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Abstract

We show that there exists a Steiner triple system of order v having a set
of almost parallel classes in which each triple occurs exactly twice if and
only if v ≡ 1 (mod 6) and v /∈ {7, 13}.

1 Introduction

A Steiner triple system of order v, denoted STS(v), is a pair (V,B) where V is a
v-set of points and B is a collection of 3-element subsets of V, called triples, such
that each (unordered) pair of distinct points occurs in exactly one triple. Kirkman
[4] proved in 1847 that an STS(v) exists if and only if v ≡ 1, 3 (mod 6). A partial
Steiner triple system of order v is a pair (V,B) where V is a v-set of points and B
is a collection of triples from V such that each (unordered) pair of distinct points
occurs in at most one triple.

A partial parallel class (PPC) is a set of pairwise disjoint triples of a given point
set. Partial parallel classes usually arise in the context of an existing collection T
of triples, and in such cases each triple of the PPC is required to be a triple from
T . However, sometimes it will be convenient for us to discuss PPCs solely in terms
of a point set, without reference to any specified collection of triples. A PPC that
partitions the point set is called a parallel class. Given a collection T of triples, we
will call a collection of PPCs which partitions T a resolution. In 1850, Kirkman
posed [5] and then solved [6] a problem asking for a resolution of the triples of an
STS(15) into parallel classes. An STS(v) with a resolution into parallel classes is now
known as a Kirkman triple system of order v, denoted KTS(v). Over 100 years after
Kirkman found a KTS(15), Lu [8] and Ray-Chaudhuri and Wilson [10] independently
proved that a KTS(v) exists if and only if v ≡ 3 (mod 6).
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An STS(v) with v ≡ 1 (mod 6) does not have a parallel class, but one may instead
ask for a PPC which covers all but one point. Such a PPC is called an almost parallel
class (APC) and we call the point it misses the missed point of the APC. If one can
resolve a set T of triples into APCs, T is said to be almost resolvable. It can be
observed, as in [3], that no STS(v) with v ≡ 1 (mod 6) is almost resolvable (because
the number of triples in such an STS(v) is not divisible by the number of triples in
an APC).

A twofold triple system of order v is a pair (V,B) where V is a v-set of points
and B is a collection of triples from V such that each (unordered) pair of points
occurs in exactly two triples of B. In 1974, Hanani [3] proved that there exists an
almost resolvable twofold triple system of order v if and only if v ≡ 1 (mod 3); such a
system will be denoted ARTTS(v). Observe that in an ARTTS(v) there are v APCs
and each point occurs in v− 1 triples, so it follows that any given point is missed by
exactly one APC. In [12], Vanstone et al. prove that there exists an STS(v) which
can be resolved into (v−1)/2 APCs and one short PPC with (v−1)/6 triples if and
only if v ≡ 1 (mod 6) and v /∈ {7, 13}. An STS(v) with such a resolution is called a
Hanani triple system of order v, denoted HATS(v). We now define another type of
resolvability.

Definition 1.1 Let (V,B) be an STS(v). If the multiset 2B (which contains two
copies of each element of B) is almost resolvable, we say that (V,B) is almost
resolvable when duplicated, and call (V,B) an almost resolvable duplicated Steiner
triple system of order v, or ARDSTS(v). A resolution of 2B into APCs is called an
ARDSTS resolution of (V,B).

Example 1.2 The STS(19) with triples given by the orbits of {0, 1, 4}, {0, 2, 12},
and {0, 5, 13} under Z19 is an ARDSTS(19). Each of the 19 rows in Table 1 gives an
APC and these APCs together form an ARDSTS resolution.

Clearly, if (V,B) is an ARDSTS(v) then (V, 2B) is an ARTTS(v). As with an
ARTTS, in an ARDSTS each point is associated with a unique APC which misses
that point. The existence of an ARTTS(v) or HATS(v) does not guarantee the
existence of an ARDSTS(v). An ARTTS(v) can be obtained from a HATS(v) by
constructing a second HATS(v) where the points are relabelled such that the short
PPCs of the two HATSs cover a disjoint set of points. The union of these two HATS
is an ARTTS (see [12, 2]). If such a relabelling preserves the triples of the original
HATS, then the ARTTS resolution is also an ARDSTS resolution. However, no such
HATS with an appropriate relabelling has yet been found by the authors. In this
paper we construct ARDSTSs of small order, and then build larger systems using
Kirkman frames to prove that an ARDSTS(v) exists if and only if v ≡ 1 (mod 6)
and v /∈ {7, 13}; see Theorem 2.9.
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P0 4 5 8 16 18 9 12 17 6 10 11 14 1 3 13 2 7 15
P1 5 6 9 17 0 10 13 18 7 11 12 15 2 4 14 3 8 16
P2 6 7 10 18 1 11 14 0 8 12 13 16 3 5 15 4 9 17
P3 7 8 11 0 2 12 15 1 9 13 14 17 4 6 16 5 10 18
P4 8 9 12 1 3 13 16 2 10 14 15 18 5 7 17 6 11 0
P5 9 10 13 2 4 14 17 3 11 15 16 0 6 8 18 7 12 1
P6 10 11 14 3 5 15 18 4 12 16 17 1 7 9 0 8 13 2
P7 11 12 15 4 6 16 0 5 13 17 18 2 8 10 1 9 14 3
P8 12 13 16 5 7 17 1 6 14 18 0 3 9 11 2 10 15 4
P9 13 14 17 6 8 18 2 7 15 0 1 4 10 12 3 11 16 5
P10 14 15 18 7 9 0 3 8 16 1 2 5 11 13 4 12 17 6
P11 15 16 0 8 10 1 4 9 17 2 3 6 12 14 5 13 18 7
P12 16 17 1 9 11 2 5 10 18 3 4 7 13 15 6 14 0 8
P13 17 18 2 10 12 3 6 11 0 4 5 8 14 16 7 15 1 9
P14 18 0 3 11 13 4 7 12 1 5 6 9 15 17 8 16 2 10
P15 0 1 4 12 14 5 8 13 2 6 7 10 16 18 9 17 3 11
P16 1 2 5 13 15 6 9 14 3 7 8 11 17 0 10 18 4 12
P17 2 3 6 14 16 7 10 15 4 8 9 12 18 1 11 0 5 13
P18 3 4 7 15 17 8 11 16 5 9 10 13 0 2 12 1 6 14

Table 1: An ARDSTS resolution of an STS(19).

2 ARDSTS constructions

Motivated by Example 1.2, observe that we can construct an ARDSTS(v) by finding
a particular APC in a cyclic STS(v).

Definition 2.1 Let v ≡ 1 (mod 6) and let P be an APC of Zv such that:

1. the union of the orbits under Zv of the triples of P forms an STS(v), and

2. the orbit under Zv of each triple of P contains exactly two triples from P.

Then we call P a starter APC.

Proposition 2.2 If P is a starter APC on Zv, then the orbit of P under Zv yields
an ARDSTS(v).

Proof: Suppose P is a starter APC on Zv. Let (V,B) be the STS(v) formed by the
union of the orbits under Zv of the triples of P. The orbit of P under Zv contains
v APCs, and condition (2) in Definition 2.1 ensures that each triple in B occurs in
exactly two of these APCs. �

2.1 Small order existence

We now present some existence results for ARDSTSs of small order. The unique
STS(7) has no APC, and so there is no ARDSTS(7). We now prove there is no
ARDSTS(13). Up to isomorphism, there are two STS(13)s; one of these is cyclic and
the other is not [9]. Before proving that neither of them is an ARDSTS, we prove
the following lemma.
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Lemma 2.3 (cf. Lemma 3.2 in [1]) Let P and Q be a pair of distinct APCs in a
partial Steiner triple system of order v. Then there are at least three triples in P \Q.

Proof: Let R be the symmetric difference of P and Q. Then R forms two APCs
in a partial Steiner triple system of order 3 |P \ Q| + 1. It is easy to see that any
partial Steiner triple system of order 4 or 7 has at most one APC. Thus, |P \ Q| is
at least three. �

Lemma 2.4 The cyclic STS(13) is not an ARDSTS.

Proof: Consider the cyclic STS(13) with triples given by the orbits of {0, 1, 4} and
{0, 2, 7} under Z13. We begin by showing that the only APCs in this STS are those
in the orbit of

{{2, 4, 9}, {3, 5, 10}, {12, 1, 6}, {7, 8, 11}}
under Z13. If P is any APC in the cyclic STS(13), then the orbit of P under Z13 is a
set of 13 distinct APCs. Thus, if the cyclic STS(13) has more than 13 APCs, then it
has at least 26 APCs, and it follows from this that there is a triple B of the STS that
occurs in at least 4 distinct APCs. By Lemma 2.3, this implies that there are at least
12 distinct triples, other than B itself, occurring in APCs with B. However, simple
counting shows that in any STS(13) there are exactly 10 triples that are disjoint from
any given triple. Hence, the cyclic STS(13) has exactly 13 APCs, and as these do
not form an ARDSTS resolution (triples in the orbit of {0, 1, 4} occur only once and
triples in the orbit of {0, 2, 7} occur three times), it follows that the cyclic STS(13)
is not an ARDSTS. �

Lemma 2.5 The non-cyclic STS(13) is not an ARDSTS.

Proof: The triples below form the non-cyclic STS(13), as it is presented in [9].

1 2 3 1 4 5 1 6 7 1 8 9 1 10 11
1 12 13 2 4 6 2 5 7 2 8 10 2 9 12
2 11 13 3 4 8 3 5 12 3 6 13 3 7 11
3 9 10 4 7 9 4 10 13 4 11 12 5 6 10
5 8 11 5 9 13 6 8 12 6 9 11 7 8 13
7 10 12

Suppose for contradiction that there is an ARDSTS resolution of the non-cyclic
STS(13), and let P1 be the APC missing 1. Since {1, 2, 3} is a triple, the points 2
and 3 are covered by distinct triples in P1. In Table 2 we list the 15 possible pairs
of triples that cover 2 and 3.

It can be checked that in each case the required two further triples to cover the
remaining six points do not exist. Thus, there is no APC missing 1, and the non-
cyclic STS(13) is not an ARDSTS(v).
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triple on 2 triple on 3 triples on remaining points
2 4 6 3 5 12 7 8 13
2 4 6 3 7 11 5 9 13
2 4 6 3 9 10 5 8 11 7 8 13
2 5 7 3 4 8 6 9 11
2 5 7 3 6 13 4 11 12
2 5 7 3 9 10 4 11 12 6 8 12
2 8 10 3 5 12 4 7 9 6 9 11
2 8 10 3 6 13 4 7 9 4 11 12
2 8 10 3 7 11 5 9 13
2 9 12 3 4 8 5 6 10
2 9 12 3 6 13 5 8 11
2 9 12 3 7 11 4 10 13 5 6 10
2 11 13 3 4 8 5 6 10 7 10 12
2 11 13 3 5 12 4 7 9
2 11 13 3 9 10 6 8 12

Table 2: All possible pairs of triples that cover 2 and 3.

�

Lemma 2.6 There does not exist an ARDSTS(v) for v = 7 or 13, but there exists
an ARDSTS(v) for all v ≡ 1 (mod 6) where 19 ≤ v ≤ 85 or v = 103.

Proof: We have noted previously that there is no ARDSTS(7), and the non-
existence of an ARDSTS(13) follows from Lemma 2.4 and Lemma 2.5. Example 1.2
demonstrates existence for v = 19, and for each v ∈ {25, 31, 37, 43, 49, 55, 61, 67, 73,
79, 85, 103}, a starter APC on Zv is given below. Pairs of triples from the same orbit
under Zv are listed in the same row, together with the elements of Zv that map one
element of the pair to the other.

ARDSTS(25) ARDSTS(31)
0 1 4 12 13 16 (±12) 0 1 14 16 17 30 (±15)
8 10 18 22 24 7 (±11) 2 4 10 21 23 29 (±12)
6 11 20 14 19 3 (±8) 24 27 5 25 28 6 (±1)
17 23 5 21 2 9 (±4) 9 13 20 15 19 26 (±6)

3 8 18 7 12 22 (±4)
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ARDSTS(37) ARDSTS(43)
0 1 17 2 3 19 (±2) 0 1 10 2 3 12 (±2)
4 6 14 16 18 26 (±12) 4 6 23 5 7 24 (±1)
12 15 27 33 36 11 (±16) 17 20 31 25 28 39 (±8)
20 24 31 21 25 32 (±1) 15 19 35 18 22 38 (±3)
8 13 22 30 35 7 (±15) 16 21 29 27 32 40 (±11)
23 29 5 28 34 10 (±5) 8 14 26 36 42 11 (±15)

30 37 9 34 41 13 (±4)

ARDSTS(49) ARDSTS(55)
0 1 11 7 8 18 (±7) 0 1 13 2 3 15 (±2)
3 5 24 4 6 25 (±1) 4 6 28 5 7 29 (±1)
17 20 32 28 31 43 (±11) 8 11 26 18 21 36 (±10)
12 16 34 41 45 14 (±20) 16 20 41 23 27 48 (±7)
30 35 44 33 38 47 (±3) 17 22 33 34 39 50 (±17)
23 29 46 36 42 10 (±13) 19 25 45 43 49 14 (±24)
2 9 22 19 26 39 (±17) 30 37 47 35 42 52 (±5)
13 21 37 40 48 15 (±22) 24 32 51 38 46 10 (±14)

31 40 54 44 53 12 (±13)

ARDSTS(61) ARDSTS(67)
0 1 28 7 8 35 (±7) 0 1 15 16 17 31 (±16)
9 11 25 10 12 26 (±1) 25 27 54 59 61 21 (±33)
53 56 18 55 58 20 (±2) 4 7 23 36 39 55 (±32)
19 23 36 47 51 3 (±28) 10 14 40 28 32 58 (±18)
16 21 41 24 29 49 (±8) 30 35 52 19 24 41 (±11)
34 40 52 39 45 57 (±5) 47 53 11 3 9 34 (±23)
31 38 60 37 44 5 (±6) 43 50 63 42 49 62 (±1)
14 22 33 46 54 4 (±29) 12 20 44 37 45 2 (±25)
6 15 30 50 59 13 (±17) 64 6 18 51 60 5 (±13)
17 27 48 32 42 2 (±15) 65 8 26 38 48 66 (±27)

22 33 56 46 57 13 (±24)

ARDSTS(73) ARDSTS(79)
0 1 16 9 10 25 (±9) 0 1 18 12 13 30 (±12)
57 59 15 53 55 11 (±4) 5 7 39 6 8 40 (±1)
38 41 58 2 5 22 (±36) 49 52 71 59 62 2 (±10)
19 23 51 24 28 56 (±5) 11 15 46 64 68 20 (±26)
3 8 26 47 52 70 (±29) 31 36 57 77 3 24 (±33)
31 37 64 12 18 45 (±19) 70 76 27 72 78 29 (±2)
27 34 48 65 72 13 (±35) 38 45 61 44 51 67 (±6)
60 68 21 35 43 69 (±25) 17 25 54 58 66 16 (±38)
40 49 62 20 29 42 (±20) 19 28 43 41 50 65 (±22)
36 46 71 4 14 39 (±32) 37 47 75 73 4 32 (±36)
50 61 7 33 44 63 (±17) 23 34 48 63 74 9 (±39)
67 6 30 54 66 17 (±13) 14 26 53 21 33 60 (±7)

22 35 55 56 69 10 (±34)
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ARDSTS(85) ARDSTS(103)
0 1 39 51 52 5 (±34) 0 55 45 72 24 14 (±31)
81 83 18 82 84 19 (±1) 21 57 13 41 77 33 (±20)
32 35 68 34 37 70 (±2) 101 74 4 102 75 5 (±1)
23 27 46 65 69 3 (±42) 23 69 70 68 11 12 (±45)
58 63 10 74 79 26 (±16) 81 98 20 89 3 28 (±8)
25 31 49 53 59 77 (±28) 46 59 66 99 9 16 (±50)
9 16 44 29 36 64 (±20) 64 80 49 76 92 61 (±12)
20 28 45 47 55 72 (±27) 83 71 17 100 88 34 (±17)
21 30 61 33 42 73 (±12) 39 48 37 84 93 82 (±45)
14 24 40 50 60 76 (±36) 25 44 78 43 62 96 (±18)
2 13 43 56 67 12 (±31) 50 10 36 87 47 73 (±37)
66 78 8 80 7 22 (±14) 35 65 97 95 22 54 (±43)
4 17 38 41 54 75 (±37) 2 31 7 27 56 32 (±25)
48 62 6 57 71 15 (±9) 38 42 60 63 67 85 (±25)

18 15 53 94 91 26 (±27)
1 29 52 58 86 6 (±46)
40 19 79 51 30 90 (±11)

�

2.2 Large orders

To construct ARDSTSs of larger orders we use Kirkman frames (see [2]). A Kirkman
frame consists of a set V of points that is partitioned into groups, a set of triples of
points such that each pair of points from distinct groups occurs in exactly one triple
and each pair of points from the same group occurs in zero triples, and a resolution
of the triples into PPCs such that each PPC partitions V \G for some group G. A
Kirkman frame is said to be of type gu1

1 gu2
2 . . . gus

s if there are ui groups of cardinality
gi for i = 1, 2, . . . , s (and no other groups). In a Kirkman frame with point set V ,
a PPC that partitions V \ G is called a PPC with hole G. It is known that in any
Kirkman frame, the number of PPCs having hole G is |G|/2, see [11]. We use this
last result in the proof of Lemma 2.7.

Lemma 2.7 If there exists a Kirkman frame of type gu1
1 gu2

2 . . . gus
s and an

ARDSTS(gi + 1) for i = 1, 2, . . . , s, then there exists an ARDSTS(v) with v =
u1g1 + u2g2 + · · ·+ uwgw + 1.

Proof: The points of the ARDSTS(v) are the points of the Kirkman frame together
with a new point ∞. For each group G of the Kirkman frame, we place a copy of
an ARDSTS(|G|+1) on G∪ {∞}. The triples of these ARDSTSs together with the
triples of the Kirkman frame form an STS(v). We show that this is an ARDSTS(v).

For each group G, the ARDSTS on G∪ {∞} has an APC missing ∞, and the union
(over the groups) of these is an APC missing ∞ in our ARDSTS(v). For each point x
of the Kirkman frame, if G is the group containing x, then we take the APC missing
x of the ARDSTS on G ∪ {∞} together with a PPC with hole G of the Kirkman
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frame. This yields an APC missing x in our ARDSTS(v). Since there are exactly
|G|/2 PPCs with hole G, we can pair these PPCs with the points of G such that
each PPC with hole G is used exactly twice. It can be seen that the resulting APCs
form an ARDSTS resolution. �

The existence problem for Kirkman frames of type tu was settled by Stinson [11],
and for Kirkman frames of type hum1 with h ≡ 0 (mod 12) by Wei and Ge [13]. We
only need such frames as given by the following result.

Theorem 2.8 ([11, 13]) For all u ≥ 4, there exist Kirkman frames of each of the
following types.

18u 24u 24u18 24u30 24u36

Theorem 2.9 There exists an ARDSTS(v) if and only if v ≡ 1 (mod 6) and v /∈
{7, 13}.

Proof: The non-existence of an ARDSTS(7) and an ARDSTS(13) is given by
Lemma 2.6. We need to show that there exists an ARDSTS(v) for all v ≡ 1 (mod 6)
with v ≥ 19. The proof splits into four cases depending on whether v ≡ 1, 7, 13 or
19 (mod 24). In each case we obtain the required ARDSTSs by applying Lemma 2.7
using Kirkman frames given by Theorem 2.8 and ARDSTSs given by Lemma 2.6.

1. Suppose v ≡ 1 (mod 24). Let v = 24u + 1 with u ≥ 1. For u ≤ 3 we have
v ∈ {25, 49, 73} and an ARDSTS(v) is given by Lemma 2.6. For u ≥ 4 we use
a Kirkman frame of type 24u and an ARDSTS(25) in Lemma 2.7.

2. Suppose v ≡ 7 (mod 24). Let v = 24u + 31 with u ≥ 0. For u ≤ 3 we have
v ∈ {31, 55, 79, 103} and an ARDSTS(v) is given by Lemma 2.6. For u ≥ 4 we
use a Kirkman frame of type 24u301, an ARDSTS(25), and an ARDSTS(31) in
Lemma 2.7.

3. Suppose v ≡ 13 (mod 24). Let v = 24u + 37 with u ≥ 0. For u ≤ 2 we have
v ∈ {37, 61, 85} and an ARDSTS(v) is given by Lemma 2.6. For u = 3 we use a
Kirkman frame of type 186 and an ARDSTS(19) in Lemma 2.7. For u ≥ 4 we
use a Kirkman frame of type 24u361, an ARDSTS(25), and an ARDSTS(37) in
Lemma 2.7.

4. Suppose v ≡ 19 (mod 24). Let v = 24u + 19 with u ≥ 0. For u ≤ 2 we have
v ∈ {19, 43, 67} and an ARDSTS(v) is given by Lemma 2.6. For u = 3 we use a
Kirkman frame of type 185 and an ARDSTS(19) in Lemma 2.7. For u ≥ 4 we
use a Kirkman frame of type 24u181, an ARDSTS(25), and an ARDSTS(19) in
Lemma 2.7.

�
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3 Further considerations

We mention some open problems that arise from the work in this paper. We have seen
that there exists a starter APC on Zv for all v ≡ 1 (mod 6) in the range 19 ≤ v ≤ 85
and for v = 103. So it is natural to ask the following question.

(1) Does there exist a starter APC on Zv for all v ≡ 1 (mod 6) with v ≥ 19?

Two PPCs that intersect in at most one triple are said to be orthogonal, and
there are many results on triple systems that consider orthogonality of PPCs, see
[2, 7]. One may ask about the existence of ARDSTSs in which every pair of APCs
is orthogonal. We call such an ARDSTS self-orthogonal.

It is straightforward to determine whether an ARDSTS(v) constructed from a
starter APC is self-orthogonal. A starter APC consists of r = (v − 1)/6 pairs of
triples where the two triples from each pair are from the same orbit under Zv. If
we let these pairs of triples be {T1, T

′
1}, {T2, T

′
2}, . . . , {Tr, T

′
r}, and let Ti + xi = T ′

i

for i = 1, 2, . . . , r, then it is easy to see that the constructed ARDSTS(v) is self-
orthogonal if and only if ±x1,±x2, . . . ,±xr are pairwise distinct. For each starter
APC in the proof of Lemma 2.6, the two triples in each row are from the same orbit,
and the corresponding values ±x1,±x2, . . . ,±xr are given in the right-most column.

Thus, it can be seen that the ARDSTS(v)s with 19 ≤ v ≤ 85 given in Example 1.2
and the proof of Lemma 2.6 are all self-orthogonal, but the ARDSTS(103) in the proof
of Lemma 2.6 is not. Furthermore, it is easy to see that an ARDSTS constructed
using Kirkman frames, as in Lemma 2.7, is not (in general) self-orthogonal because
if G is any hole of the frame, then the constructed ARDSTS has two APCs whose
intersection is a PPC of the frame with hole G. The following two questions arise.

(2) Does there exist a self-orthogonal ARDSTS(v) for all v ≡ 1 (mod 6) with v ≥
19?

(3) Does there exist a starter APC for a self-orthogonal ARDSTS(v) for all v ≡
1 (mod 6) with v ≥ 19?

Finally, there is the question (alluded to earlier) regarding the existence of a
HATS(v) having an automorphism θ such that the union of the short PPC and its
image under θ is an APC, which would yield an ARDSTS(v).

References

[1] B. Alspach, D. L. Kreher and A. Pastine, Sequencing partial Steiner triple sys-
tems, J. Combin. Des. 28 no. 4 (2020), 327–343.

[2] C. J. Colbourn and A. Rosa, Triple systems, Oxford University Press, 1999.



D. BRYANT ET AL. /AUSTRALAS. J. COMBIN. 88 (2) (2024), 256–265 265

[3] H. Hanani, On resolvable balanced incomplete block designs, J. Combin. Theory
Ser. A 17 (1974), 275–289.

[4] T. P. Kirkman, On a problem in Combinations, Cambridge and Dublin Math. J.
2 (1847), 191–204.

[5] T. P. Kirkman, Query VI, Lady’s and Gentleman’s Diary (1850), 48.

[6] T. P. Kirkman, On the triads made with fifteen things, London, Edinburgh and
Dublin Philos. Mag. and J. Sci. 37 no. 3 (1850), 169–171.

[7] E.R. Lamken, The existence of doubly near resolvable (v, 3, 2)-BIBDs, J. Com-
bin. Des. 2 no. 6 (1994), 427–440.

[8] J.X. Lu, Collected Works of Lu Jiaxi on Combinatorial Designs, Inner Mongolia
People’s Press, 1965.

[9] R.A. Mathon, K.T. Phelps and A. Rosa, Small Steiner triple systems and their
properties, Ars Combin. 15 (1983), 3–110.

[10] D.K. Ray-Chaudhuri and R.M. Wilson, Solution of Kirkman’s schoolgirl prob-
lem, Combinatorics, Proc. Sympos. Pure Math. Vol. XIX (1971), 187–203.

[11] D.R. Stinson, Frames for Kirkman triple systems, Discrete Math. 65 no. 3
(1987), 289–300.

[12] S.A. Vanstone, D.R. Stinson, P. J. Schellenberg, A. Rosa, R. Rees, C. J. Col-
bourn, M.W. Carter and J. E. Carter, Hanani triple systems, Israel J. Math. 83
no. 3 (1993), 305–319.

[13] H. Wei and G. Ge, Kirkman frames having hole type hum1 for h ≡ 0 (mod 12),
Des. Codes Cryptogr. 72 no. 3 (2014), 497–510.

(Received 11 Aug 2023)


