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Abstract

Denote by b(n, k) the associated Stirling number of the second kind, that
is, the number of partitions of [n] into k blocks, where each block contains
at least 2 elements. Denote by d(n, k) the number of derangements of
[n] into k cycles. Let Bn denote the sequence of Bernoulli numbers. We

establish that
∑n

k=1(−1)kb(n + k, k)/
(
n+ k − 2
k − 1

)
= − Bn−1, for all n ≥ 3,

and
∑n

k=1(−1)kd(n+k, k)/((n+k−1)(n+k−2)) = − Bn−1/(n−1), for
all n ≥ 3. These results are extended to the numbers br(n, k) and dr(n, k)
which, besides the defining properties of b(n, k) and d(n, k), satisfy also
the condition that 1, 2, . . . , r fall in distinct blocks or cycles.

1 Introduction

Denote by b(n, k) the number of partitions of [n] into k blocks, where each block
contains at least 2 elements, [13, A008299]. The numbers b(n, k) are called the 2-
associated Stirling numbers of the second kind as introduced by [5, p. 221], and are
denoted variously in [12, p. 77], [5, p. 221], [8, p. 303], [4, p. 136], [6, p. 3], and [15].

The ordinary Stirling number of the second kind,
{
n
k

}
, is defined as the number

of partitions of [n] into k blocks. Parallel notions for permutations are as follows.
Denote by d(n, k) the number of permutations of [n] into k cycles such that there is
no fixed point of the permutation, [13, A008306]. The number d(n, k) is called the
number of derangements of [n] into k cycles, [5, p. 256], [4, p. 132]. The derangement
numbers d(n, k) are correspondingly referred to as associated Stirling numbers of the

first kind, [15]. The ordinary Stirling number of the first kind,
[
n
k

]
, is defined as the

number of permutations of [n] into k cycles.
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A generating function of b(n, k) is, by [5, p. 222],∑
n,k≥0

b(n, k)ukxn/n! = exp(u(ex − 1− x)), (1.1)

where we define b(0, 0) = 1 by convention. The corresponding generating function
for derangements is, by [5, p. 256],∑

n,k≥0

d(n, k)ukxn/n! = e−ux(1− x)−u, (1.2)

where again we define d(0, 0) = 1 by convention. One way to find (1.2) is to follow
[4, p. 134]. By [5, p. 221, p. 256] we have the triangular recurrences

(i) b(n, k) = kb(n− 1, k) + (n− 1)b(n− 2, k − 1), n ≥ 2, k ≥ 1,

(ii) d(n, k) = (n− 1)d(n− 1, k) + (n− 1)d(n− 2, k − 1), n ≥ 2, k ≥ 1;
(1.3)

see also [4, (1),(10)] wherein the partition numbers b(n, k) are denoted e(n, k). Here
we define b(n, 0) = 0 if n ≥ 1, and b(n, k) = 0 if n < 2k or n < 0, and likewise for
d(n, k).

The Bernoulli numbers Bn, n = 0, 1, 2, . . . may be defined simply by the generat-
ing function x

ex−1
=
∑∞

n=0
xn

n!
Bn; [7, (6.81)], [5, pp. 48–49], [11, (15.1)]. An alternative

approach is to develop power sums directly in terms of Bernoulli numbers as shown
in [7, (6.78)–(6.79)]. Two versions of Bernoulli’s formulae for the power sums are
given by [11, (15.24)–(15.25)]; the second of these is as follows:

N∑
k=0

kp =
1

p+ 1

p∑
k=0

(−1)k
(
p+ 1
k

)
Np+1−kBk, p ≥ 1. (1.4)

To obtain a combinatorial interpretation of the Bernoulli numbers, consider the Euler
or up/down numbers Un defined as the number of permutations a1a2 . . . an of [n] such
that a1 < a2 > a3 < a4 > · · · ; [13, A000111]. Then we have

U2n−1 = (−1)n−14
n(4n − 1)

2n
B2n,

[2, (1.3)], [5, Ex. 11, p. 258].

We investigate certain alternating sums involving the partition numbers
b(n + k, k), and derangement numbers d(n + k, k). For example, by the recur-
rences (1.3), expanded for b(n + k, k) in (1.7), it may be seen directly that∑n

k=1(−1)kb(n + k, k) = (−1)nn! and
∑n

k=1(−1)kd(n + k, k) = (−1)n, [5, p. 221,
p. 256], [4, (7),(11)]. Bijective arguments for these identities are given by [4]. We
are especially interested in proving results of this type but with Bernoulli numbers
arising as the outcome of the summations. That an identity of this type exists for the
partition numbers b(n, k), as shown by Theorem 1.1, is perhaps not too surprising
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due to known formulae for the ordinary Stirling numbers of the second kind, such as
the following identity of Jordan:

m∑
q=0

(−1)q
(
m+ 1
q + 1

) {m+ q
q

}
(
m+ q
m

) = Bm, (1.5)

where Bm is the sequence of Bernoulli numbers, [9], [11, (15.10)]. Other evidence

for partition numbers is given by the formula Bm =
∑m

k=0(−1)kk!
{
m
k

}
/(k + 1); [5,

p. 220], [11, (15.2)]. We are thus led after Theorem 1.1 to find a similar identity for a
sum involving derangement numbers on one side and Bernoulli numbers on the other
side of an equality. We note that the numbers Bn/n do arise in connection with the
Stirling numbers of the first kind in [1].

In this paper we are motivated to prove the following results, and to generalize
them to certain r-distinguished cases, as we shall explain.

Theorem 1.1 Let n ≥ 3. Then

n∑
k=1

(−1)kb(n + k, k)/
(
n+ k − 2
k − 1

)
= −Bn−1.

Theorem 1.2 Let n ≥ 3. Then

n∑
k=1

(−1)kd(n+ k, k)/((n+ k − 1)(n+ k − 2)) = −Bn−1

n− 1
.

We first discuss Theorem 1.1 and its extension to Theorem 1.3. The motivation
for the form that Theorem 1.1 takes is its similarity to the simple identity

n∑
k=1

(−1)kb(n+ k, k)/
(
n+ k − 1
k − 1

)
= 0, for all n ≥ 2. (1.6)

One may easily prove (1.6) by applying the triangular recurrence (1.3)(i) to write
b(n + k, k) = kb(n + k − 1, k) + (n + k − 1)b(n + k − 2, k − 1). Therefore, starting
from the case k = n and working backwards, we have

b(2n, n) = nb(2n− 1, n) + (2n− 1)b(2n− 2, n− 1)

b(2n− 1, n− 1) = (n− 1)b(2n− 2, n− 1) + (2n− 2)b(2n− 3, n− 2)

b(2n− 2, n− 2) = (n− 2)b(2n− 3, n− 2) + (2n− 3)b(2n− 4, n− 3), . . . .

(1.7)

Notice that, matching terms involving b(2n− 2, n− 1) in (1.7) for the sum (1.6), we
find

(−1)n
(
(2n− 1)/

(
2n− 1
n− 1

)
− (n− 1)/

(
2n− 2
n− 2

))
b(2n− 2, n− 1) = 0.

lt is easy to see that the binomial coefficients in the denominators have been chosen
to make the sum (1.6) telescope after the continuation of (1.7). In working backwards
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from k = n to k = 1, after substituting (1.7) into the sum of (1.6), we have that the

endpoint terms (−1)n n ·b(2n−1, n)/
(
2n− 1
n− 1

)
= 0 and (−1)1n ·b(n−1, 0)/

(
n
0

)
= 0, as

long as n ≥ 2. So the proof of (1.6) follows. Notice that the same type of telescoping
argument may be made for the identity

∑n
k=1(−1)kd(n + k, k)/(n + k − 1) = 0, [5,

p. 256], by applying instead (1.3)(ii).

We extend Theorem 1.1 to the case of r-distinguished associated Stirling numbers
of the second kind, br(n, k), as follows. Define br(n, k) as the number of partitions of
[n] into k blocks without singleton blocks such that 1, 2, . . . , r fall in distinct blocks;
in particular b1(n, k) = b(n, k). The following result extends Theorem 1.1 to all
r ≥ 1.

Theorem 1.3 Let r ≥ 1 and n ≥ r + 2. Then

n∑
k=r

br(n+ k, k)(−1)k/
(
n+ k − r − 1

k − 1

)
= (−1)rr!Bn−r.

We prove Theorem 1.1 in Section 2 by applying the generating function method.
We apply induction to prove Theorem 1.3 in Section 2.1 by using Theorem 1.1 as
the base case. The induction step relies on the extension of (1.6) to Lemma 2.3. We
employ the combinatorial extension of (1.3)(i) that is given by Lemma 2.1 to obtain
the proof of Lemma 2.3 by the generating function method.

We next discuss Theorem 1.2 and its extension. Since it is noted by [5, p. 256]
that

∑n
k=1(−1)kd(n+ k, k)/(n+ k − 1) = 0, in Theorem 1.2 we may drop the factor

1/(n+ k− 1) due to 1/((n+ k− 1)(n+ k− 2)) = 1/(n+ k− 2)− 1/(n+ k− 1). Yet
it is natural to leave the factor 1/(n+ k − 1) as stated for an extension of Theorem
1.2 to the following Theorem 1.5. This extension treats r-distinguished derangement
numbers dr(n, k) that are defined as the number of permutations of [n] into k cycles
and no fixed points with the condition that the elements 1, 2, . . . , r fall in distinct
cycles; here d1(n, k) = d(n, k). These r-distinguished derangement numbers are not
to be confused with Comtet’s r-associated Stirling numbers of the first kind, [5, p.
257]. For the statement of the extension we first define power sums Pr(n) as follows.

Definition 1.4 Let r ≥ 1 and let n ≥ r + 2. Define

Pr(n) = (−1)r
r−1∑
i=0

in−r−1.

Theorem 1.5 Let r ≥ 1. Then for all n ≥ r + 2 we have

n∑
k=1

(−1)kdr(n+k, k)/((n+k−r)(n+k−r−1) · · · (n+k−2r)) = Pr(n)+(−1)r
Bn−r

n− r
.

In the statement of Theorem 1.5 we see that the product (n+ k − 1)(n+ k − 2)
that appears in the denominator of the alternating sum of Theorem 1.2 becomes
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a falling factorial power (that is a descending product), denoted (n + k − r)r+1 =∏r
j=0(n + k − r − j), [7, p. 47].

We prove Theorem 1.2 in three steps. The first step is to use a generating function
argument in Section 3 to prove the following identity.

Proposition 1.6 Let n ≥ 2. Then we have

n∑
k=1

(−1)k
d(n+ k, k)

(n + k − 1)(n+ k − 2)
=

n∑
k=1

(−1)k

n+ k − 2

[
n+ k − 1

k

](
2n− 2

n + k − 2

)
.

The second step of the proof of Theorem 1.2 relies on both (1.5) and the following
connection between Stirling numbers of the first and second kinds going back to
Schläfli that is derived by [11, (13.32)]; see also [10, (1)].

[
k +m

k

]
= (−1)m

m∑
q=0

(−1)q
(
k +m+ q − 1

m+ q

)(
k + 2m
m− q

){
m+ q

q

}
. (1.8)

We establish the second step, leading to Claim 1.7, as follows. First substitute

m = n−1 and then plug in the Schläfli formula (1.8) for
[
n+ k − 1

k

]
=
[
m+ k

k

]
into the

right side of Proposition 1.6, where we rewrite
(

2n− 2
n+ k − 2

)
=
(

2m
m+ k − 1

)
and trivially

reverse the order of summation to obtain the following expression for the right side
of Proposition 1.6:

(−1)m
m∑
q=0

(−1)q
m+1∑
k=1

(−1)k

m+k−1

(
k+m+q−1

m+ q

)(
k+2m
m−q

)(
2m

m+k−1

){
m+q
q

}
.

(1.9)

Ignoring for the moment the leading sign (−1)m in this last expression, and, in
view of the formula (1.5), it now suffices for the proof of Theorem 1.2 to prove that
the following holds.

Claim 1.7

m+1∑
k=1

(−1)k

m+k−1

(
k+m+q−1

m+ q

)(
k+2m
m−q

)(
2m

m+k−1

)
= − 1

m

(
m+1
q+1

)
/

(
m+q
m

)
,

for all q = 0, 1, · · · , m, and all m ≥ 2.

Here we have taken the inner sum in (1.9) except for the Stirling number factor{
m+ q

q

}
and matched it with the corresponding prefactor of the same Stirling number

in the Jordan’s formula (1.5), with an extra factor of − 1
n−1

= − 1
m

on the right side
of Claim 1.7 to account for the denominator of the right side of Theorem 1.2. The
reader is warned that the statement of Claim 1.7 is not an identity valid for all q. It is
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easily verified by experiment, say at q = m+1, that Claim 1.7 fails outside the given
range q = 0, 1, · · · , m. So we simply want to show that the right side of the claim
interpolates the left side in the given range. Once this is done, then by Proposition
1.6, (1.9), (1.5), and Claim 1.7 we obtain the statement of the Theorem 1.2 up to
the factor (−1)m = (−1)n−1 that we dropped from (1.9). However, since Bn−1 = 0
when n− 1 is odd and n ≥ 3, then these results will indeed prove Theorem 1.2.

The third step of the proof of Theorem 1.2 is to verify Claim 1.7. This is done in
Section 3.1 by first manipulating the forms of the left side and right sides of the claim
via (3.14)–(3.15) to eliminate a common factor

(
2m

m− q

)
and thus write Claim 1.7 in

the equivalent form (3.16). We refer the reader to the calculations of Section 3.1
for the details. From the equivalent form (3.16) of the claim, we now treat q as a
continuous variable and indeed obtain a polynomial identity in x as follows.

Proposition 1.8 Define P (x) and φ(x) by (3.17)–(3.18). Then we have the follow-
ing polynomial identity in the real variable x.

φ(x) + (1 + x)P (x)

m∑
k=0

(−1)k
m+ 1

(m+ 1 + k + x)(m+ k)

(
m
k

)(
k + 2m+ 1

m+ 1

)

= P (x)/

(
2m

m+ 1

)
.

(1.10)

Since φ(q) = 0 for all q = 0, 1, . . . , m, we have immediately from Proposition
1.8 and the fact that P (q) �= 0 for all q = 0, 1, . . . , m that (3.16) holds and thus
the claim. The proof of Proposition 1.8 is obtained via Lagrange interpolation and
Melzak’s formula [11, (7.1)]. Again see Section 3.1 for details.

The pattern of proof of the extension Theorem 1.3 for br(n, k) is simpler than, but
in broad outline parallel to, the pattern we use to prove the extension Theorem 1.5
for derangement numbers dr(n, k). First, for the case r = 1, generating function
arguments are used to represent the sums for both Theorems 1.1 and 1.2. This
representation gives a direct link to the Bernoulli numbers in the case of b(n, k) but,
as shown by Proposition 1.6, not for the case of d(n, k). For r ≥ 2 we mention
one other key step, that is to evaluate a companion alternating sum; already we
see this in the context of r = 1 for the associated partition numbers wherein the
companion sum is given by (1.6). This companion sum is generalized for br(n, k)
by Lemma 2.3 wherein we continue to find a zero sum. The companion sum for
derangement numbers dr(n, k) is denoted Tr(n) in (4.3), but only in the case r = 1
does this companion sum evaluate to zero.

In the proof of Theorem 1.5 in Section 4 we rely on an inductive approach to find
the generating function of Lemma 4.1. For this, and Lemma 4.2 as well, we require a
workable recurrence for dr(n, k). Yet, despite the simplicity and natural form of the
generating function (4.2), a straightforward approach to a recurrence for dr(n, k) for
r ≥ 2 yields a relation (4.1) that is too complicated to implement. Instead we prove
the following useful recurrence. Its proof in Section 4 is combinatorial and somewhat
surprisingly involved.
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Lemma 1.9 Let r ≥ 1 and let n ≥ 2k ≥ 2r. Then

dr(n, k) = (n− r)dr(n− 1, k) + (n− r)dr−1(n− 2, k − 1). (1.11)

To prove how the integer part Pr(n) of Definition 1.4 arises in Theorem 1.5,
we extend the generating function argument of Proposition 1.6 by way of Lemma
4.1 to represent the companion sum Tr(n) as an r-Stirling number sum; see Defini-
tion 4.3 and Lemma 4.5. We further generalize Tr(n) to an r-Stirling number sum
Ur(n,N) defined by (4.17). We evaluate Ur(n,N) in Lemma 4.6, which generalizes
Corollary 3.2(ii), and thus find Tr(n) = (−1)r(r − 1)n−r for n ≥ r + 1. The power
sum part Pr(n) then falls out by working backward with the recurrence of Lemma
4.2. Since power sums are represented by Bernoulli’s formula (1.4), we obtain the
following corollary to Theorem 1.5.

Corollary 1.10 Let r ≥ 1. Then for all n ≥ r + 2 we have

n∑
k=1

(−1)k
dr(n+ k, k)

(n+ k − r)r+1
=

(−1)r

n− r

n−r∑
k=0

(−1)k
(
n− r
k

)
(r − 1)n−r−kBk,

where in the case r = 1 we interpret the sum on the right as (−1)n−r 00Bn−1 =
(−1)n−rBn−1.

2 Proof of Theorems 1.1 and 1.3

In Section 2.1 we prove an extension of Theorem 1.1 to the numbers br(n, k) in
Theorem 1.3. A key to that proof is the basis r = 1 of the extension, namely
Theorem 1.1 itself.

Proof of Theorem 1.1. We apply a generating function defined as follows:

f(u, z) =
∑

n≥1,k≥1

b(n+ k, k)(
n+ k − 2
k − 1

) uk

k!

zn−1

(n− 1)!
. (2.1)

Now reorganize the sum in (2.1) with the substitution m = n+k, and also substitute

the simplification k!(n− 1)!
(
n+ k − 2
k − 1

)
= k(m− 2)!. Hence we have

f(u, z) =
∑

m≥2,k≥1

b(m, k)
uk

k

zm−k−1

(m− 2)!
.

Substitute the recurrence (1.3)(i) to find in turn that

f(u, z) =
∑

m≥2,k≥1

(kb(m− 1, k) + (m− 1)b(m− 2, k − 1))
(u/z)k

k

zm−1

(m− 2)!
. (2.2)
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Write the sum involving kb(m − 1, k) in (2.2) via the substitution M = m − 1 and
call it I:

I =
∑

M≥1,k≥1

b(M, k)(u/z)k
zM

(M − 1)!
. (2.3)

Next, for the other term in (2.2), write the factor (m − 1) = (m − 2) + 1 and thus
break up the sum involving (m− 1)b(m− 2, k − 1) into the sum of two infinite sum
expressions, II and III, after the substitutions N = m− 2, j = k − 1 as follows:

II =
∑

N≥0,j≥0

b(N, j)
(u/z)j+1

j + 1

zN+1

(N − 1)!
, III =

∑
N≥0,j≥0

b(N, j)
(u/z)j+1

j + 1

zN+1

N !
. (2.4)

To calculate I, we note by (1.1) that
∑

M≥1,k≥1 b(M, k)vk zM

M !
= ev(e

z−1−z) − 1, so

by (2.3) we have I = z ∂
∂z
(ev(e

z−1−z) − 1) evaluated at v = u/z. Thus, with v = u/z,
we have

I = zv(ez − 1)ev(e
z−1−z) = (ez − 1) · ueuB,

for B = B(z) = ez−1−z
z

.

Next, for the purpose of calculation write h = h(z) = ez − 1 − z, and thus find
II of (2.4) as follows:

II = z2
∫ u/z

0

∂

∂z
evh(z)dv

= z2h′
∫ u/z

0

vevh(z)dv

= z2h′
[
v

h
evh − 1

h2
evh
]u/z
0

.

Writing B = h/z as before and putting in h′ = ez − 1, we therefore have

II = (ez − 1)

(
ueuB

B
− euB − 1

B2

)
.

Lastly, write III of (2.4) as:

III = z

∫ u/z

0

evh(z)dv = z

[
euh − 1

h

]u/z
0

=
euB − 1

B
.

Fix now n ≥ 3. To calculate the sum of the statement of the theorem, by the
definition (2.1) of f it remains to determine the left hand side of the theorem as

S(n) =
n∑

k=1

(−1)kb(n + k, k)/
(
n+ k − 2
k − 1

)
= (n− 1)![zn−1]

n∑
k=1

(−1)kk![uk]f(u, z).
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Since f(u, z) = I + II + III, we expand S(n) = (n− 1)![zn−1]
∑n

k=1(−1)kk![uk](I +
II + III) as follows:

S(n) = (n−1)![zn−1]

n∑
k=1

(−1)kk![uk]

(
(ez−1)

(
ueuB+

ueuB

B
− euB − 1

B2

)
+

euB−1

B

)

= (n−1)![zn−1]

(
(ez−1)

n∑
k=1

(−1)kk!

(
Bk−1

(k−1)!
+

Bk−2

(k−1)!
− Bk−2

k!

)
+

n∑
k=1

(−1)kk!
Bk−1

k!

)
.

(2.5)

Now for the first sum on the right side of (2.5) we have

n∑
k=1

(
(−1)kkBk−1 − (−1)k−1(k − 1)Bk−2

)
= (−1)nnBn−1

as a telescoping sum. For the second sum on the right side of (2.5) we have simply

a finite geometric sum
∑n

k=1(−1)kBk−1 = −1+(−1)nBn

1+B
. Hence by these calculations

following from (2.5) we have shown that

S(n) = (n− 1)![zn−1]

(
(ez − 1)(−1)nnBn−1 +

−1 + (−1)nBn

1 +B

)
. (2.6)

As power series, we have B(z) = z/2+ · · · , and ez − 1 = z+ · · · . Therefore, since as
power series in z both (ez − 1)Bn−1 and Bn/(1 + B) will not contribute any terms
containing zk with k ≤ n− 1, by (2.6) we have

S(n) = (n− 1)![zn−1]

(
− 1

1 + B

)
.

Finally, − 1
1+B

= − z
ez−1

= −∑∞
n=0Bn

zn

n!
, where Bn is the n-th Bernoulli number.

Hence the proof is complete by (n− 1)![zn−1]
(−∑∞

n=1Bn
zn

n!

)
= −Bn−1. �

2.1 Extension to br(n, k): Proof of Theorem 1.3

Recall the definition, just preceding the statement of Theorem 1.3, of the r-distin-
guished associated Stirling numbers of the second kind br(n, k). Define b0(n, k) by
b0(n, k) = b1(n, k) = b(n, k). Note that br(n, k) = 0 for k < r or n < 2k. We take
br(0, 0) = 0 for r ≥ 2.

Lemma 2.1 Let r ≥ 1. Then for all n ≥ 1 and k ≥ 1 we have

br(n, k) = (k − r + 1)br−1(n− 1, k) + (n− r)br−1(n− 2, k − 1).

Proof. The second term accounts for the number (n−r) of ways of forming doubleton
sets with minimal element r that we can form with one of the elements x of [n] \ [r]
to comprise the k-th block, and thus complete the required partition from the (k−1)
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blocks of [n] \ {r, x} already counted by br−1(n− 2, k− 1). The accounting provided
by the first term on the right side of the lemma arises simply by adding the minimal
element r to any one of the (k − r + 1) blocks of [n] \ {r} that are not already
distinguished by having a specified minimal element i for some i ∈ [r − 1]. �

Lemma 2.2 Let r ≥ 0. Then∑
n≥0,k≥0

br(n+ r, k + r)uk zn

n!
= (ez − 1)reu(e

z−1−z). (2.7)

Proof. We proceed by induction in r. By (1.1) the basis r = 0 is verified. For the
induction step, assume that the statement of the lemma is true for some r ≥ 0.
Denote by fr(u, z) the left side of (2.7). Then, by Lemma 2.1 write

fr+1(u, z) =
∑

n≥0,k≥0

(k+1)br(n+ r, k+ r+1)uk zn

n!
+

∑
n≥0,k≥0

nbr(n+ r−1, k+ r)uk zn

n!

In the first sum change indices by � = k+1, and in the second sum write N = n−1.
Thus

fr+1(u, z) =
∑

n≥0,�≥1

�br(n+r, �+r)u�−1 zn

n!
+
∑

N≥0,k≥0

(N+1)br(N+r, k+r)uk zN+1

(N + 1)!

Thus obtain fr+1(u, z) =
∂
∂u
fr(u, z)+zfr(u, z). By the induction hypothesis we easily

compute this last expression to find

fr+1(u, z) = ((ez − 1− z)(ez − 1)r + z(ez − 1)r)) eu(e
z−1−z),

or fr+1(u, z) = (ez − 1)r+1eu(e
z−1−z), as desired. �

Lemma 2.3 Let r ≥ 1 and n ≥ r + 1. Then

n∑
k=1

br(n+ k, k)(−1)k/
(
n+ k − r
k − 1

)
= 0.

Proof. Define

gr(u, z) =
∑

n≥1,k≥1

br(n+ k, k)(
n+ k − r
k − 1

) uk

(k − 1)!

zn

(n− r + 1)!
.

Substitute m = n+ k and use
(
n+ k − r
k − 1

)
(k− 1)!(n− r+1)! = (n+ k− r)! = (m− r)!

to write

gr(u, z) =
∑

m≥2,k≥1

br(m, k)uk zm−k

(m− r)!
= zr(u/z)r

∑
m≥2,k≥1

br(m, k)(u/z)k−r zm−r

(m− r)!
.
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Thus by Lemma 2.2 we have that gr(u, z) = ur(ez − 1)re(u/z)(e
z−1−z). Now write

B = B(z) = ez−1−z
z

. Thus we have gr(u, z) = ur(ez − 1)reuB. Therefore, fixing r ≥ 1
and n ≥ r + 1, we compute
n∑

k=1

br(n+k, k)(−1)k/
(
n+ k − r
k − 1

)
= (n− r+1)![zn](ez −1)r

n∑
k=r

[uk−r](−1)k(k−1)!euB,

(2.8)
where in the last sum we write the summation index k starting from k = r because
for r ≥ 1 we have br(m, k) = 0 unless k ≥ r. Now expand euB =

∑
j≥0 u

jBj/j! and
so rewrite the right side of (2.8) as

(n− r + 1)![zn](ez − 1)r
n∑

k=r

(−1)k(k − 1)!Bk−r

(k − r)!
. (2.9)

Pull out a factor (−1)r(r− 1)! and thus rewrite with a binomial coefficient to obtain
the sum in (2.9) as

(−1)r(r − 1)!

n∑
k=r

(−1)k−rBk−r
(
k − 1
r − 1

)
.

Finally, because as a power series B(z) = z/2+· · · , and since likewise ez−1 = z+· · · ,
we may replace the finite sum by the corresponding infinite sum in this last display
because the terms beyond k = n in the full series do not contribute to a calculation
of (2.9). Thus we have that our desired expression (2.9) is written as

(n− r + 1)![zn](ez − 1)r(−1)r(r − 1)!

∞∑
k=r

(−1)k−rBk−r
(
k − 1
r − 1

)
.

But the infinite series collapses as the binomial series for (1 +B)−r. Hence, because
by definition (ez − 1)r(1 + B)−r = zr, the proof is complete by [zn](zr) = 0 for all
n ≥ r + 1. �

Proof of Theorem 1.3. Let r ≥ 2. Define Sr(n) =
n∑

k=r

(−1)kbr(n+ k, k)/
(
n+ k − r − 1

k − 1

)
.

By Lemma 2.1 we make the reduction br(n+ k, k) = (k − r + 1)br−1(n+ k − 1, k) +
(n + k − r)br−1(n + k − 2, k − 1). Hence by substituting this reduction and making
a change of index j = k + 1 in the first sum of the resulting expression for Sr(n) we
have that Sr(n) is given by

n+1∑
j=r+1

(−1)j−1 (j − r)br−1(n+ j − 2, j − 1)(
n+ j − r − 2

j − 2

) +

n∑
k=r

(−1)k
(n+ k − r)br−1(n+ k − 2, k − 1)(

n+ k − r − 1
k − 1

) .

Then in turn, by combining the sums into one, using the fact that the terms in the
first sum at both j = n + 1 (by br−1(2n− 1, n) = 0) and j = r are zero, we rewrite
Sr(n) under a single summation by

Sr(n) =
n∑

k=r

(−1)kbr−1(n+ k − 2, k − 1)

⎛
⎝ −(k − r)(

n+ k − r − 2
k − 2

) +
n+ k − r(
n+ k − r − 1

k − 1

)
⎞
⎠ .
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Now calculate

−(k − r)(
n+ k − r − 2

k − 2

)+ n+ k − r(
n+ k − r − 1

k − 1

) = (k−2)!
−(k − r)(n+ k − r − 1) + (k − 1)(n+ k − r)

(n+ k − r − 1) · · · (n− r + 1)
.

The numerator of the last fraction may be rewritten r(n + k − r − 1) − (n − r).
Correspondingly we obtain that Sr(n) = I + II where

I = r

n∑
k=r

(−1)k
br−1(n + k − 2, k − 1)(

n+ k − r − 2
k − 2

) ,

II =
−(n− r)

n− r + 1

n∑
k=r

(−1)k
br−1(n + k − 2, k − 1)(

n+ k − r − 1
k − 2

) .

Now change both indices n′ = n− 1 and k′ = k− 1 and also put r′ = r− 1 to obtain

II =
n− r

n− r + 1

n′∑
k′=r′

(−1)k
′ br′(n

′ + k′, k′)(
n′ + k′ − r′

k′ − 1

) .

Hence we have II = 0 by Lemma 2.3. Further, we have

I = (−r)
n′∑

k′=r′
(−1)k

′ br′(n
′ + k′, k′)(

n′ + k′ − r′ − 1
k′ − 1

) = (−r)Sr′(n
′).

Therefore we have shown Sr(n) = (−r)Sr′(n
′). Hence because the case r = 1 in the

statement of the theorem is the result of Theorem 1.1, by backward induction the
proof is complete. �

3 Proof of Theorem 1.2

In this section we reduce the problem of Theorem 1.2 by a series of steps. The first
step in Proposition 1.6 is to apply a generating function argument to write the sum in
the statement of this theorem in terms of a sum involving ordinary Stirling numbers
of the first kind. To prepare for this step we want an arithmetical identity for the
ordinary Stirling numbers of the first kind as follows.

Lemma 3.1 [3, Thm. 7] Let m ≥ 2 and m > k ≥ 1. Then we have[
m

m− k

]
=

∑
1≤i1<i2<···<ik<m

i1i2 · · · ik. (3.1)

Further
[
m
m

]
= 1, for all m ≥ 0.
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For example,
[
3
1

]
= 1 ·2 = 2, while

[
3
2

]
= 1+2 = 3. Likewise

[
4
2

]
= 1 ·2+1 ·3+2 ·3 = 11.

Proof of Proposition 1.6. Define

f(u, z) =
∑

n≥1,k≥1

d(n+ k, k)

n + k − 1
uk zn

(n+ k − 2)!
. (3.2)

Make the substitution m = n + k and write zn = zn+k/zk = zm/zk to rewrite (3.2)
as

f(u, z) =
∑

m≥2,k≥1

d(m, k)(u/z)k
zm

(m− 1)!
(3.3)

Therefore, by denoting g(u, z) the generating function of d(n, k) defined by (1.2),
we have by (3.3) that

f(u, z) = z
∂

∂z
g(v, z) evaluated at v = u/z.

Here we have

z
∂

∂z
g(v, z) = z

∂

∂z

(
e−zv(1− z)−v

)
= zve−zv

(
(1− z)−v−1 − (1− z)−v

)
= z2ve−zv(1− z)−v−1.

Therefore, evaluation at v = u/z yields

f(u, z) = zue−u(1− z)−u/z−1 (3.4)

Now expand (1− z)−v−1 as a binomial expansion about z = 0 to obtain

(1− z)−v−1 = 1 +
(v + 1)

1!
z +

(v + 1)(v + 2)

2!
z2 +

(v + 1)(v + 2)(v + 3)

3!
z3 + · · · .

Thus, after plugging in v = u/z we find by (3.4) that

f(u, z) = ze−u · u
(
1 +

(u+ z)

1!
+

(u+ z)(u + 2z)

2!
+

(u+ z)(u+ 2z)(u+ 3z)

3!
+ · · ·

)
.

(3.5)

We have (u + z)(u + 2z) · · · (u + pz) =
p∑

n=0

up−nzn
∑

1≤i1<i2<···<in<p+1

i1i2 · · · in. There-
fore, after applying Lemma 3.1 to compute the inner sum, and multiplying by an
additional factor of u, we have the basic representation:

u(u+ z)(u+ 2z)(u+ 3z) · · · (u+ pz) =

p∑
n=0

[
p+ 1

p+ 1− n

]
znup+1−n. (3.6)
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Therefore by (3.4)–(3.6), putting the factor of z now under the sum we must expand

f(u, z) = e−u
∑∞

p=0
1
p!

∑p
n=0

[
p+ 1

p+ 1− n

]
zn+1up+1−n. We write e−u =

∑∞
�=0(−1)� u

�

�!
and

thus find:

f(u, z) =

∞∑
�=0

(−1)�
u�

�!

∞∑
p=0

1

p!

p∑
n=0

[
p+ 1

p+ 1− n

]
zn+1up+1−n

= u

([
1
1

] z
0!

+
[
2
1

]z2
1!

+
[
3
1

]z3
2!

+ · · ·
)

+ u2

((
−
[
1
1

] z

1!0!
+
[
2
2

] z

0!1!

)
+

(
−
[
2
1

] z2

1!1!
+
[
3
2

] z2

0!2!

)
+ · · ·

)

+ u3
(([

1
1

] z

2!0!
−
[
2
2

] z

1!1!
+
[
3
3

] z

0!2!

)
+

([
2
1

] z2

2!1!
−
[
3
2

] z2

1!2!
+
[
4
3

] z2

0!3!

)
+ · · ·

)
+ · · ·

(3.7)

Here the first expanded sum for the triple sum expression is the case p − n = 0,
� = 0, for all n = 0, 1, 2, · · · ; the second expanded sum is the case p−n = 0, � = 1 or
p−n = 1, � = 0 for each grouped parenthetical term involving powers of zn+1, where
n = 0, 1, · · · for successive grouped terms; and the third expanded sum is the case
p−n = 0, � = 2, or p−n = 1, � = 1 or p−n = 2, � = 0, again with n = 0, 1, · · · picking
up powers of zn+1 in successive grouped terms. The Stirling number coefficients for
the term ukzn+1/(p!�!), where p + � = n + k − 1, have top index n + j and bottom
index j, for j = k − �, 0 ≤ � ≤ k − 1. That is, we take j = p+ 1− n for the bottom
index and n + j for the top index of the Stirling number coefficient. So we have
k = (p + 1− n) + � = j + � for the power on u, and n + 1 for the power on z. Thus
we convert to summation indices k, n, and j, with k ≥ 1, n ≥ 0 and 1 ≤ j ≤ k. The
sign of the term ukzn+1/(p!�!) = ukzn+1/((n+ j−1)!(k− j)!) is (−1)� = (−1)j(−1)k.
Therefore we have

f(u, z) =
∞∑
k=1

(−1)k uk
∞∑
n=0

zn+1
k∑

j=1

(−1)j
[
n+ j
j

]
1

(n + j − 1)!(k − j)!
. (3.8)

We note that the ukzn+1 terms in the expansion of f(u, z) where n < k must have
coefficient zero by d(n + k, k) = 0 in this case. For example, the u3z term has

coefficient
[
1
1

]
1

2!0!
−
[
2
2

]
1

1!1!
+
[
3
3

]
1

0!2!
= 1

2
−1+ 1

2
= 0, and the u3z2 term has coefficient[

2
1

]
1

2!1!
−
[
3
2

]
1

1!2!
+
[
4
3

]
1

0!3!
= 1

2
− 3

2
+ 1 = 0.

Now we rewrite f(u, z) in (3.8) by replacing n by n−1 so as to make a power of zn,

consistent with (3.2). Correspondingly we introduce 1
(n+j−2)!(k−j)!

=
(
n+ k − 2
n+ j − 2

)
1

(n+k−2)!
.

We rewrite (3.8) accordingly as follows.

f(u, z) =

∞∑
k=1

(−1)k uk

∞∑
n=1

zn
k∑

j=1

(−1)j
[
n− 1 + j

j

](
n+ k − 2
n + j − 2

)
1

(n+ k − 2)!
. (3.9)
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We simply write, by the definition (3.2) of f(u, z) and by (3.9), that for any n ≥ 1
and k ≥ 1,

(−1)k
d(n+ k, k)

(n+ k − 1)
= (−1)k[ukzn](n + k − 2)!f(u, z) =

k∑
j=1

(−1)j
[
n− 1 + j

j

](
n+ k − 2
n+ j − 2

)
.

(3.10)
Finally, fix n ≥ 2. Divide through (3.10) by (n+ k − 2) and sum over k from 1 to n
to find

n∑
k=1

(−1)k
d(n+ k, k)

(n+ k − 1)(n+ k − 2)
=

n∑
k=1

k∑
j=1

(−1)j
[
n− 1 + j

j

](
n+ k − 2
n+ j − 2

) 1

n+ k − 2

=

n∑
j=1

(−1)j
[
n− 1 + j

j

] n∑
k=j

(
n+ k − 2
n+ j − 2

) 1

n+ k − 2
,

(3.11)
where we changed the order of summation of the double sum in k and j at the last
step. However, we have the simple binomial identity

∑b
m=a

1
m

(
m
a

)
=
∑b

m=a
1
a

(
m− 1
a− 1

)
=

1
a

(
b
a

)
, because

(
m− 1
a− 1

)
=

(
m
a

)
−

(
m− 1

a

)
, so we have a telescoping sum in m. Therefore,

with m = n + k − 2, a = n + j − 2, and b = n + n − 2 = 2n − 2, we have
∑n

k=j(
n+ k − 2
n+ j − 2

)
1

n+k−2
=

(
2n− 2

n+ j − 2

)
1

n+j−2
. Thus by (3.11) we have

n∑
k=1

(−1)k
d(n+ k, k)

(n+ k − 1)(n+ k − 2)
=

n∑
j=1

(−1)j

n + j − 2

[
n− 1 + j

j

](
2n− 2

n+ j − 2

)
. (3.12)

This completes the proof of the proposition. �

Corollary 3.2 The following hold under the stated conditions.

(i)

N−n+2∑
j=1

(−1)j
[
n+ j − 1

j

](
N

n+ j − 2

)
= 0, for all n ≥ 1, N ≥ 2n− 1;

(ii)
N−n+1∑
j=1

(−1)j
[
n + j − 1

j

](
N

n+ j − 1

)
= 0, for all n ≥ 2, N ≥ 2n− 1.

(3.13)

Proof. First, let k ≥ n + 1 in (3.10). Then because d(n + k, k) = 0, the sum on
the right side of (3.10) is zero. Now put N = n + k − 2. So the sum (3.13)(i) is
zero for all N ≥ n + (n + 1) − 2 = 2n − 1. To prove (3.13)(ii), if n ≥ 2 we have∑n

k=1(−1)kd(n+ k, k)/(n+ k − 1) = 0, [5, p. 256]. Therefore because d(n+ k, k) =

0 for k ≥ n + 1, we have
∑M

k=1(−1)kd(n + k, k)/(n + k − 1) = 0 for any M ≥
n. Therefore by (3.10), if M ≥ n, we have

∑M
k=1

∑k
j=1(−1)j

[
n− 1 + j

j

](
n+ k − 2
n+ j − 2

)
=∑M

j=1(−1)j
[
n− 1 + j

j

]∑M
k=j

(
n+ k − 2
n+ j − 2

)
= 0. But the inner sum of this last double sum



G.J. MORROW/AUSTRALAS. J. COMBIN. 88 (1) (2024), 22–51 37

is simply
(
n+M − 1
n+ j − 1

)
. Now put M = N−n+1 and substitute this binomial expression

in place of the inner sum of the last double sum to obtain (3.13)(ii). It only remains
to check the condition on the size of N . By the definition of M in terms of N for all
N ≥ 2n− 1 we have M ≥ n. Therefore the proof is complete. �

3.1 Proof of Claim 1.7 and Theorem 1.2

We first undertake to simplify the statement of Claim 1.7 by isolating the variable
q. First, by simply expanding binomial coefficients and rearranging factors we have
that the product of binomial factors on the left side of Claim 1.7 is as follows.(

k+m+q−1
m+ q

)(
k+2m
m−q

)(
2m

m+k−1

)
=

m+ 1

m+k+q

(
2m
m−q

)(
m

k−1

)(
k+2m
m+1

)
.

(3.14)
Indeed, the left side of (3.14) is

(k +m+ q − 1)!

(m+ q)!(k − 1)!

(k + 2m)!

(k +m+ q)!(m− q)!

(2m)!

(m+ k − 1)!(m− k + 1)!

=
1

k +m+ q

(k + 2m)!

(k − 1)!

(2m)!

(m+ q)!(m− q)!

m+ 1

(m+ k − 1)!(m+ 1)!

m!

(m− k + 1)!

=
m+ 1

k +m+ q

(2m)!

(m+ q)!(m− q)!

(k + 2m)!

(m+ k − 1)!(m+ 1)!

m!

(k − 1)!(m− k + 1)!

where we canceled (k +m + q)! in numerator and denominator and multiplied and
divided by m! in the form (m + 1) m!

(m+1)!
in the second line, and moved the factors

(k+2m)!
(k−1)!

in the third line. This third line is evidently the right side of (3.14). Next we
rewrite the right side of Claim 1.7 modulo the minus sign as follows:

1

m

(
m+ 1
q + 1

)
/

(
m+ q

q

)
=

1

q + 1

(
2m

m− q

)
/

(
2m

m+ 1

)
. (3.15)

Indeed,

1

m

(m+ 1)!

(q + 1)!(m− q)!

q!m!

(m+ q)!
=

1

q + 1

m+ 1

m

m!m!

(2m)!

(2m)!

(m− q)!(m+ q)!

=
1

q + 1

(m− 1)!(m+ 1)!

(2m)!

(2m)!

(m− q)!(m+ q)!
,

where we multiplied and divided by (2m)!. So (3.15) is verified. Finally, by plug-
ging in (3.14) and (3.15) respectively into the left and right sides of Claim 1.7, and

canceling the common factor
(

2m
m− q

)
on the two sides, and finally changing the index

of summation with k in place of k − 1 running from 0 to m, and thus introducing
a minus sign on the left side, we see that Claim 1.7 is equivalent to the following
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statement:

m∑
k=0

(−1)k
m+ 1

(m+ 1 + k + q)(m+ k)

(
m
k

)(
k + 2m+ 1

m+ 1

)
=

1

q + 1

1(
2m

m+ 1

) ,

for all q = 0, 1, · · · , m, and all m ≥ 2.

(3.16)

We now treat q in (3.16) as a real variable. Define a polynomial of degree m+ 1
by

P (x) =

m∏
k=0

(m+ 1 + k + x), for all real x. (3.17)

Since we want to prove that the two sides of (3.16) indeed interpolate each other
at the points q = 0, 1, · · · , m and since multiplication of both sides by (1 + q)P (q)
leaves a polynomial of degree (m + 1) in q on the left and a constant multiple of
P (q) on the right, there would be a polynomial of degree (m+1) that makes up the
difference. Define the polynomial

φ(x) = (−1)m+1x(x− 1)(x− 2) · · · (x−m) =
m∏
j=0

(j − x). (3.18)

Then we see that the problem of the verification of (3.16) will be solved by Proposi-
tion 1.8. Before proving this proposition we state some useful formulae for polyno-
mials from [11, Chp. 7].

Theorem 3.3 Lagrange Interpolation Formula [11, Thm. 7.1] Let φ(x) =
∑n

i=0 aix
i

with n ≥ 1. Then

φ(x) =

n∑
k=0

φ(xk)

n∏
i = 0
i �= k

x− xi

xk − xi
,

whenever {xi}ni=0 is a set of cardinallity n+ 1.

Theorem 3.4 Melzak’s Formula [11, (7.1)] Let f(x) =
∑n

i=0 aix
i with n ≥ 0. Let

y be an arbitrary complex number with y �= 0,−1,−2, . . . ,−n. Then

f(x+ y) = y

(
y + n
n

) n∑
k=0

(−1)k
(
n
k

)
f(x− k)

y + k
.

Proof of Proposition 1.8. The idea of the proof is to apply the Lagrange interpolation
formula to φ(x) with m+ 1 in place of n and with the interpolation points {xi}m+1

i=0

chosen in such a way that the polynomial term (1 + x)P (x)/(m+ 1+ k + x) = (1 +

x)
m∏

i=0, i �=k

(m+1+i+x) is matched in the formula for φ instead by
m+1∏

i=0, i �=k

(m+1+i+x),

where the upper index m+ 1 in this last product agrees with the Lagrange formula.
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By Theorem 3.3 and the definition (3.18) of φ(x) this means that we simply take as
interpolation points xi = −(m+ 1 + i), for all i = 0, 1, . . . , , m+ 1. Now we develop
a combinatorial formula for φ(x) based on Lagrange’s formula. Define

Q(x) =
m+1∏
i=0

(m+ 1 + i+ x), (3.19)

so Q(x) has degree n+1 = m+2. Then by (3.18) and our choice of the interpolation
points xi in the Lagrange formula, the k-th summand of the interpolation formula
for φ(x) may be written as

φ(xk)
m+1∏

i=0, i �=k

x− xi

xk − xi

=

m∏
j=0

(j − xk)

m+1∏
i=0, i �=k

(xk − xi)

Q(x)

m+ 1 + k + x
, k = 0, 1, 2, . . . , m+ 1,

(3.20)
since by (3.19) we have

∏m+1
i=0, i �=k(x− xi) = Q(x)/(m+ 1 + k + x). Since (j − xk) =

(m+ 1+ k + j), and (xk − xi) = (i− k), for our representation of φ(x) it remains to
evaluate the coefficient

m∏
j=0

(j − xk)

m+1∏
i=0, i �=k

(xk − xi)

=

m∏
j=0

(m+ 1 + k + j)

m+1∏
i=0, i �=k

(i− k)

. (3.21)

It is easy to see that the denominator of (3.21) is (−1)kk!(m+1− k)!. Moreover the
numerator of this fraction is the falling factorial (k + 2m + 1)m+1 introduced after
Theorem 1.5. Hence (3.21) becomes, after multiplying and dividing by (m+ 1)!,

(m+ 1)!

(−1)kk!(m+ 1− k)!

(k + 2m+ 1)m+1

(m+ 1)!
= (−1)k

(
m+ 1

k

)(
k + 2m+ 1

m+ 1

)
. (3.22)

Therefore by Theorem 3.3 and (3.20)–(3.22) the assertion (1.10) of the proposition
may be rewritten as follows.

m+1∑
k=0

(−1)k
Q(x)

m+ 1 + k + x

(
m+ 1

k

)(
k + 2m+ 1

m+ 1

)

+

m∑
k=0

(−1)k
(m+ 1)(1 + x)P (x)

(m+ 1 + k + x)(m+ k)

(
m
k

)(
k + 2m+ 1

m+ 1

)
= P (x)/

(
2m

m+ 1

)
.

(3.23)

Notice that in the second sum of (3.23) the binomial coefficient
(
m
k

)
is automatically

zero when k = m+ 1, so we may regard the sum of the two sums on the left side as
a single sum as k runs from 0 to m + 1. We claim that we can reduce the sum of
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the two corresponding k-th summands modulo the common factor (−1)k
(
k + 2m + 1

m+ 1

)

as follows.

Q(x)

m+ 1 + k + x

(
m+ 1

k

)
+

(m+ 1)(1 + x)P (x)

(m+ 1 + k + x)(m+ k)

(
m
k

)

= P (x)

(
m+ 1

m+ k

(
m
k

)
+

(
m+ 1

k

))
,

(3.24)

so that the two summands add simply to a combinatorial multiple of P (x). Now by
the definitions (3.17) and (3.19) of P (x) and Q(x), we have Q(x) = (2m+2+x)P (x).
Thus to verify (3.24) we must simply check, after transposing the binomial terms on
the right side of (3.24) to their matching terms on the left, that(

2m+ 2 + x

m+ 1 + k + x
− 1

)(
m+ 1

k

)
+

(
(m+ 1)(1 + x)

(m+ 1 + k + x)(m+ k)
− m+ 1

m+ k

)(
m
k

)
= 0.

(3.25)
After obtaining common denominators in the two differences in (3.25) we must

simply verify that m+1−k
m+1+k+x

(
m + 1

k

)
− m+1

(m+1+k+x)

(
m
k

)
= 0. Obviously we can dispense

with the denominators in this last difference so the verification boils down to (m +

1)
(
m+ 1

k

)
−(m+1)

(
m
k

)
−k

(
m+ 1

k

)
= (m+1)

(
m+ 1
k − 1

)
−k

(
m+ 1

k

)
= 0. Thus (3.24) has been

verified. Hence, by (3.24) the assertion (3.23), which we recall is equivalent to the
statement of the proposition, takes the form

P (x)

m+1∑
k=0

(−1)k
(
m+ 1

m+ k

(
m
k

)
+

(
m+ 1

k

))(
k + 2m+ 1

m+ 1

)
= P (x)/

(
2m

m+ 1

)
.

(3.26)

We now dispense with the common factor P (x), and so to complete the proof
of the proposition we are left in (3.26) with a final combinatorial identity to prove.

To handle the proposed combinatorial identity (3.26) we will first rewrite m+1
m+k

(
m
k

)
=

k+1
m+k

(
m+ 1
k + 1

)
, and then change index by j = k + 1. Thus (3.26) becomes

−
m+1∑
j=0

(−1)j
j

m−1+j

(
m+1
j

)(
j+2m
m+1

)
+

m+1∑
k=0

(−1)k
(
m+1
k

)(
k+2m+1
m+ 1

)
= 1/

(
2m
m+1

)
.

(3.27)

Here, for the first sum on the left, the term j = 0 has contribution zero and the
term j = m+2 has contribution zero, so we’ve included the case j = 0 and excluded
the case j = m + 2 to match the same initial and final indices of the sum over k.
Thus convert both sums to sums over k and rewrite k

m−1+k
= 1 − m−1

m−1+k
in the first

sum and thus obtain that the left side of (3.27) is written

(m− 1)
m+1∑
k=0

(−1)k
1

m− 1 + k

(
m+ 1

k

)(
k + 2m
m+ 1

)

+
m+1∑
k=0

(−1)k
(
m+ 1

k

)((
k + 2m+ 1

m+ 1

)
−
(
k + 2m
m+ 1

))
= I + II.

(3.28)
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Now by the binomial recurrence we have II =
∑m+1

k=0 (−1)k
(
m+ 1

k

)(
k + 2m

m

)
. But by

[11, (6.35)] we have
∑n

k=0(−1)k
(
n
k

)(
k + x
m

)
= (−1)n

(
x

m− n

)
. Thus with n = m+ 1 and

x = 2m we find that II = 0.

Finally to handle I of (3.28) we apply Melzak’s formula. The procedure is similar
to that shown by [11, (7.29)–(7.30)]. To match the form of Melzak’s formula in
Theorem 3.4, put back n = m + 1 and define y = m − 1 = n − 2. Also take
the polynomial function of degree n as f(x) =

(
x+ 2n− 2

n

)
. For our application of

Theorem 3.4 we choose the real variable x by −x = 3n − 3. To motivate this
choice of x, notice that to apply Melzak’s formula as stated we must apply the
−1 transformation

(
x
n

)
= (−1)n

(−x+ n− 1
n

)
to rewrite f(x − k) as follows. We have

f(x − k) = (−1)n
(−(x− k + 2n− 2) + n− 1

n

)
= (−1)n

(
k + 2n− 2

n

)
, where we applied our

choice of x. On the other hand, using the original formula for f(x), we have f(x +

y) =
(−(3n− 3) + 2n− 2 + n− 2

n

)
=

(−1
n

)
= (−1)n. By our choices of n, x, and y the term I

from (3.28) is indeed written in the form

I = y(−1)n
n∑

k=0

(−1)k
(
n
k

)
f(x− k)/(y + k).

Therefore we have by Melzak’s formula that

I = (−1)nf(x+ y)/

(
y + n
n

)
= 1/

(
2n− 2

n

)
, (3.29)

since f(x + y) = (−1)n and y + n = 2n − 2. But 2n − 2 = 2m and n = m + 1,

so I = 1/
(

2m
m+ 1

)
, as desired. That is, by (3.27)–(3.29), and using II = 0, we have

verified (3.26). Thus the proposition is proved. �

Proof of Claim 1.7. Let q ∈ {0, 1, 2, . . . , m}. Plug in x = q in the polynomial identity
of Proposition 1.8. By definition (3.18) we have φ(q) =

∏m
j=0(j − q) = 0. Since the

term φ(q) vanishes, and since P (q) �= 0 for P (x) defined by (3.17), and since P (q)
is thus a common nonzero factor of the remaining equality of (1.10), after canceling
this factor and dividing both sides by 1+q we obtain that the statement (3.16) holds
for the given q. Therefore since it was shown by (3.14)–(3.15) that statement (3.16)
is equivalent to the statement of the claim, the proof is complete. �

Proof of Theorem 1.2. We already argued in the Introduction that, via Proposition
1.6, (1.5), and (1.8)–(1.9), the theorem follows from Claim 1.7. �

4 Extension to dr(n, k):
Proofs of Theorem 1.5 and Corollary 1.10

Let dr(n, k) be the number of permutations of [n] into k cycles with no fixed points
such that 1, 2, . . . , r fall in distinct cycles; this is the r-distinguished case for derange-
ments. Define d0(n, k) = d1(n, k) = d(n, k). In this section we obtain an extension of
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Theorem 1.2 to dr(n, k) for all r ≥ 1. The pattern of proof follows roughly the proof
of Theorem 1.3 for the case of the partition numbers br(n, k). For the derangement
numbers we work backwards to the r = 1 case proved in Theorem 1.2 by applying
Lemma 4.2. However, in the case of dr(n, k), besides the appearance of the Bernoulli
numbers in the form Bn−r/(n− r), we get a nonzero integer part Pr(n) for the eval-
uation of the appropriately extended alternating sum. It is not hard to find this
integer part experimentally, but in contrast to the case of partitions, the proof of its
form takes some work that does not appear to be readily available in the literature.

The first step in the pattern of Section 2.1 is to find a suitable recurrence for
dr(n, k). A recurrence obtained by emulating a proof of the triangular recurrence
(1.3)(ii) is as follows:

dr(n, k) = rdr−1(n−2, k−1)+ (n− r−1)dr(n−2, k−1)+ (n−1)dr(n−1, k) (4.1)

Indeed we have the following three disjoint and exhaustive possibilities.

1. Element n makes a 2-cycle with one of the elements of x ∈ [r], where the other
(r−1) elements [r]\{x} are already distinguished for (k−1)-cycle derangements
of [n− 1] \ {x}.

2. Element n makes a 2-cycle with one of the elements y ∈ [n − 1] \ [r], where
there are already r distinguished cycles from (k − 1)-cycle derangements of
[n− 1] \ {y}.

3. We already have derangements of [n − 1] into k cycles with r distinguished
cycles and we place element n in any one of the (n − 1) places available, one
place after each element of [n− 1], in any such derangement.

The value of (4.1) lies in the simplicity of its proof. Since d0(n, k) is the same as
d1(n, k) = d(n, k) we recover (1.3)(ii) by the case r = 1. Yet, despite its straight-
forward derivation, the recurrence (4.1) does not lend itself easily to developing a
generating function for dr(n, k). Moreover, besides wanting a nicer recurrence that
we can use to establish a generating function, we want a nicer recurrence for our
proofs to follow. Surprisingly, even though Lemma 1.9 does yield such a recurrence,
our proof of it requires some construction.

Proof of Lemma 1.9. We must prove that for all r ≥ 1 and all n ≥ 2k ≥ 2r we have

dr(n, k) = (n− r)dr(n− 1, k) + (n− r)dr−1(n− 2, k − 1).

Denote Π(r, n, k) as the derangements of [n] into k cycles such that the elements of
[r] fall in disjoint cycles. We break up Π(r, n, k) into two disjoint sets A and B as
follows. Extend each derangement α ∈ Π(r, n− 1, k) for each y ∈ [r, n− 1] to obtain
a derangement α+ ∈ Π(r, n, k) by inserting the element n after the element y in α.
The set A consists of all these extended derangements α+ as y ranges between r
and n− 1. In particular we never insert the element n immediately after one of the
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elements i with 1 ≤ i ≤ r− 1. We get accordingly the cardinality of the subset A as
|A| = (n− r)|Π(r, n− 1, k)| = (n− r)dr(n− 1, k).

The definition of the set B proceeds in several cases.

Case b.1 : First consider y = n. Consider the derangements of [n] \ {r, y} =
[n] \ {r, n} into (k − 1) cycles such that the elements of [r− 1] fall in disjoint cycles.
For each such derangement β simply extend it to a derangement β+ ∈ Π(r, n, k) by
adding the 2-cycle (r, n) as a k-th cycle. We take β+ to belong to B.

Case b.2 : Consider next r+1 ≤ y ≤ n−1. Let β be a derangement of [n]\{y, n}
into (k − 1) cycles such that the elements of [r − 1] fall in disjoint cycles. Form the
doubleton cycle (y, n) as a k-th cycle that we add to β to obtain a derangement β∗

that is a k-cycle decomposition of [n] such that the elements of [r− 1] fall in disjoint
cycles: β∗ ∈ Π(r − 1, n, k).

Now consider the main subcases b.2.I and b.2.II under case b.2.

Subcase b.2.I : In this subcase the element r (where of course r ≤ k ≤ n/2 < n)
does not belong to any of the first (r− 1) distinguished cycles of β∗. In this case we
define β+ = β∗ ∈ Π(r, n, k) and take this derangement β+ to belong to B. There are
no subsubcases under b.2.I.

Subcase b.2.II : In this subcase the element r does belong to one of the (r − 1)
distinguished cycles of β∗. Say r belongs to the cycle with leading entry i where
1 ≤ i ≤ r − 1. There are two further subsubcases under subcase b.2.II.

Subsubcase b.2.II.i : If the cycle containing both i and r has at least 3 elements,
then starting from β∗, we move element n to just follow element i and simultaneously
move element r to take the former place of element n, so that we end with the
doubleton (r, y) in place of (y, n). The cycle containing element i as a minimal
element that remains after the swap now has the element i directly preceding element
n and this revised cycle still has at least three elements. This revision of β∗ is thus
a derangement β+ ∈ Π(r, n, k) that we define to be an element of B.

Subsubcase b.2.II.ii : If the cycle containing both i and r in β∗ is a doubleton
cycle, then switch the element n of the doubleton (y, n) with the element i so as to
form two doubletons (r, y) and (i, n) in the final revised derangement β+ ∈ Π(r, n, k),
which we take to belong to B.

We now argue that A and B are disjoint and that A ∪ B = Π(r, n, k), and that
there is no overlap in the various cases for the definition of the set B.

To prove A and B are disjoint, consider first by definition that every derangement
in A has element n in a cycle of length at least 3. Therefore there is no overlap with
A and the derangements from case b.1, subcase b.2.I, or subsubcase b.2.II.ii because
in all these cases n belongs to a doubleton cycle. In subsubcase b.2.II.i we have that
element i with 1 ≤ i ≤ r − 1 precedes element n in a cycle c of at least 3 elements,
and this cannot occur for any derangement in A, again by definition of A, since a
cycle of length at least 3 containing both i and n where n does not immediately
succeed i is not equivalent to c. Thus A and B are disjoint.

We next prove that A ∪ B exhausts all derangements in Π(r, n, k). Let π ∈
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Π(r, n, k). Then element n belongs to one of the k cycles of π. If element n belongs
to a cycle of at least 3 elements, then this is handled by set A except for the caveat
that n must not directly succeed an element i with 1 ≤ i ≤ r − 1 in such a cycle;
it does handle cycles of length at least 3 for minimal element r that also contain
element n whether n follows r or not. If element n belongs to a 2-cycle then this is
handled for all cases by the union of cases b.1, b.2.I, and b.2.II.ii. If finally n belongs
to a cycle of length at least 3 and directly succeeds an element i with 1 ≤ i ≤ r− 1,
then this is covered by b.2.II.i.

Finally we prove that there is no overlap among the cases for the construction of
the set B. Subsubcases b.2.II.i and b.2.II.ii are disjoint by construction; n is in a
doubleton cycle under b.2.II.ii but not under b.2.II.i. The cases b.2.II.ii, b.2.I, and
b.1 are mutually disjoint because we have a doubleton cycle (i, n) with 1 ≤ i ≤ r−1
in case b.2.II.ii, while we have a doubleton cycle (y, n) with y ∈ [r+1, n− 1] in case
b.2.I, and we have a doubleton cycle (r, n) in case b.1. The case b.2.II.i is obviously
disjoint from both b.1 and b.2.I again because n is not in a doubleton cycle under
b.2.II.i. This completes the discussion showing no overlap in the various cases for the
set B. Since there is only one y-value for case b.1 while there are (n− r− 1) such y-
values for case b.2, we obtain that the cardinality of B is (n−r)|Π(r−1, n−2, k−1)| =
(n− r)dr−1(n− 2, k − 1). Thus the proof of the lemma is complete. �

With Lemma 1.9 in hand we obtain a generating function formula for the r-
distinguished derangement numbers in parallel to the corresponding case for parti-
tions of Lemma 2.2.

Lemma 4.1 Let r ≥ 0. Then for all r ≥ 0 we have

∑
n≥0,k≥0

dr(n+ r, k + r)uk zn

n!
=

(
z

1− z

)r

e−uz(1− z)−u (4.2)

Proof. We proceed by induction. By (1.2) the basis r = 0 is verified. For the
induction step, assume that the statement of the lemma is true for some r ≥ 0.
Denote by fr(u, z) the left side of (4.2). Then, since fr+1(u, z) =

∑
n≥0,k≥0 dr+1(n +

r + 1, k + r + 1)uk zn

n!
, by Lemma 1.9 we obtain

fr+1(u, z) =
∑

n≥0,k≥0

ndr+1(n+ r, k + r + 1)uk zn

n!
+

∑
n≥0,k≥0

ndr(n+ r− 1, k + r)uk zn

n!

We change indices by N = n− 1 in both sums. Thus

fr+1(u, z) =
∑

N≥0,k≥0

dr+1(N+r+1, k+r+1)uk zN+1

N !
+

∑
N≥0,k≥0

dr(N+r, k+r)uk zN+1

N !

Thus obtain fr+1(u, z) = zfr+1(u, z) + zfr(u, z). Hence fr+1(u, z) =
z

1−z
fr(u, z). By

the induction hypothesis we therefore have fr+1(u, z) =
(

z
1−z

)r+1
e−uz(1 − z)−u, as

desired. �
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To motivate the remaining steps we take to prove Theorem 1.5, we first show the
backwards recurrence step we will apply. To help make this step clear we introduce
two notations as follows. Denote

Sr(n) =
n∑

k=1

(−1)k
dr(n+ k, k)

(n + k − r)r+1
,

Tr(n) =
n∑

k=1

(−1)k
dr(n + k, k)

(n+ k − r)r
.

(4.3)

Notice that the sum Sr(n) is the sum appearing in Theorem 1.5.

Lemma 4.2 Let r ≥ 2 and n ≥ r + 2. Then we have

Sr(n) = Tr(n− 1)− Sr−1(n− 1). (4.4)

Proof. Apply Lemma 1.9 to write Sr(n) as

n−1∑
k=1

(−1)k
n+k−r

(n+k−r)r+1
dr(n+k−1, k) +

n−1∑
k=2

(−1)k
n+k−r

(n+k−r)r+1
dr−1(n+k−2, k−1).

(4.5)
Call the first sum in (4.5) as I and the second sum as II. In I, by canceling the first
factor (n+ k − r) of the denominator, and then by putting m = n− 1, we have

I =
n−1∑
k=1

(−1)k
dr(n + k − 1, k)

(n+ k − r − 1)r
=

m∑
k=1

(−1)k
dr(m+ k, k)

(m+ k − r)r
.

Also put m = n − 1 in II and in addition change the index of summation by
j = k− 1 and denote s = r− 1, so that (n+ k− r− 1) = (m+ j− s), r = s+1, and
(−1)k = (−1)(−1)j . Thus

II =

n−1∑
k=2

(−1)k
dr−1(n+ k − 2, k − 1)

(n+ k − r − 1)r
= (−1)

m∑
j=1

(−1)j
ds(m+ j, j)

(m+ j − s)s+1
.

Clearly by our notation (4.3) we have I = Tr(m) = Tr(n − 1) and II = −Ss(m) =
−Sr−1(n− 1). Thus by Sr(n) = I + II the proof is complete. �

We want to prove an evaluation of Tr(n) defined by (4.3). To do this we first find
a certain Stirling number representation of Tr(n) by an extension of the generating
function argument of Proposition 1.6. The Stirling numbers that arise naturally are
the r-Stirling numbers of the first kind introduced by [3].

Definition 4.3 [3, p. 241]. Let r, k, and n ≥ 0. Define the r-Stirling number of the

first kind,
[
n
k

]
r

, as the number of permutations of [n] into k cycles such that each of

1, 2, . . . , r appears in a different cycle. The ordinary Stirling number of the second
kind, namely the case r = 1, is denoted without subscript. By convention,

[
n
k

]
0

=
[
n
k

]
.

Further
[
n
k

]
r

= 0, if n < r or k < r, while
[
r
k

]
r

= δk,r, for r ≥ 0, and
[
n
0

]
r

= 0, for n > r.
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We have the following recurrences.

Lemma 4.4 [3, Theorems 1 and 3]

(triangular recurrence)

[
n
m

]
r

= (n− 1)

[
n− 1
m

]
r

+

[
n− 1
m− 1

]
r

, n > r.

(cross recurrence) (r − 1)

[
n
m

]
r

=

[
n

m− 1

]
r−1

−
[

n
m− 1

]
r

, n ≥ r > 1.

(4.6)

We also have the following r-Stirling extension of Lemma 3.1 given by [3, Thm. 7]:[
m

m− k

]
r

=
∑

r≤i1<i2<···<ik<m

i1i2 · · · ik.

Therefore, in the same manner that we obtain (3.6) we find:

ur(u+ rz)(u+ (r+1)z)(u+(r+2)z) · · · (u+ (r+ p− 1)z) =

p∑
n=0

[
p+ r

p + r − n

]
r
znup+r−n.

(4.7)

Lemma 4.5 Define Tr(n) by (4.3). Let n ≥ r ≥ 1. Then we have

Tr(n) =

n∑
j=r

(−1)j
[
n + j − r

j

]
r

(
2n− 2r + 1

n + j − 2r + 1

)
. (4.8)

Proof. Define

fr(u, z) =
∑
n,k≥r

dr(n+ k, k)

(n+ k − r)r
uk zn

(n + k − 2r)!
. (4.9)

Make the substitution m = n+ k, and write ukzn = (u/z)kzm = ur(u/z)k−rzm−r, to
rewrite

fr(u, z) =
∑

m≥k≥r

dr(m, k)(u/z)k
zm

(m− r)!
= ur

∑
m≥k≥r

dr(m, k)(u/z)k−r zm−r

(m− r)!

(4.10)
where we have incorporated (m− r)r · (m− 2r)! = (m− r)!. Therefore by (4.10) and
Lemma 4.1 we have (compare the case r = 1 in (3.4)):

fr(u, z) = urzre−u(1− z)−u/z−r. (4.11)

Develop (1− z)−v−r as a binomial expansion about z = 0 to obtain

(1− z)−v−r = 1 +
(v+r)

1!
z +

(v+r)(v+r+1)

2!
z2 +

(v+r)(v+r+1)(v+r+2)

3!
z3 + · · · .
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Thus, after plugging in v = u/z we find by (4.11) that

fr(u, z) = zre−u · ur

(
1 +

(u+ rz)

1!
+

(u+ rz)(u+ (r + 1)z)

2!
+ · · ·

)
. (4.12)

Hence by (4.7) applied to (4.12), incorporating the factor zr under the sum, we have

fr(u, z) =
∞∑
�=0

(−1)�
u�

�!

∞∑
p=0

1

p!

p∑
n=0

[
p+ r

p+ r − n

]
r
zn+rup+r−n. (4.13)

Following the development after (3.7) but now applied to (4.13) with here k =
� + p + r − n as the power of u and j = k − � as the lower index of the r-Stirling
coefficient, we have the formula

fr(u, z) =

∞∑
k=r

(−1)k uk

∞∑
n=0

zn+r

k∑
j=r

(−1)j
[
n + j
j

]
r

1

(n+ j − r)!(k − j)!
; (4.14)

compare the case r = 1 of (4.14) in (3.8). Now we rewrite fr(u, z) in (4.14) by replac-
ing n by n− r so as to make a power of zn, consistent with (4.9). Correspondingly

we introduce 1
(n+j−2r)!(k−j)!

=
(
n+ k − 2r
n+ j − 2r

)
1

(n+k−2r)!
. We rewrite (4.14) accordingly as

follows.

fr(u, z) =

∞∑
k=r

(−1)k uk

∞∑
n=r

zn
k∑

j=r

(−1)j
[
n− r + j

j

]
r

(
n + k − 2r
n + j − 2r

)
1

(n+ k − 2r)!
.

(4.15)
Fix n ≥ r+1. We simply write, by the definition (4.9) of fr(u, z) and by (4.15), that
for any k ≥ 1,

(−1)k
dr(n+k, k)

(n+k−r)r
= (−1)k[ukzn](n+k−2r)!fr(u, z)

=
k∑

j=r

(−1)j
[
n+ j − r

j

]
r

(
n+ k − 2r
n+ j − 2r

)
.

(4.16)

Finally by constructing Tr(n) by its definition (4.3) as a sum over k of the left side
of (4.16), where we may take k running from r to n, and interchanging the order of
summation in the resulting double sum following from the right side of (4.16), the

proof is complete by noting the binomial identity
∑n

k=j

(
n+ k − 2r
n+ j − 2r

)
=

(
2n− 2r + 1

n+ j − 2r + 1

)
. �

We will compute Tr(n) by using the Stirling number representation of Lemma 4.5.
We generalize slightly this representation by introducing Ur(n,N) with Tr(n) =
Ur(n, 2n−(2r−1)) by introducing a parameter N in the upper index of the binomial
coefficient. We also define a companion sum Vr(n,N) as follows. For all parameters
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r, n, and N as shown, we define

Ur(n,N) =
∑
j

(−1)j
[
n + j − r

j

]
r

(
N

n+ j − 2r + 1

)
;

r ≥ 1, n ≥ r + 1, N ≥ 2n− 2r + 1

Vr(n,N) =
∑
j

(−1)j
[
n + j − r

j

]
r

(
N

n+ j − 2r

)
;

r ≥ 1, n ≥ r,N ≥ 2n− 2r + 1.

(4.17)

Here and in the sequel, the sums defining Ur(n,N) and Vr(n,N) are finite and extend
to all nonzero values of the summand. By (3.13)(i) we have evaluated V1(n,N) = 0
for all n ≥ 1 and N ≥ 2n− 1. Also, by (3.13)(ii) we have evaluated U1(n,N) = 0 for
all n ≥ 2 and N ≥ 2n− 1.

Lemma 4.6 Define Ur(n,N) and Vr(n,N) by (4.17). Then we have

(i) Vr(n,N) = 0, for all r ≥ 1, n ≥ r, N ≥ 2n− 2r + 1;

(ii) Ur(n,N) = (−1)r(r − 1)n−r, for all r ≥ 1, n ≥ r + 1, N ≥ 2n− 2r + 1.
(4.18)

Additionally, for r ≥ 2 we have Ur(r,N) = (−1)r when N ≥ 1.

Proof. We prove statement (i) of the lemma by applying the proof of (3.13)(i) to
(4.16). Indeed let r ≥ 1 and k ≥ n + 1 in (4.16). Then dr(n + k, k) = 0. Hence
the sum on the right side of (4.16) is zero. Now put N in place of n+ k − 2r in the
upper index of the binomial coefficient for the sum on the right side of (4.16). Then
we have that this sum is zero for all N ≥ n + (n+ 1)− 2r. Hence by the definition
of Vr(n,N) in (4.17) we have verified that Vr(n,N) = 0 under the constraints shown
in (4.18)(i).

To prove statement (ii) of the lemma, we first apply the cross recurrence of (4.6)
to Ur(n,N) defined by (4.17). For the application of the recurrence we transpose

the terms to write
[

n
m− 1

]
r

= −(r − 1)
[
n
m

]
r

+
[

n
m− 1

]
r−1

. Hence by (4.17) and this last

relation we have

Ur(n,N) = −(r − 1)
∑
j

(−1)j
[
n+ j − r
j + 1

]
r

(
N

n+ j − 2r + 1

)

+
∑
j

(−1)j
[
n+ j − r

j

]
r−1

(
N

n + j − 2r + 1

)
.

(4.19)

Now put k = j + 1 and m = n − 1 in the first sum on the right side of (4.19) and
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put m = n− 1 in the second sum. Thus

Ur(n,N) = +(r − 1)
∑
k

(−1)k
[
m+ k − r

k

]
r

(
N

m+ k − 2r + 1

)

+
∑
j

(−1)j
[
m+j−(r−1)

j

]
r−1

(
N

m+j−2r+2

)
= (r−1)Ur(m,N) + Vr−1(m,N).

(4.20)
By m = n− 1 in (4.20) we have thus shown

Ur(n,N) = (r − 1)Ur(n− 1, N) + Vr−1(n− 1, N), for any N. (4.21)

To complete the proof of (ii), we first observe that the case r = 1 for Ur(n,N) is
verified by (3.13)(ii). Thus let r ≥ 2. Assume that n ≥ r + 1 and N ≥ 2n− 2r + 1.
By (4.21) we have

Ur(n,N) = (r − 1)Ur(n− 1, N) + Vr−1(n− 1, N) = (r − 1)Ur(n− 1, N), (4.22)

where we have applied Vr−1(n−1, N) = 0. We can make this application by (4.18)(i)
because n−1 ≥ r ≥ r−1 and N ≥ 2n−2r+1 = 2(n−1)−2(r−1)+1, as required.
Now iterate (4.22), which is possible for the evaluation of Vr−1(n

′, N) = 0 with
n′ = n− k because the inequality constraint N ≥ 2(n′ − 1)− 2(r− 1) + 1 is satisfied
for k ≥ 1 and N fixed. Therefore, by iterating k times with k = n− r we obtain

Ur(n,N) = (r − 1)n−rUr(r,N). (4.23)

Finally we compute Ur(r,N) by using the definition (4.17) with r + j − r = j in the
top index of the r-Stirling number and r+ j−2r+1 = j− r+1 in the bottom index
of the binomial coefficient. Thus we have

Ur(r,N) =
∑
j≥r

(−1)j
[
j
j

]
r

(
N

j − r + 1

)

= (−1)r
N−1∑
k=0

(−1)k
(

N
k + 1

)

= (−1)r(1− (1− 1)N) = (−1)r,

where we made the change of index k = j − r. Hence, Ur(n,N) = (−1)r(r − 1)n−r.
Thus we have verified (4.18). The additional statement of the lemma has been proved
by our evaluation of Ur(r,N) = (−1)r for all r ≥ 2. Hence the lemma is proved. �

Proof of Theorem 1.5. We compute Sr(n), which is defined by (4.3), and which
stands as the left side of the statement of the theorem, as follows. Let r ≥ 2 and let
n ≥ r + 2. By Lemma 4.2 we have that the backward recurrence (4.4) holds, which
we restate here:

Sr(n) = Tr(n− 1)− Sr−1(n− 1),
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for Tr(n) also defined by (4.3). By Lemma 4.5 and the definition (4.17) of Ur(n,N) we
have Tr(n) = Ur(n, 2n−2r+1). So by Lemma 4.6, putting n−1 in place of n in this
last relation, we have Tr(n− 1) = Ur(n− 1, 2(n− 1)− 2r + 1) = (−1)r(r − 1)n−1−r.
Therefore in turn, recalling by Definition 1.4 that Pr(n) = (−1)r

∑r−1
i=0 i

n−r−1, we
have Tr(n − 1) = Pr(n) − (−1)Pr−1(n − 1) = Pr(n) + Pr−1(n − 1). Hence, by the
backward recurrence (4.4) for Sr(n), we have

Sr(n) = Pr(n) + Pr−1(n− 1)− Sr−1(n− 1), for all r ≥ 2, n ≥ r + 2. (4.24)

Put n′ = n − 1 and r′ = r − 1. Since n′ = n − 1 ≥ r + 1 = r′ + 2, we may iterate
(4.24) and thus obtain

Sr(n) = Pr(n) + Pr−1(n− 1)− Sr−1(n− 1)

= Pr(n) + Pr−1(n− 1)− (Pr−1(n− 1) + Pr−2(n− 2)) + Sr−2(n− 2)

= (−1)r−1S1(n− r + 1) +
r−2∑
k=0

(−1)k(Pr−k(n− k) + Pr−k−1(n− k − 1))

= (−1)r−1S1(n− r + 1) + Pr(n) + (−1)r−2P1(n− r + 1),
(4.25)

where we used that the sum in the second to last line is telescoping. Finally, P1(n−
r+1) = (−1)10n−r+1 = 0, and by the definition (4.3) of S1(n− (r−1)) and Theorem
1.2 we have (−1)r−1S1(n − r + 1) = (−1)r−1 (−Bn−r/(n− r)). Therefore by (4.25)
we have Sr(n) = Pr(n) + (−1)rBn−r/(n− r). By the definition of Sr(n), this is what
we wanted to prove. �

Proof of Corollary 1.10. Recall the Bernoulli’s formula (1.4) which we rewrite here:

N∑
k=0

kp =
1

p+ 1

p∑
k=0

(−1)k
(
p+ 1
k

)
Np+1−kBk, p ≥ 1.

By the statement of Theorem 1.5, and by taking p = n − r − 1 and N = r − 1 in
the power sum to represent Pr(n) of Definition 1.4, and because only when n and r
have the same parity with n − r ≥ 2 do we have Bn−r �= 0, we obtain the corollary
by adding a last term k = p + 1 = n− r to the Bernoulli number representation of
the power sum. �
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