

Corollary 3.1. Let F and G be two formal power series such that G(0) = 0. Then
the n-derivative of the formal power series F (G(x)) is given by the formula:

(F (G(x)))(n) = ∆nF (G(x), G′(x), G′′(x), G′′′(x), . . . , G(n)(x)).

Corollary 3.2. The polynomial ∆kx
n
0 counts the functions f : [k] → [n] according

with the sizes of their preimages. Setting the weight w(f) as the product
∏n

i=1 x|f−1(i)|,
we have

∆kx
n
0 =

∑
f :[k]→[n]

w(f). (11)

Equivalently, the coefficient ∆kx
n
0 [V, κ] is equal to the number of pairs (f, h),

where f is as above, and h is a bijection h : [n] → V such that the color of h(j)
equals the size of its preimage by f ,

κ(h(j)) = |f−1(j)|.

Proof. By Theorem 3.1

∆kx
n
0 =

k∑
j=1

(n)jx
n−j
0 Bk,j(x1, x2, . . . , xk) =

k∑
j=1

(n)j
∑

π∈Π[k],|π|=j

xn−j0

∏
B∈π

x|B|.

The monomial xn−j0

∏
B∈π x|B| is the weight of any function having as preimages the

blocks of the partition π, |π| = j. There are (n)j of such functions, which proves
Eq. (11). The coefficient ∆kx

n
0 [V, κ] is k! times the number of functions that have

weight xk (k being the type of (V, κ)). The coefficient k! is exactly the number of
bijections h.

3.4 Ballot and Dyck paths

Suppose that we have an election with two candidates. Assume that during the
counting of n ballots one of the candidates always stays ahead of the other. Such
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kind of ballot counting will be called good. Formally a good ballot counting is a
function

g : V → {−1, 1}

such that for every m, 1 ≤ m ≤ n, Sm =
∑m

j=1 g(vj) ≥ 0. A good ballot counting
will be identified with the signed set

g ≡ {v+
1 , v

g(v2)
2 , . . . , vg(vn)

n }. (12)

The ballot cardinal of the signed set {v+
1 , v

g(v2)
2 , . . . , v

g(vn)
n } is defined to be the sum

Sn,

|{v+
1 , v

g(v2)
2 , . . . , vg(vn)

n }|b =
n∑
j=1

g(vj) ≥ 0. (13)

Remark 3.1. The partial sums Sm form a one dimensional lattice walk that never
crosses zero. There are two equivalent ways of representing these one-dimensional
lattice walks.

1. Draw as a two dimensional lattice path with points (m,Sm), m = 0, 1, . . . , n
and northeast (1, 1) and southeast (1,−1) steps. The path stays above the
x-axis.

2. Codifying each positive ballot as a north step (0, 1) and each negative bal-
lot as an east step, (1, 0). This is the path with points (m−Sm

2
, Sm+m

2
),m =

0, 1, 2, . . . , n. The path stays above the diagonal.

If Sn = 0, the resulting path is called a Dyck path.

Consider the adjoints of dart operators (xi+1∂i)
∗ = xi∂i+1, i = 0, . . . , n − 1, and

their sum D∗n =
∑n−1

i=0 xi∂i+1. The ballot operator Bn is defined as the sum

Bn = Dn +D∗n.

The product
Pn = BnBn−1 . . .B1,

has very interesting properties. If the variable xk+1 represents a vertex of height k+1
in a combinatorial structure, the adjoint (decreasing) dart operator xk∂k+1 puts a
ghost vertex in its place and adds a vertex whose height is decreased by one. The
operator Pn applied to x0 may represent any of the two equivalent kinds of lattice
paths in Remark 3.1. We choose the diagonal representation, because it is more
directly related to the q-analog of Catalan numbers in terms of Dyck paths. The
indeterminate xk appearing at each stage of the walk gives us the height of the lattice
point with respect to the diagonal y = x (see Fig. 4). Specifically,

Pnx0 = b[0]
n (x0, x1, . . . , xn) =

n∑
k=0

b
[0]
n,kxk,
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where b
[0]
n,k is the number of n-steps above-diagonal paths from (0, 0) and having final

height k = Sn. Or equivalently, above-diagonal paths from (0, 0) to (n−k
2
, n+k

2
). The

coefficient Cn = b
[0]
n,0 of x0 is the number of Dyck paths (Catalan number) [10].

In a similar way we get that

Pnxj = b[j]
n (xr, xr+1, . . . , xn+j) =

n+j∑
k=r

b
[j]
n,kxk, r = min{0, n− j},

where b
[j]
n,k is the number of above-diagonal n-steps paths from (0, j) and having final

height k.
We now modify the lattice operators in order to keep track of the information

about the height of some points of the path. We set

Dq∗n :=
n−1∑
i=0

qixi∂i+1

Bqn := D +Dq∗n
and

Pqn := BqnB
q
n−1 . . .B

q
1

b[j]
n (x,q) := Pqnxj.

The parameters qi in the polynomials b
[j]
n (x,q) weight the paths according with

the heights of the points after horizontal steps. For example, the weight of the path
in Fig. 4 is equal to x2q1q

2
2. Making the substitution qi ← qi in b

[j]
n (x,q) weights

each path according with the area between the path and the diagonal. In particular,
the coefficient of x0 in b

[0]
n (x,q) after subindex rising in the q parameters, is the

area q-analog of the Catalan number Cn(q) [9, 10]. From its definition in Eq. (14),

b
[j]
n (x,q) satisfies the recursive formula:

b[j]
n (x,q) = Bqnb

[j]
n−1(x,q).

3.4.1 Ballot Partitions

Definition 3.3. A ballot partition over a (totally ordered) set V , is an ordinary
partition on V together with a good ballot on each block of it. Equivalently, each
block of the partition is a signed set as in Eq. (12).

Enumerating the ballot partition according to the ballot cardinals, Eq. (13), we
obtain the following generalization of partial and total Bell polynomials:

BBn,k(x) :=
∑

π∈Π[n],|π|=k

∏
B∈π

x|B|b

Y Bn (x) :=
n∑
k=1

BBn,k(x).

Similarly as in Theorem 3.1, we get the following theorem.
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Figure 4: Representation of the action of P8 on x0.

Theorem 3.2. Let F (x0) be a series as in Theorem 3.1. Then the series (PnF )(x)
satisfy the identity

(PnF )(x0, . . . , xn) =
n∑
k=1

F (k)(x0)BBn,k(x0, x1, . . . , xn).

4 Shift corolla operators and increasing trees

Let φ(x) be a formal power series with coefficients in R. Consider the autonomous
differential equation with initial condition the indeterminate x,{

y′ = φ(y)

y(0) = x.
(14)

It is the same autonomous differential as in Eq. (2), but having as initial condition
the variable x. The solution has a similar combinatorial interpretation in terms of
increasing trees. It is a formal power series in two variables A↑φ(t, x) whose coeffi-
cients count φ-enriched increasing trees with two sorts of vertices. The variable t
corresponding to internal vertices and the variable x to the leaves [34]. The inter-
nal vertices are weighted using the coefficients of the formal power series φ(x). If
φ[0] 6= 0, the internal vertices could have indegree zero. When φ[0] = 0, all the inter-
nal vertices has positive indegree, and in that case the trees are called extended [29].
Expressing A↑φ(t, x) as an exponential generating function in t with coefficients in
C[[x]],

A↑φ(t, x) =
∞∑
n=1

T φn (x)
tn

n!
,

where the series T φn (x) is the exponential generating function of increasing φ-enriched
trees having n internal vertices, enumerated according with their number of leaves.
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This generating function does not give information regarding neither the height of
the internal vertices nor of the leaves. We obtain that by means of shift corolla
operators.

Definition 4.1. An operator of the form φ(xi+1)∂i is called a shift corolla operator
of type i+ 1. We generalize the operators Dn and ∆n,

Dφn : R[[x0, x1, . . . , xn−1]]→ R[[x0, x1, . . . , xn−1, xn]],

Dφn =
n−1∑
k=0

φ(xk+1)∂k

∆φ
n = DφnD

φ
n−1 . . .D

φ
1 .

Proposition 4.1. Let
T φn (x) = ∆φ

nx0.

The series T φn (x) = T φn (x1, x2, . . . , xn) enumerates the φ-enriched increasing trees
with n internal vertices by the height of their leaves; the coefficient T φn [k] counts the
number of such trees having ki leaves of height i, i = 0, 1, . . . , n− 1.

Proof. At a combinatorial level, Dφ1x0 = φ(x1)∂0 acts over x0 by grafting a corolla
of type 1 in a singleton vertex of color zero, the ghost root taking the place of that
vertex. The color 1 of the leaves indicates their height. The configurations of Dφ2D

φ
1x0

are obtained by grafting a corolla of type 2 over a corolla of type 1, the ghost vertex
taking the place of a vertex of color 1. Again the color of leaves indicates their height.
The ghost vertices are enumerated to keep track of the order in which the operators
were applied. By applying the operator Dφ3 we graft a either a corolla of type 1 or a
corolla of type 2 over the tree in the same way as before. The internal ghost vertices
increase along any path from the root. The general result follows by induction.

We modify corolla operators in order to keep information about the height of
internal vertices, multiplying it by the parameter qi, φ(xi+1)qi∂i. In that way we
define the operators

Dφ,qn =
n−1∑
k=0

φ(xk+1)qk∂k

∆φ,q
n = DφnD

φ,q
n−1 . . .D

φ,q
1 .

In a similar way as in the proof of Proposition 4.1 we get

Proposition 4.2. Let
T φn (x,q) = ∆φ,q

n x0.

The formal power series T φn (x,q) = T φn (x1, x2, . . . , xn; q0, q1, . . . , qn−1), enumerates
the φ-enriched increasing trees with n internal vertices by the height of their leaves
and internal vertices. The coefficient

T φn [V, κ](q) := T φn [V, κ](q0, q1, . . . , qn),
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Figure 5: Extended binary trees enumerated by the polynomial
T [2]

3 (x1, x2, x3; q1, q2) = 2x4
2q0q

2
1 + 4x2

3x2x1q0q1q2.

a polynomial in q0, q1, . . . , qn, counts the number of such trees having leaves with
labels in V , each leaf v having height κ(v), classified according with the height of their
internal vertices. The coefficient of q0q

j1
1 . . . q

jn−1

n−1 of T φn [V, κ](q0, q1, . . . , qn) gives us
the number of those trees having jr internal vertices of height r, r = 1, 2, . . . , n− 1.

From that we get the recursive formula

T φn (x,q) =
n−1∑
i=0

φ(xn+1)qi∂iT φn−1(x,q).

Let us denote by Bφ
n,k(x,q) the generating function of forests having exactly k in-

creasing φ-enriched trees as above, with n internal vertices in total. The coefficient
Bφ
n,k[V, κ](q) is a polynomial in q = (q0, q1, . . . , qn−1), whose coefficient qk0q

j1
1 . . . q

jn−1

n−1

counts the number of such forest with jr internal vertices of height r, r = 0, 1, 2, . . . ,
n − 1. Again, the elements in the colored set (V, κ) are labels for the leaves whose
colors represent their height.

We have the following generalization of Theorem 3.1.

Theorem 4.1. Let F (x0) be a series as in Theorem 3.1. Then, the series ∆φ,q
n F (x; q)

satisfy the identity

(∆φ,q
n F )(x0, . . . , xn; q0, . . . , qn−1) =

n∑
k=1

F (k)(x0)Bφ
n,k(x1, . . . , xn; q0, . . . , qn−1).

Proof. Completely similar to the proof of Theorem 3.1.

The generating series

Y φ
n (x,q) =

n∑
k=1

Bφ
n,k(x; q)

counts forests of trees as above, with any number of trees from 1 to n.
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For F (x0) = ex0 , from Theorem 4.1 we obtain the Rodrigues-like formula for
Y φ
n (x,q).

Y φ
n (x,q) = e−x0(∆φ,q

n ex0)(x,q). (15)

The following recursive formula can be obtained from equation (15) as it was done
in [21] for the ordinary Bell polynomials.

Y φ
1 (x1, q0) = φ(x1)q0,

Y φ
n (x,q) = φ(x1)q0Y

φ
n−1(x,q) +

n−1∑
i=1

φ(xi+1)qi∂xiY
φ
n−1(x,q).

However, a straightforward combinatorial proof can be given to the above recur-
sive formula and to the following one, by using the combinatorial interpretations of
Y φ
n (x,q) and of Bφ

n,k(x,q) in terms of forests of increasing trees.

Bφ
1,1(x1; q0) = φ(x1)q0,

Bφ
n,k(x,q) = φ(x1)q0B

φ
n−1,k−1(x,q)

+
n−1∑
i=1

φ(xi+1)qi∂xiB
φ
n−1,k(x,q).

Remark 4.1. 1. If φ[0] 6= 0 the specializations xn ← 0 and qn ← qn in T φn (x,q)
give us the polynomials pφn(q) of Section 2.

2. If φ[0] = 0, the φ-enriched trees are called extended. If in addition φ(x) enu-
merates structures without symmetries except the identity (rigid structures),
the substitution xn ← xn and qn ← qn gives us the series pφn(x, q), which is
the ordinary generating function of increasing extended trees with unlabelled
leaves, according to their internal and external pathlengths (sum of the heights
of leaves [29]).

Example 4.1. Extended r-ary plane trees.
Let r be a positive integer. We consider here rooted trees where each internal node
has exactly r ordered children (r-ary plane trees). In this case φ(x) = xr and we are

in the case 2 of Remark 4.1. We use the notation B
[r]
n,k(x) and Y

[r]
n (x). The coefficient

of xn/n! in B
[r]
n,k(x) counts the number forests with exactly k trees, having n internal

vertices and ni leaves of depth i. Since there are ni! ways of permuting the labels in
the leaves of depth i, obtaining a different labelled forest each time, the coefficient of
xn in B

[r]
n,k(x) counts the same kind of forests, but with unlabelled leaves (see figure

5, and Table 4). A similar interpretation is given to Y
[r]
n (x).

5 Enumeration of Cayley’s trees

For a (non rooted) tree a on the set of vertices [n] define its weight as follows

w(a) =
n∏
i=1

xda(i),
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B
[2]
5,1(x) 40x2

2 x3
4 + 32x2

3 x4
2 x3 + 24x3

3 x4
2 x1 + 8x4

4 x2 x1+
16x5

2 x4 x3 x2 x1

B
[2]
5,2(x) 20x3

4 x1
3 + 40x4

2 x3 x2 x1
3 + 40x2

6 x1 + 140x2
3 x3

2 x1
2

B
[2]
5,3(x) 80x1

4 x2
4 + 40x1

5 x3
2 x2

B
[2]
5,4(x) 20x1

7 x2
2

B
[2]
5,5(x) x1

10

Table 1: Generalized partial Bell polynomials for n = 5 and and r = 2.

where da(i) is the degree in a of the vertex i. The weight of a rooted tree T is then
defined as

w(T ) =
n∏
i=1

xdT (i).

Denote by An (respectively An) the set of trees (respectively rooted trees) on n
vertices. Recall that for rooted trees, dT (i) denotes the in-degree of vertex i, the
edges oriented towards the root.

Define the generating functions An(x) =
∑

a∈An w(a) and An(x) =
∑

T∈An w(T ).

Proposition 5.1. We have the following identities

An(x0, x1, . . . , xn−1) = ∆n−1x
n
0

An(x1, x2, . . . , xn−1) = ∆n−2x
n
1 .

Proof. The coefficient An[V, κ] is the number of pairs (T, h), T being a rooted tree
on An, n = |V |, and h : [n]→ V a bijection assigning to each vertex of T a label in V
whose color is equal to the in-degree of the vertex, κ(h(i)) = d(i), i = 1, 2, . . . , n. The
structures enumerated by DnAn[V, κ] are colored labeled trees with a dart of type
(i, i+1) for some i = 0, 1, . . . , n−1. Now we can use an argument similar to that in [28]
used to prove Cayley’s theorem on the number of rooted trees. In a darted tree (Fig.
6 (a)), replace the ghost vertex of color i by the real vertex of color i+1, and mark it
with an ingoing arrow. Consider the subtree of T whose root is that marked vertex.
The color of marked vertex is equal to its in-degree plus one. The same property is
satisfied by all the subtrees whose roots are on the path from the root of T to the
marked vertex. Then we have a totally ordered set of such trees (Fig. 6 (b)). The
total order can be replaced by a permutation, and from that we get an endofunction
of the same weight, using the ingoing arrow to connect the roots of the trees in the
same external cycle (Fig. 6 (c) and (d)). This construction is clearly reversible.
By Corollary 3.2 the sum of the weights of the endofunctions is equal to ∆nx

n
0 ,

and we have DnAn(x) = ∆nx
n
0 . Hence Dn(An(x) − ∆n−1x

n
0 ) = 0 and we get that

An(x)−∆n−1x
n
0 is a constant. It has to be zero, because both polynomials have zero

constant term. This proves Eq. (16). To prove Eq. (16) observe that a dart operator
acts in a tree by choosing a root and rising its degree by one. The rest of the vertices
have colors that indicates their total degree, which is equal to their in-degree plus
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Figure 6: The identity DnAn(x) = ∆nx
n
0

one. Then (DnAn)(x1, x2, . . . , xn) is equal to the generating function of the rooted
trees with its variables shifted by one, SAn(x0, x1, . . . , xn−1) = A(x1, x2, . . . , xn) =
S∆n−1x

n
0 = ∆n−1x

n
1 . By a similar argument as above

DnAn(x1, x2, . . . , xn) = ∆n−1x
n
1 ⇒ A(x1, x2, . . . , xn−1) = ∆n−2x

n
1 .

For example

A(x0, x1, x2, x3, x4) = ∆4x
5
0

= 5x4x
4
0 + 60x2

2x
3
0 + 80x1x3x

3
0 + 360x2

1x2x
2
0

+120x4
1x0,

and
A(x1, x2, x3, x4) = ∆3x

5
1 = 60x2

1x
3
2 + 60x3

1x2x3 + 5x4
1x4.

Eq. (16) was first stated in [8] in the language of grammars, and proved using
Prüfer codes (see also [18] for other formulas on similar enumeration problems).
Eq. (16) is, to the best of our knowledge, new. Observe that our proof of Eq. (16)
relies on similar arguments as given by Joyal [28] in his classical proof of Cayley’s
formula for the number of trees (see also [32]). In this case, the polynomial ob-
tained gives information about the degrees of the vertices of the rooted trees, and is
equivalent, as it was pointed out by Chen [8], to the Lagrange inversion formula.

We can give a visual proof of identity (3) by considering the dart operators xi+1∂xi
and the corolla operators x1yi+1∂yi . As an example we give a pictorial representation
of the operators x2∂x1 and x1y4∂3,

x2∂x1 =

x1y4∂y3 = (16)

The dark vertices are associated to the x’s and the white ones to the y’s. Observe
that after taking derivative on x’s, represented as a dark vertex, its color is turned
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Figure 7: Increasing tree counted by Γ9y0 = F9F8 . . .F1y0 and equivalent partition
tree.

into orange. The reader may check that the combinatorial structures obtained after
applying the operator Γn = FnFn−1 . . .F1 to y0 (sum of dart and corolla operators
as in Eq. (16)) the resulting structures are increasing trees in three kinds of colors,
as in Fig. 7 (a). It is not difficult to see that the weight of them is equal to∑

π∈Π[n]

y|π|
∏
B∈π

x|B|, (17)

which is the coefficient zn = Q(P (t))[n] (Fig. 7 (b)).

6 One-parameter groups, generalized exponential polynomi-
als, and enumeration of enriched trees

In this section we extend the kind of operators studied in previous sections to an
arbitrary number of variables. By considering the group infinitesimally generated by
a differential operator, we define generalized exponential polynomials and establish
interesting relationships with different versions of the Lagrange inversion formula.
We generalized Eq. (16) to a wide family of enriched trees.

Let R = C[[X]] be the ring of formal power series in an arbitrary set of variables
X (either finite or infinite). The elements of R are of the form

H(X) =
∑
k∈NX

H[k]
∏
kx 6=0

xkx

kx!
=
∑
k∈NX

H[k]
Xk

k!

In the sum of above, NX is the set of tuples k = (kx)x∈X such that kx = 0 for
almost every x ∈ X. The conventions for powers and multiple factorials are similar
to that at the beginning of Section 3.1. The combinatorics of the coefficients of the
series regarding the operations of sum, product and partial derivatives is also similar.
These combinatorial operations are interpreted in the same way by using colored sets
of the form (V, κ), κ : V → X being a coloration. Here we identify the set of colors
with the set of variables itself, and define H[V, κ] := H[k], kx = |κ−1(x)|.

Definition 6.1. A family G = {Gs}s∈S of formal power series in R is said to
be summable if for every k, the coefficient Gs[k] is zero for almost every s ∈ S.
Equivalently, for every colored set (V, κ), we have that Gs[V, κ] = 0 for almost every
s ∈ S.
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Observe that a family {Gs(X)}s∈S is summable if and only if the sum
∑

s∈S Gs(X)
is well-defined as a formal power series. The notion of summability is very important
for the study of series in an infinite number of variables. It is the essential condition
in order to perform the operation of substitution. We have the following Lemma.

Lemma 6.1. Assume that G(X) = {Gs(X)}s∈S is a summable family. Then
for any other, not necessarily summable family H(X) = {Hs(X)}s∈S, the product
{Gs(X)Hs(X)}s∈S is also summable.

Proof. We have to prove that for any colored set (V, κ), the set of elements s ∈ S
such that (Gs.Hs)[V, κ] 6= 0 is finite. By the combinatorial definition of product of
formal power series (Eq. (4)) we have that

{s|(Gs.Hs)[V, κ] 6= 0} ⊆ {s|∃V1 ⊆ V, Gs[V1, κ|V1 ] 6= 0}
=
⋃
V1⊆V

{s|Gs[V1, κ|V1 ] 6= 0}.

The result follows from the summability of G and because the union in the right
hand side of the equality is over a finite set.

Theorem 6.1. Let G(X) = {Gx(X)}x∈X be a summable family indexed by the set
of variables X, and such that for every x ∈ X, Gx(X) has zero constant term. Then,

1. The family

{Gk(X)}k∈NX , Gk(X) =
∏
kx 6=0

Gx(X)kx

is summable.

2. Let H(X) be an arbitrary series. Then, the substitution

H(Gx(X))x∈X =
∑
k∈NX

H[k]
∏
kx 6=0

Gx(X)kx

kx!
=
∑
k∈NX

H[k]
Gk(X)

k!

is a well-defined formal power series. Conversely, if H(Gx)x∈X is well-defined
for every formal power series H(X), then {Gx(X)}x∈X is summable.

Proof. The first part of item 2 is a consequence of the Lemma 6.1 and item 1. The
converse part of item 2 follows by taking H(X) =

∑
x∈X x. Then, what remains to

prove is that the set {k|Gk[V, κ] 6= 0} is finite for every colored set (V, κ). By the
same argument used in Lemma 6.1, the summability of G implies that the set

S1 = {x|∃V1 ⊆ V : Gx[V1, κ|V1 ] 6= 0}

is finite. Hence, by the definition of product of series we have that

{x|∃k ≥ 1 : Gk
x[V, κ] 6= 0} ⊆ S1. (18)



M.A. MÉNDEZ / AUSTRALAS. J. COMBIN. 89 (3) (2024), 350–384 373

Since Gx[∅] = 0 for every x ∈ X, we also have

k > |V | ⇒ Gk
x[V, κ] = 0. (19)

By Eq. (18) and condition in Eq. (19), we obtain that

{k|Gk[V, κ] 6= 0} ⊆ {k|kx = 0, if x /∈ S1} ∩ {k|∀x : 1 ≤ kx ≤ |V |},

which is a finite set.

The coefficient of the substitution H(Gx)x∈X on a colored set (V, κ) has the
following combinatorial interpretation (see [41]):

H(Gx)x∈X [V, κ] =
∑
(π,κ̂)

H[π, κ̂]
∏
B∈π

Gκ̂(B)[B, κ|B].

Where the sum of above ranges over all colored partitions (π, κ̂), π a partition of
V , and κ̂ : π → X a (external) coloring of the blocks of π. The summability of
{Gx(X)}x∈X ensures that the sum has only a finite number of non vanishing terms.

Definition 6.2. For a summable family φ(X) = {φx(X)}x∈S, indexed by a subset
S of X, define the operator Dφ by

Dφ :=
∑
x∈S

φx(X)∂x.

By Lemma 6.1, this is a well-defined operator on R. It is easy to check that it is a
derivation. Moreover, it preserves summability,

Lemma 6.2. Let {Gz(X)}z∈Z be a summable family. Then for every non-negative
integer n we have that {(Dφ)nGz(X)}z∈Z is also summable.

Define etD
φ
, by

etD
φ

H(X) =
∞∑
n=0

(Dφ)nH(X)
tn

n!
∈ R[[t]]. (20)

By abuse of language we call etD
φ

the group infinitesimally generated by Dφ. The
series in (20) is not necessarily well-defined as an element of R for particular values
of t.

Define the family {Fφ
x (t)}x∈X of formal power series in R[[t]] = C[[X, t]] by

Fφ
x (t) := etD

φ

x =
∞∑
n=0

(Dφ)nx
tn

n!
, x ∈ X. (21)

Remark 6.1. By representing Dφ as a sum of corolla operators, and using grafting
techniques as in Prop. 4.1 we obtain that the series Fφ

x (t) has the following combina-
torial interpretation. The coefficients (Dφ)nx = T φ

n,x(X) ∈ C[[X]] in the expansion of
Fφ
x (t) have as configurations increasing trees enriched with the family {φz(X)}z∈X .

More precisely, it counts the number of increasing trees with n internal vertices col-
ored with colors in X, the root colored with x and leaves weighted with their colors
(in X). The fiber of an internal vertex colored with color z is enriched (weighted)
with the corresponding series φz(X).
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Lemma 6.3. The family of formal power series {Fφ
x (t)}x∈X defined by Eq. (21) is

summable.

Proof. The family {x}x∈X is clearly summable. By Lemma 6.2, {(Dφ)nx}x∈X is
summable for every n ∈ N. Then, {Fφ

x (t)}x∈X is also summable.

For simplicity, when clear from the context, we suppress the super index φ from
the family. This summable family completely characterizes the one parameter oper-
ator group etD

φ
.

Corollary 6.1. Let {Fx(t)}x∈X be as defined in Eq. (21). Then, for any series
H(X) ∈ R we have

etD
φ

H(X) = H(Fx(t))x∈X . (22)

Proof. Since Dφ is a derivation, etD
φ

is a multiplicative map. Then,

etD
φ

Xk =
∏
kx 6=0

Fx(t)
kx ,

which is summable by Theorem 6.1. We have

etD
φ

H(X) =
∑
k∈NX

H[k]
etD

φ
Xk

k!
=
∑
k∈NX

H[k]

∏
kx 6=0 Fx(X)kx

k!
= H(Fx(t))x∈X .

Corollary 6.2. The family {Fx(t)}x∈X satisfies the system of differential equations{
y′x(t) = φx(yz(t))z∈X , x ∈ X
yx(0) = x.

(23)

Proof. The derivative Fx(t) is readily computed by interchanging with the one pa-
rameter group operator

F ′x(t) =
d

dt
etD

φ

x = etD
φ

Dφx = etD
φ

φx(X) = φx(Fz(t))z∈X .

The latter equality is obtained from Corollary 6.1.

6.1 Generalized exponential polynomials

Let F+
x (t) := Fx(t) − x. Define the generalized exponential polynomials Y x

n (X) by
the generating function

Yx(t) =
∞∑
n=0

Y x
n (X)

tn

n!
:= eF

+
x (t).

The generating function Y x
n (X) counts the number of forests of non-singleton in-

creasing trees with n internal nodes.
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By the definition and Corollary 6.2, the generating function Yx(t) satisfies the
following initial value problem{

Y ′x(t) = φx(Fz)z∈X .Yx(t), x ∈ X
Yx(0) = 1.

As we have that etD
φ
ex = eFx(t) = exeF

+
x (t), we obtain

Yx(t) = eF
+
x (t) = e−xetD

φ

ex,

and the Rodrigues-like formula

Y x
n (X) = e−x(Dφ)nex. (24)

From that we get the recursion

Proposition 6.1. The exponential polynomials Y x
n (X) satisfy the recursive formula

Y x
n+1(X) = φx(X)Y x

n (X) + DφYn(X).

Proof. By Eq. (24),

Y x
n+1(X) = e−xDφ(Dφ)nex = e−xDφexY x

n (X)

= e−x(exφx(X)Yn(X) + exDφY x
n (X)).

Example 6.1. Let X = {x}, the differential operators are of the form φ(x)D, D
being the ordinary derivative Df(x) = f ′(x). The series Fx(t) = A↑φ(x, t) = etφ(x)Dx
is the solution to the differential equation (14).

1. The operator xD gives us the differential equation y′ = y, y(0) = x that has
as solution Fx(t) = xet. The exponential polynomials are Touchard’s

∞∑
n=0

Tn(x)
tn

n!
= ex(et−1),

(see [45]). Touchard polynomials enumerate the set partitions according with
the number of blocks. The recursive formula becomes the classical

Tn+1(x) = x(Tn(x) + T ′n(x)).

2. More generally, the operator xrD has associated the differential equation y′ =
yr, y(0) = x. It has as solution

Fx(t) =
x

r−1
√

1− (r − 1)xr−1t
,

the generating function for the r-ary plane increasing trees, the leaves weighted
by x. The corresponding exponential polynomials count the forests of such
trees. They satisfy the recursion

T
(r)
n+1 = xr(T (r)

n (x) +DT (r)
n (x)).
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Example 6.2. For the set X = {x0, x1, x2, . . . ; q0, q1, . . . }, the operator

Dφ,q =
∞∑
k=0

φ(xk+1)qk∂xk

extends Dφ,qn to C[[X]]. Clearly, φ(xk+1)qk is a summable family.
The series

F φ
x0

(t) = etD
φ,q

x0 =
∞∑
k=0

(Dφ,q)kx0 =: A↑φ(t,x,q)

is the exponential generating function of the increasing trees T φn (x,q),

A↑φ(t,x,q) =
∞∑
n=0

T φn (x,q)
tn

n!
.

According to Corollary 6.2, it is the solution to the differential equation{
(F φ

x0
)′(t) = ∂

∂t
A↑φ(t,x,q) = q0φ(F φ

x1
(t)) = q0φ(A↑φ(t, Sx, Sq)),

F φ
x0

(0) = x0.

since, by the combinatorial interpretation of T φn (x,q) in Proposition 4.2 it is easy to
see that

F φ
xn(t) = A ↑

φ (t, Snx, Snq),

S being the shift operator:

S(x0, x1, x2, . . . ) = (x1, x2, x3, . . . ),

S(q0, q1, q2, . . . ) = (q1, q2, q3, . . . ).

6.2 Lagrange inversion

For a formal power series F (t) ∈ R[[t]] with non-zero constant term, define the
generating series of F -enriched trees AF (t), by the implicit formula (see [5, 28])

AF (t) = tF (AF (t)).

The configurations of AF [n] ∈ C[[X]] are rooted trees weighted with the coefficients
of F (X) as follows,

AF [n] =
∑
T

n∏
k=1

F [T−1(v)]

Where the sum is over all rooted trees with vertices in [n].
As was pointed out in [8], formula (16) is equivalent to the Lagrange inversion

formula. That can be stated in terms of the enumeration of F -enriched trees as
follows.
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Proposition 6.2. The coefficient AF [n] is given by the formula

AF [n] =
dn−1

dtn−1
F n(t)|t=0.

Consider the infinite set X = {x0, x1, x2, . . . }, and let

F0(t) =
∞∑
k=0

xk
tk

k!
.

The F0(t)-enriched trees are the same trees enumerated by Eq. (16). The weight
of each vertex v being the variable xdT (v). Let φk(X) = xk+1, a clearly summable
family. The derivation

D := Dφ =
∞∑
k=0

xk+1∂k

is the extension of Dn to an infinite number of variables. We have that

Fx0(t) = etDx0 =
∞∑
k=0

Dnx0
tn

n!
= F0(t).

By Corollary 6.1, F n
0 (t) = etDxn0 . Lagrange inversion gives us Formula (16)

AF0 [n] =
dn−1

dtn−1
F n

0 (t)|t=0 =
dn−1

dtn−1
etDxn0 |t=0 = etDDn−1xn0 |t=0 = Dn−1xn0 .

Conversely, assuming AF0 [n] = Dn−1xn0 and going backwards we obtain

AF0 [n] =
dn−1

dtn−1
F n

0 (t)|t=0.

Since the variables x0, x1, x2, . . . are algebraically independent, they can be replace
by the coefficients of any other series, and we obtain the Lagrange inversion formula.
Enriched trees series of the form AH(Fx(t))x∈X (t), Fx(t) = etDx, gives us a powerful
computational device.

Corollary 6.3. Let H(X) be a formal power series in R[[X]]. The coefficient
AH(Fx(t))x∈X [n] is given by

AH(Fx(t))x∈X [n] = (Dφ)n−1Hn(X)

In particular we have
AFx(t)[n] = (Dφ)n−1xn, x ∈ X.

Proof. By Corollary 6.1, Hn(Fx(t))x∈X = etD
φ
Hn(X). By the Lagrange inversion

formula

AH(Fx(t))x∈X [n] =
dn−1

dtn−1
Hn(Fx(t))x∈X |t=0 =

dn−1

dtn−1
etD

φ

Hn(X)|t=0

= etD
φ

(Dφ)n−1Hn(X)|t=0.
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There are two simple and important cases of Corollary 6.3, H(X) = ex and
H(X) = 1

1−x . In the first one, we enumerate rooted trees enriched with assemblies
(unordered tuples) of configurations enumerated by Fx(t), AeFx(t) [n]. In the second,
rooted trees enriched with tuples of structures enumerated by Fx(t). A 1

1−Fx(t)
[n].

However, the most interesting examples of enriched trees are obtained by enriching
with assemblies of non-empty configurations of Fx(t), and with tuples of non-empty
configurations of Fx(t). Respectively A

eF
+
x (t) [n] and A 1

1−F+
x (t)

[n].

Theorem 6.2. We have the formulas

A
eF

+
x (t) [n] = e−nx(Dφ)n−1enx (25)

(Dφ)n−1(1− x)−n =
n−1∑
k=1

cn,k(X)

(1− x)n+k
(26)

where in Eq. (26), the formal power series cn,k(X) = Ak 1

1−F+
x (t)

[n] enumerates the

configurations of A 1

1−F+
x (t)

[n] enriched with tuples of F+
x (t)-configurations having k

blocks in total

A 1

1−F+
x (t)

[n] =
n−1∑
k=1

Ak 1

1−F+
x (t)

[n].

Proof. To prove Eq. (25), observed that the configurations of AeFx(t) [n] are rooted
trees with n vertices whose fibers are enriched (weighted) with the coefficients of the

series ex+F+
x (t) = exeF

+
x (t). Since there are n vertices we have

AeFx(t) [n] = enxA
eF

+
x (t) [n] = (Dφ)n−1enx.

To prove Eq. (26), observe that the configurations of 1
1−Fx(t)

are tuples of sets,

(B1, B2, . . . , Bk),

each of them weighted with the coefficient Fx[Bi], i = 1, . . . , k. If some Bi = ∅,
its weight is equal to Fx[∅] = x. The fibers of each tree enumerated by A 1

1−Fx(t)
[n]

are enriched with these weighted tuples. Denote by Ak 1
1−Fx(t)

[n] the configurations of

A 1
1−Fx(t)

[n] having exactly k nonempty blocks in their fibers. If the fiber of a vertex v

has kv nonempty blocks, we can put as many empty configurations we want between
them (in kv + 1 available positions, k =

∑n
v=1 kv). Since each of the empty sets in

the tuple has weight x, the total weight added by the empty configurations is equal
to (1− x)−kv−1, for each vertex v. Taking the product over all the n vertices of the
tree we have that the total weight added by the empty configurations is equal to
(1− x)−n−k. Then we get

Ak 1
1−Fx(t)

[n] =

Ak 1

1−F+
x (t)

[n]

(1− x)n+k
.
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6.3 Examples and applications

Example 6.3. For the univariate case, X = {x}, for a series H(x), the trees enriched
with H(Fx(t)) are counted by

AH(Fx(t))[n] = (φ(x)D)n−1Hn(x).

In particular, we have the following formulas for

1. The rooted trees enriched with the series Fx(t) = A↑φ(x, t) = etφ(x)Dx

AFx(t)[n] = (φ(x)D)n−1xn.

As examples of these kinds of trees we have

(a) For the operator xD, Fx(t) = xet. The coefficient Axet [n] counts the num-
ber of rooted trees with n vertices, each vertex having weight x. We
deduce Cayley’s formula

Axet [n] = (xD)n−1xn = nn−1xn.

(b) For the operator x2D,

Fx(t) =
x

1− xt
=
∞∑
n=0

n!xn+1 t
n

n!
.

The nth coefficient of this series enumerates n-linear orders each of them
having weight xn+1. Then, the coefficient AFx(t)[n] counts the number of
plane trees with n vertices, each of its vertices and edges having weight
x. This means that a tree with n vertices, and therefore with n− 1 edges
has weight x2n−1. A few computations give us the formula

A x
1−xt

[n] = (x2D)n−1xn = n(n+ 1) . . . (2n− 2)x2n−1 = n(n−1)x2n−1.

2. The rooted trees enriched with eF
+
x (t) = eA

↑,+
φ (x,t), (Forests of increasing trees,

excluding the empty tree with weight x.)

AeFx(t) [n] = e−nx(φ(x)D)n−1enx.

3. The rooted trees enriched with 1
1−Fx(t)

(linearly ordered forests of increasing

trees, including the empty trees with weight x)

A 1
1−Fx(t)

[n] = (φ(x)D)n−1(1− x)−n =
n−1∑
k=1

Ak 1

1−F+
x (t)

[n](1− x)−(n+k).

From formulas in Items 2 and 3, we get a couple of interesting results.
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Proposition 6.3. The number of trees, enriched with set partitions, each block
weighted with x, is given by the formula

Aex(et−1) [n] = Tn−1(nx), (27)

where Tn(x) is the Touchard polynomial. In particular, the number of set partitions
enriched trees is given by Tn−1(n).

Proof. By Item 2, Aex(et−1) [n] = enx(xD)n−1enx. From general Rodrigues-like formula
(24) it is easy to see that enx(xD)kenx is equal to Tk(nx) for arbitrary k.

See [27], [26], [30], [25] where these numbers are interpreted in terms of hyper-
trees. The bijection between rooted hypertrees (see definition in [25]) and the present
interpretation is easy.

Proposition 6.4. The number of trees on n vertices, enriched with partitions whose
blocks are linearly ordered, each block weighted with x, is given by the sum of numer-
ators in the expansion of (xD)n−1(1− x)−n in simple fractions.

For example:

(xD)2 1

(1− x)3
=

12x2

(1− x)5
+

3x

(1− x)4

(xD)3 1

(1− x)4
=

120x3

(1− x)7
+

60x2

(1− x)6
+

4x

(1− x)5

(xD)4 1

(1− x)5
=

1680x4

(1− x)9
+

1260x3

(1− x)8
+

210x2

(1− x)7
+

5x

(1− x)6
.

Example 6.4. Consider the set of variables X = {x0, x1, x2, . . . }. We have

e−nx0Dn−1enx0 = Yn−1(nx1, nx2, . . . , nxn−1)

e−nx1Dn−1enx1 = Yn−1(nx2, nx3, . . . , nxn)

The Bell polynomials Yn−1(nx1, nx2, . . . , nxn−1) and Yn−1(nx2, nx3, . . . , nxn), respec-
tively enumerate:

1. Rooted trees enriched with set partitions according with the size of their blocks.

2. Rooted hypertrees by the size of their hyper edges (see [25]).

The sum of the numerators of the decomposition in simple fractions of

Dn−1 1

(1− x0)n

gives us the generating function of rooted trees enriched with partitions where the
blocks are linearly ordered, enumerated by the size of blocks.
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Example 6.5. We now modify the operator D in order to enumerate plane trees
and obtain another kind of Lagrange inversion. Let

D \ =
∞∑
k=0

(k + 1)xk+1∂k.

In this case we obtain F \
0(t) a generic ordinary formal power series

F \
0(t) = etD

\

x0 =
∞∑
k=0

xkt
k.

The coefficients of the ordinary generating function of the trees AF \0 (t) enumerate

the unlabeled rooted plane trees according with the degrees of its vertices.

Pfn(x0, x1, . . . , xn−1) :=
AF \0 [n]

n!
=

1

n!
(D \)n−1xn0 .

For example

Pf5(x0, x1, . . . , x4) =
AF \0 [5]

5!
= x4x

4
0 + 2x2

2x
3
0 + 4x1x3x

3
0 + 6x2

1x2x
2
0 + x4

1x0.

Making x0 = 1 = h0 and xn = hn, hn being the homogeneous symmetric function, we
get that Pfn(1, h1, . . . , hn−1) is the Frobenius character of the linear span of parking
functions on n − 1 elements (as a representation of the symmetric group Gn−1) in
terms of the homogeneous symmetric functions [23].

Example 6.6. Let X = {x1, x2, x3, . . . ; y0, y1, y2, . . . }. The operator

F =
∞∑
k=1

xi+1∂xi + x1

∞∑
k=0

yi+1∂yi

is the extension of Fn to the the bicolored infinite number of variables of above. By
Eq. (17)

Fy0(t) = etFy0 = P (Q(t)),

where P (t) =
∑∞

k=0 yk
tk

k!
and Q(t) =

∑∞
k=1 xk

tk

k!
. It is easy to check that

Fxn(t) = etFxn = Q(n)(t).

By the same argument to obtain (17) we get

Fyn(t) = etFyn = P (n)(Q(t)).

Now we can use the one parameter group to deduce Faà di Bruno formula,

dn

dtn
P (Q(t)) =

dn

dtn
etFy0 = etFF ny0 = etF

∑
π∈Π[n]

y|π|
∏
B∈π

x|B|

=
∑
π∈Π[n]

P (|π|)(Q(t))
∏
B∈π

Q(|B|)(t).

The configurations of AP (Q(t))[n] are trees enriched with partitions as in Proposition
6.3, each partition weighted by y|π|

∏
B x|B|. Its inventory is given by the formula

AP (Q(t))[n] = F n−1yn0 .
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