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Abstract

The celebrated Erdős-Hajnal conjecture states that for every undirected
graph H there exists ε(H) > 0 such that every undirected graph on
n vertices that does not contain H as an induced subgraph contains
a clique or a stable set of size at least nε(H). This conjecture has a
directed equivalent version stating that for every tournament H there
exists ε(H) > 0 such that every H-free n-vertex tournament T contains a
transitive subtournament of order at least nε(H). This conjecture is proved
for few infinite families of tournaments. In this paper we construct a new
infinite family of tournaments — the family of so-called flotilla-galaxies,
and we prove the correctness of the conjecture for every flotilla-galaxy
tournament.

1 Introduction

Let G be an undirected graph. We denote by V (G) the set of its vertices and by
E(G) the set of its edges. We call |G| = |V (G)| the order of G. Let X ⊆ V (G).
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The subgraph of G induced by X is denoted by G|X, that is, the graph with vertex
set X, in which x, y ∈ X are adjacent if and only if they are adjacent in G. A clique
in G is a set of pairwise adjacent vertices and a stable set in G is a set of pairwise
nonadjacent vertices. For an undirected graph H, we say that G is H-free if no
induced subgraph of G is isomorphic to H. A digraph is a pair D = (V,A) of sets
such that A ⊂ V ×V , and such that for every (x, y) ∈ A we must have (y, x) /∈ A. In
particular if (x, y) ∈ A, then x 6= y. Here A is the arc set and V is the vertex set and
they are denoted by A(D) and V (D) respectively. We say that D′ is a subdigraph of
a digraph D if V (D′) ⊆ V (D) and A(D′) ⊆ A(D). We say that D contains a copy of
D′ if D′ is isomorphic to a subdigraph of D. A path P is a graph whose vertex set and
edge set are given by V (P ) = {x1, x2, . . . , xn}, and E(P ) = {xixi+1 : 1 ≤ i ≤ n− 1}
respectively. A 4-vertex path is a path on four vertices. A cycle C is a graph such that
V (C) = {x1, x2, . . . , xn} and E(C) = {xixi+1 : 1 ≤ i ≤ n − 1} ∪ {xnx1}. A directed
cycle is a digraph whose vertex set and arc set are given by V (C) = {x1, x2, . . . , xn},
and A(C) = {(xi, xi+1) : 1 ≤ i ≤ n− 1} ∪ {(xn, x1)} respectively.

A tournament is a directed graph (digraph) such that for every pair u and v
of distinct vertices, exactly one of the arcs (u, v) or (v, u) exists. A tournament is
transitive if it contains no directed cycle. A triangle is a transitive tournament on
three vertices. Let T be a tournament. We denote its vertex set by V (T ) and its
arc set by A(T ), and we write |T | for |V (T )|. The reverse of T , denoted by T , is
the tournament obtained from T by reversing the directions of all the arcs of T . Let
X ⊆ V (T ). The subtournament of T induced by X is denoted by T |X, that is, the
tournament with vertex set X, such that for x, y ∈ X, (x, y) ∈ A(T |X) if and only if
(x, y) ∈ A(T ). If (u, v) ∈ A(T ), then we say that u is adjacent to v (alternatively: v
is an outneighbor of u), and we write u→ v. We also say that v is adjacent from u
(alternatively: u is an inneighbor of v), and we write v ← u. For two disjoint subsets
V1 and V2 of V (T ), we say that V1 is complete to (respectively from) V2 if every vertex
of V1 is adjacent to (respectively from) every vertex of V2, and we write V1 → V2
(respectively V1 ← V2). We say that a vertex v is complete to (respectively from) a
set V if {v} is complete to (respectively from) V and we write v → V (respectively
v ← V ). Given a tournament H, we say that T contains H if H is isomorphic to
T |X for some X ⊆ V (T ). If T does not contain H, we say that T is H-free.

Erdős and Hajnal proposed the following conjecture [3] (EHC):

Conjecture 1 For any undirected graph H there exists ε(H) > 0 such that any H-
free undirected graph with n vertices contains a clique or a stable set of size at least
nε(H).

The following conjecture is the directed version of Conjecture 1, where graphs are
replaced by tournaments, and cliques and stable sets are replaced by transitive sub-
tournaments.

Conjecture 2 For any tournament H there exists ε(H) > 0 such that every H-
free tournament with n vertices contains a transitive subtournament of order at least
nε(H).
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Alon et al. proved [1] that Conjectures 1 and 2 are equivalent.

A tournament H satisfies the Erdős-Hajnal Conjecture (EHC) (equivalently: H
has the Erdős-Hajnal property) if there exists ε(H) > 0 such that every H-free
tournament T with n vertices contains a transitive subtournament of order at least
nε(H).

The Erdős-Hajnal property is a hereditary property [7]; that is, if a tournament
H has the Erdős-Hajnal property, then all its subtournaments also have the Erdős-
Hajnal property. EHC is known for all tournaments on at most six vertices except
one [2, 4], and for a few infinite classes of tournaments [1, 2, 5, 9]. Also, instead
of forbidding just one tournament, one can state the analogous conjecture where we
forbid two tournaments. The only results in this setting are in [6, 8, 10].

Let θ = (v1, . . . , vn) be an ordering of the vertex set V (D) of an n-vertex digraph
D. An arc (vi, vj) ∈ A(D) is a backward arc of D under θ if i > j. We say that a
vertex vj is between two vertices vi, vk under θ = (v1, . . . , vn) if i < j < k or k < j < i.
The graph of backward arcs under θ, denoted by B(D, θ), is the undirected graph
that has vertex set V (D), and vivj ∈ E(B(D, θ)) if and only if (vi, vj) or (vj, vi) is
a backward arc of D under θ. The set of backward arcs of D under θ is denoted by
Aθ(D).

Let θ = (v1, . . . , vn) be an ordering of the vertex set V (T ) of an n-vertex tourna-
ment T . We say that V (T ) is the disjoint union of X1, . . . , Xt under θ if V (T ) is the
disjoint union of X1, . . . , Xt, and E(B(T, θ)) =

⋃t
i=1E(B(T |Xi, θi)), where θi is the

restriction of θ to Xi. A tournament S on p vertices with V (S) = {u1, u2, . . . , up}
is a right star (respectively, left star ; middle star) if there exists an ordering θ∗ =
(u1, u2, . . . , up) of its vertices, such that the backward arcs of S under θ∗ are (up, ui)
for i = 1, . . . , p− 1 (respectively, (ui, u1) for i = 2, . . . , p; (ui, ur) for i = r + 1, . . . , p
and (ur, ui) for i = 1, . . . , r − 1, where 2 ≤ r ≤ p − 1). In this case we write
S = {u1, u2, . . . , up}, and we call θ∗ = (u1, u2, . . . , up) a right star ordering (respec-
tively, left star ordering ; middle star ordering) of S, up (respectively, u1; ur) the
center of S, and u1, . . . , up−1 (respectively, u2, . . . , up; u1, . . . , ur−1, ur+1, . . . , up) the
leaves of S. A star is a left star or a right star or a middle star. A star ordering is a
left star ordering or a right star ordering or a middle star ordering. Note that in the
case p = 2 we may choose arbitrarily any one of the two vertices to be the center of
the star, and the other vertex is then considered to be the leaf. A frontier star is a
left star or a right star (note that a frontier star is not a middle star; a frontier star
is either left or right). A star S = {vi1 , . . . , vit} of D under θ (where i1 < · · · < it)
is the subdigraph of D induced by {vi1 , . . . , vit}, such that S is a star and S has the
star ordering (vi1 , . . . , vit) under θ (i.e. (vi1 , . . . , vit) is the restriction of θ to V (S)
and (vi1 , . . . , vit) is a star ordering of S).

A tournament T is a galaxy if there exists an ordering θ of its vertices such that
V (T ) is the disjoint union of V (Q1), . . . , V (Ql), X under θ, where Q1, . . . , Ql are the
frontier stars of T under θ, and for every x ∈ X, {x} is a singleton component of
B(T, θ), and no center of a star is between leaves of another star under θ. In this
case we also say that T is a galaxy under θ. If X = ∅, we say that T is a regular
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galaxy under θ (see Figure 1).

Theorem 1.1 [2] Every galaxy satisfies the Erdős-Hajnal conjecture.

Figure 1: Galaxy under (1, 2, . . . , 8) consisting of one left star and two right
stars. All the non-drawn arcs are forward.

In 2015 Choromanski [5] extended the family of galaxies to constellations by making
the condition concerning the centers of the stars much weaker than that in galaxies,
but not allowing middle stars (constellations are fully characterized in [5]):

Theorem 1.2 [5] Every constellation satisfies the Erdős-Hajnal conjecture.

More recently we extended the family of galaxies to galaxies with spiders [9] in which
we allowed middle stars to exist under some conditions and we replaced the condition
concerning centers of stars by a weaker one:

Theorem 1.3 [9] Every galaxy with spiders satisfies the Erdős-Hajnal conjecture.

A tournament T is a nebula if there exists an ordering θ of its vertices such that V (T )
is the disjoint union of V (Q1), . . . , V (Ql), X under θ, where Qi is a star of T under
θ (Qi may be a middle star) for i = 1, . . . , l, and for every x ∈ X, {x} is a singleton
component of B(T, θ) (note that there is no condition concerning the location of the
centers of the stars and middle stars). In this case say that θ is a nebula ordering of
T .

Unfortunately, showing that every nebula satisfies the Erdős-Hajnal conjecture
is still a wide open problem and considered very hard. The only known results
concerning nebulas are for galaxies, constellations and galaxies with spiders.

On the other hand, there exist infinitely many tournaments with no nebula or-
dering i which are not known to satisfy EHC. That motivates us to work on a new
configuration of backward arcs. Our first result concerning tournaments with no neb-
ula ordering is for an infinite class of tournaments — the so-called asterisms [9]. To
prove EHC for asterisms we introduced a very powerful tool — the so-called “Corre-
sponding Digraph” that turned out to be very useful in flotilla-galaxies, the infinite
class treated in this paper. Flotilla-galaxy tournaments have no nebula ordering;
instead, a flotilla-galaxy has a special backward arc configuration consisting of a
disjoint group of 4-vertex paths and stars (note that middle stars on three vertices
are allowed). Middle stars and 4-vertex paths are considered of special interest and
are very hard to treat. That motivates us to work on backward arc configurations
consisting of such structures.

The main result of this paper is the following:
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Theorem 1.4 Every flotilla-galaxy satisfies the Erdős-Hajnal conjecture.

This paper is organized as follows:

• In Section 2 we formally define flotilla-galaxies.

• In Section 3 we give some properties of ε-critical tournaments needed in the
proof of the main result in this paper.

• In Section 4 we introduce the tools that play a central role in the proof of the
main result, and we prove Theorem 1.4.

2 Flotilla-Galaxy Tournaments

Our paper addresses the problem of middle stars and substructures called boats, and
proves the conjecture for infinitely many tournaments having boats and middle stars
on three vertices under some conditions that we explain in this section. A boat B
is a 4-vertex tournament with V (B) = {x, u, v, y} and A(B) = {(y, x), (y, u), (v, x),
(x, u), (u, v), (v, y)}.

In order to define formally the infinite family of flotilla-galaxies, we need to define
four special tournaments on seven vertices obtained from a boat B = {1, 2, 3, 4}.
These tournaments are called generalized boats or γ-boats.

The left γ1-boat is the tournament obtained from B by adding three extra vertices
5, 6 and 7, and making 5 adjacent to {3, 4, 7}, 6 adjacent to {4, 5}, and 7 adjacent
to 6. The left γ2-boat is the tournament obtained from the left γ1-boat by reversing
the direction of the arc (4, 7). The right γ1-boat (respectively, γ2-boat) is the reverse
of left γ1-boat (respectively, γ2-boat).

A left (respectively right) γ-boat under θ is a left γ1-boat or a left γ2-boat (re-
spectively, right γ1-boat or a right γ2-boat). A γ-boat under θ is a left or a right
γ-boat under θ.

In what follows we define two special orderings of the vertices of a γ-boat Bγ that
will be crucial in our latter analysis. The first ordering is called the path ordering
of Bγ, and is denoted by θP . And the second ordering, denoted by θC , is called the
cyclic ordering of Bγ (see Figure 2):

• If Bγ is a left γ1-boat, then:
θP = (1, 2, 5, 3, 6, 4, 7), such that AθP (Bγ) = {(3, 1), (4, 1), (4, 2), (6, 5), (7, 6)},
θC = (2, 3, 1, 6, 5, 4, 7), such that AθC (Bγ) = {(1, 2), (4, 1), (4, 2), (5, 3), (7, 6)}.

• If Bγ is a left γ2-boat, then:
θP = (1, 2, 5, 3, 6, 7, 4), such that AθP (Bγ) = {(3, 1), (4, 1), (4, 2), (6, 5), (7, 6)},
θC = (2, 3, 1, 6, 5, 7, 4), such that AθC (Bγ) = {(1, 2), (4, 1), (4, 2), (5, 3), (7, 6)}.

• If Bγ is a right γ1-boat, then:
θP = (7, 4, 6, 3, 5, 2, 1), such that AθP (Bγ) = {(1, 3), (1, 4), (2, 4), (5, 6), (6, 7)},
θC = (7, 4, 5, 6, 1, 3, 2), such that AθC (Bγ) = {(2, 1), (1, 4), (2, 4), (3, 5), (6, 7)}.
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• If Bγ is a right γ2-boat, then:
θP = (4, 7, 6, 3, 5, 2, 1), such that AθP (Bγ) = {(1, 3), (1, 4), (2, 4), (5, 6), (6, 7)},
θC = (4, 7, 5, 6, 1, 3, 2), such that AθC (Bγ) = {(2, 1), (1, 4), (2, 4), (3, 5), (6, 7)}.

Figure 2: Crucial orderings of the vertices of left and right γ1-boat, left and
right γ2-boat. All the non-drawn arcs are forward.

Let θ = (v1, . . . , vn) be an ordering of the vertex set V (T ) of an n-vertex tourna-
ment T . A left γ-boat (respectively, right γ-boat) Bγ = {vi1 , vi2 , vi3 , vi4 , vi5 , vi6 , vi7} of
T under θ is an induced subtournament of T , such that Bγ is a left γ-boat (respec-
tively, right γ-boat), Bγ has its path ordering (vi1 , vi2 , vi3 , vi4 , vi5 , vi6 , vi7) under θ, and
vi1 , . . . , vi5 are consecutive under θ and vi6 , vi7 are consecutive under θ (respectively,
vi1 , vi2 are consecutive under θ and vi3 , . . . , vi7 are consecutive under θ).

We are ready to define formally the infinite family of flotilla-galaxies.

A tournament T is a flotilla-galaxy if there exists an ordering θ of its vertices such
that V (T ) is the disjoint union of V (Bγ

1 ), . . . , V (Bγ
l ), X under θ, where Bγ

1 , . . . , B
γ
l

are the γ-boats of T under θ, T |X is a galaxy under θ (θ is the restriction of θ to
X), and no vertex of a γ-boat appears in the ordering θ between leaves of a star of
T |X. We also say that T is a flotilla-galaxy under θ, and θ is called a flotilla-galaxy
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ordering of T (see Figure 3). If T |X is a regular galaxy under θ and the number
of the frontier stars of T |X under θ is l, then T is called a regular flotilla-galaxy
under θ.

Figure 3: Flotilla-galaxy under θ = (1, . . . , 16) consisting of one left γ1-boat,
one right γ2-boat, and one right star. All the non-drawn arcs are forward.

3 ε-critical tournaments

Denote by tr(T ) the largest order of a transitive subtournament of a tournament
T . For X ⊆ V (T ), write tr(X) for tr(T |X). Let X, Y ⊆ V (T ) be disjoint. Denote
by eX,Y the number of directed arcs (x, y), where x ∈ X and y ∈ Y . The directed
density from X to Y is defined as d(X, Y ) =

eX,Y

|X|.|Y | .

We say that T is ε-critical for ε > 0 if tr(T ) < |T |ε but for every proper sub-
tournament S of T , we have: tr(S) ≥ |S|ε. The following are some properties of
ε-critical tournaments that we borrow from [2, 4, 8, 9]. For the reader’s convenience
we include the proof of some lemmas (the proofs are stated exactly as in [2, 8, 9]).

Lemma 3.1 [2] For every N > 0, there exists ε(N) > 0 such that for every 0 < ε <
ε(N), every ε-critical tournament T satisfies |T | ≥ N .

Proof. Since every tournament contains a transitive subtournament of order 2, it
suffices to take ε(N) = logN(2). �

Lemma 3.2 [2] Let T be an ε-critical tournament with |T | = n and ε, c, f > 0 be
constants such that ε < logc(1 − f). Then for every A ⊆ V (T ) with |A| ≥ cn and
every transitive subtournament G of T with |G| ≥ f.tr(T ) and V (G) ∩ A = ∅, we
have: A is not complete from V (G) and A is not complete to V (G).

Lemma 3.3 [2] Let T be an ε-critical tournament with |T | = n and ε, c > 0 be
constants such that ε < log c

2
(1
2
). Then for every two disjoint subsets X, Y ⊆ V (T )

with |X| ≥ cn, |Y | ≥ cn, there exists an integer k ≥ cn
2

, and vertices x1, . . . , xk ∈ X
and y1, . . . , yk ∈ Y such that yi is adjacent to xi for i = 1, . . . , k.
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Lemma 3.4 [9] Let f1, . . . , fm, c, ε > 0 be constants, where 0 < f1, . . . , fm, c < 1
and 0 < ε < log c

2m
(1 − fi) for i = 1, . . . ,m. Let T be an ε-critical tournament with

|T | = n, and let S1, . . . , Sm be m disjoint transitive subtournaments of T with |Si|
≥ fi.tr(T ) for i = 1, . . . ,m. Let A ⊆ V (T )\(

⋃m
i=1 V (Si)) with |A| ≥ cn. Then there

exist vertices s1, . . . , sm, a such that a ∈ A, si ∈ Si for i = 1, . . . ,m, and {a} is
complete to {s1, . . . , sm}. Similarly there exist vertices u1, . . . , um, b such that b ∈ A,
ui ∈ Si for i = 1, . . . ,m, and {b} is complete from {u1, . . . , um}.

Proof. Let Ai ⊆ A such that Ai is complete from Si for i = 1, . . . ,m. i Let 1 ≤ j ≤ m.
If |Aj| ≥ |A|

2m
≥ c

2m
n, then this will contradict Lemma 3.2 since |Sj| ≥ fjtr(T ) and

ε < log c
2m

(1 − fj). Then for all i ∈ {1, . . . ,m}, |Ai| < |A|
2m

. Let A∗ = A\(
⋃m
i=1Ai);

then |A∗| > |A| − m. |A|
2m
≥ |A|

2
. Then A∗ 6= ∅. Fix a ∈ A∗. So there exist vertices

s1, . . . , sm, such that si ∈ Si for i = 1, . . . ,m, and {a} is complete to {s1, . . . , sm}.
Analogously we can prove the last sentence stated in Lemma 3.4. �

The proof of the following lemma is completely analogous to the proof of
Lemma 3.4.

Lemma 3.5 [8] Let f1, f2, c, ε > 0 be constants, where 0 < f1, f2, c < 1 and 0 < ε <
min{log c

4
(1− f1), log c

4
(1− f2)}. Let T be an ε-critical tournament with |T | = n, and

let S1, S2 be two disjoint transitive subtournaments of T with |S1| ≥ f1.tr(T ) and
|S2| ≥ f2.tr(T ). Let A ⊆ V (T )\(V (S1) ∪ V (S2)) with |A| ≥ cn. Then there exist
vertices a, s1, s2 such that a ∈ A, s1 ∈ S1, s2 ∈ S2 and s1 ← a← s2.

Proof. Let A1 be the set of vertices of A that are complete from S1, and let A2

be the set of vertices of A that are complete to S2. Assume that |A1| ≥ |A|
4
≥ c

4
n.

Since ε < log c
4
(1 − f1), it follows that Lemma 3.2 implies that S1 is not complete

to A1, a contradiction. Then |A1| < |A|
4

. Similarly we prove that |A2| < |A|
4

. Now

let A∗ = A\(A1 ∪ A2); then |A∗| > |A|
2

. Then A∗ 6= ∅. Fix a ∈ A∗. So there exists
s1 ∈ S1 and s2 ∈ S2, such that s1 ← a← s2. � i

Lemma 3.6 [8] Let f, c, ε > 0 be constants, where 0 < f, c < 1 and 0 < ε <
min{log c

2
(1 − f), log c

4
(1
2
)}. Let T be an ε-critical tournament with |T | = n, and let

S1, S2 be two disjoint transitive subtournaments of T with |S1| ≥ f.tr(T ) and |S2|
≥ f.tr(T ). Let A1, A2 be two disjoint subsets of V (T ) with |A1| ≥ cn, |A2| ≥ cn,
and A1, A2 ⊆ V (T )\(V (S1) ∪ V (S2)). Then there exist vertices a, x, s1, s2 such that
a ∈ A1, x ∈ A2, s1 ∈ S1, s2 ∈ S2, {a, s1} ← x, and a← s2.

Proof. Let A∗1 = {a ∈ A1 : there exists s ∈ S2 such that a ← s} and let A∗2 = {x ∈
A2 : there exists v ∈ S1 such that v ← x}. Then A1\A∗1 is complete to S2 and A2\A∗2
is complete from S1. Now assume that |A∗1| <

|A1|
2

, then |A1\A∗1| ≥
|A1|
2
≥ c

2
n. Since

|S2| ≥ f.tr(T ) and since ε < log c
2
(1− f), then Lemma 3.2 implies that A1\A∗1 is not

complete to S2, a contradiction. Then |A∗1| ≥
|A1|
2
≥ c

2
n. Similarly we prove that
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|A∗2| ≥ c
2
n. Now since ε < log c

4
(1
2
), then Lemma 3.3 implies that there exist k ≥ c

4
n,

a1, . . . , ak ∈ A∗1, and x1, . . . , xk ∈ A∗2, such that ai ← xi for i = 1, . . . , k. So there
exists s1 ∈ S1 and s2 ∈ S2, such that {a1, s1} ← x1, and a1 ← s2. �

Lemma 3.7 [2] Let A1, A2 be two disjoint sets such that d(A1, A2) ≥ 1− λ and let

0 < η1, η2 ≤ 1. Let λ̂ = λ
η1η2

. Let X ⊆ A1, Y ⊆ A2 be such that |X| ≥ η1 |A1| and

|Y | ≥ η2 |A2|. Then d(X, Y ) ≥ 1− λ̂.

The following is introduced in [4].
Let c > 0, 0 < λ < 1 be constants, and let w be a {0, 1}-vector of length |w|. Let T
be a tournament with |T | = n. A sequence of disjoint subsets χ = (S1, S2, . . . , S|w|)
of V (T ) is a smooth (c, λ, w)-structure if:
• whenever wi = 0 we have |Si| ≥ cn (we say that Si is a linear set);
• whenever wi = 1 the tournament T |Si is transitive and |Si| ≥ c.tr(T ) (we say that
Si is a transitive set);
• d({v}, Sj) ≥ 1− λ for v ∈ Si and d(Si, {v}) ≥ 1− λ for v ∈ Sj, i < j (we say that
χ is smooth).

Theorem 3.8 [4] Let S be a tournament, let w be a {0, 1}-vector, and let 0 < λ0 <
1
2

be a constant. Then there exist ε0, c0 > 0 such that for every 0 < ε < ε0, every S-free
ε-critical tournament contains a smooth (c0, λ0, w)-structure.

Let (S1, . . . , S|w|) be a smooth (c, λ, w)-structure of a tournament T , let i ∈
{1, . . . , |w|}, and let v ∈ Si. For j ∈ {1, 2, . . . , |w|}\{i}, denote by Sj,v the set of the
vertices of Sj adjacent from v for j > i and adjacent to v for j < i.

Lemma 3.9 [8] Let 0 < λ < 1, 0 < γ ≤ 1 be constants and let w be a {0, 1}-vector.
Let (S1, . . . , S|w|) be a smooth (c, λ, w)-structure of a tournament T for some c > 0.
Let j ∈ {1, . . . , |w|}. Let S∗j ⊆ Sj such that |S∗j | ≥ γ |Sj| and let A = {x1, . . . , xk} ⊆⋃
i 6=j Si for some positive integer k. Then |

⋂
x∈A S

∗
j,x| ≥ (1− k λ

γ
) |S∗j |. In particular

|
⋂
x∈A Sj,x| ≥ (1− kλ) |Sj|.

Proof. The proof is by induction on k. Without loss of generality, assume that
x1 ∈ Si and j < i. Since |S∗j | ≥ γ |Sj| then by Lemma 3.7, d(S∗j , {x1}) ≥ 1 − λ

γ
.

So 1 − λ
γ
≤ d(S∗j , {x1}) =

|S∗j,x1 |
|S∗j |

. Then |S∗j,x1| ≥ (1 − λ
γ
)|S∗j | and so true for k = 1.

Suppose the statement is true for k − 1. Here,

|
⋂
x∈A

S∗j,x| = |(
⋂

x∈A\{x1}

S∗j,x) ∩ S∗j,x1|

= |
⋂

x∈A\{x1}

S∗j,x|+ |S∗j,x1| − |(
⋂

x∈A\{x1}

S∗j,x) ∪ S∗j,x1|

≥ (1− (k − 1)
λ

γ
)|S∗j |+ (1− λ

γ
)|S∗j | − |S∗j |

= (1− kλ
γ

)|S∗j |.

�
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4 EHC for flotilla-galaxies

In the following subsection we introduce some tools and technical definitions used to
prove EHC for flotilla-galaxies.

4.1 Definitions and tools

In order to make the proof of Theorem 1.4 easy to follow, for a given flotilla-galaxy G,
we define below some of its vertex orderings that are obtained from the flotilla-galaxy
ordering under performing permutation for some of the vertices. In Theorem 4.2, we
prove that the corresponding digraph of G is contained in an ε-critical tournament,
for some ε > 0. In order to make the proof easier, we define in Section 4.1.2, the
corresponding digraph of G that is constructed using the backward arc configurations
of all the orderings we define in Section 4.1.1. Our goal is to use the corresponding
digraph to prove that G is contained in an ε-critical tournament for some ε > 0.

4.1.1 Crucial orderings of a flotilla-galaxy

Let D be a tournament with seven vertices v1, . . . , v7 and let θ1 = (v1, v2, v3, v4, v5, v6,
v7) be an ordering of V (D). Let operation 1 be the permutation of the vertices
v1, . . . , v7 that converts the ordering θ1 to the ordering θ2 = (v2, v4, v1, v5, v3, v6, v7) of
V (D), and let operation 2 be the permutation of the vertices v1, . . . , v7 that converts
the ordering θ1 to the ordering θ3 = (v1, v2, v5, v3, v7, v4, v6) of V (D). Let H be a
flotilla-galaxy under an ordering θ = (v1, . . . , vh) of its vertices with |H| = h. Let
Bγ

1 , . . . , B
γ
l be the γ-boats of H under θ. Let i ∈ {1, . . . , l}. If Bγ

i is a left γ-boat
(respectively, right γ-boat), let θi (respectively, θi) be the restriction of θ to the
vertices of Bγ

i . Define ΘH(θ) = {θ′ an ordering of V (H); θ
′

is obtained from θ by
performing operation 1 to k θi’s, and operation 2 to t θi’s, with 0 ≤ k, t ≤ l }.
Notice that when k = t = 0, θ

′
is exactly the ordering θ. Here |ΘH(θ)| = 2l. Clearly

one can notice that when applying such operations to the vertices of γ-boats, the
4-vertex path and the 3-vertex middle star will be transformed into a triangle and
two 2-vertex stars, which is very interesting (see Figure 2).

4.1.2 Corresponding digraph

Unlike galaxies and constellations, in flotilla-galaxies, the flotilla-galaxy ordering
alone failed to make the proof for flotilla-galaxies work. To this end we started
thinking about other crucial orderings that give different backward arc configurations
like triangles and stars. The corresponding digraph is a tool we introduced in [9] for
which we construct, starting from a tournament H, a new larger digraph following
all backward arc configurations of H under different crucial orderings of its vertex
set. Note that in all cases discussed in the proof of Corollary 4.3, H can be extracted
from an ε-critical tournament T using its corresponding digraph.
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Let H be a regular flotilla-galaxy under an ordering θ = (v1, . . . , vh) of its ver-
tices with |H| = h. Let Bγ

1 , . . . , B
γ
l be the γ-boats of H under θ. In what follows we

explain how we constructed the corresponding digraph of H under θ. We call this
digraph the helping digraph (or key digraph) due to its impact on the proof of our
result. For i = 1, . . . , l, let αi be the restriction of θ to V (Bγ

i ).

∗ If Bγ
i = {vsi , . . . , vsi+4, vqi , vqi+1} is a left γ1-boat, let Bγ+

i be the tournament ob-
tained from Bγ

i , such that E(B(Bγ+
i , α̂)) = E(B(Bγ

i , α)) ∪ {xigi, wimi, riyi}, where

α̂ := (vsi , xi, vsi+1, vsi+2, vsi+3, wi, vsi+4, ri, gi,mi, vqi , vqi+1, yi). Let B̂γ
i be the digraph

obtained from Bγ+
i after deleting the arcs (vsi+2, vqi+1), (vsi+3, vqi), (vsi , vsi+1). We

write B̂γ
i = {vsi , xi, vsi+1, vsi+2, vsi+3, wi, vsi+4, ri, gi,mi, vqi , vqi+1, yi}, and we call α̂

the forest ordering of B̂γ
i and xi, vsi+1, vsi+2, vsi+3, wi, ri, vqi+1 the leaves of B̂γ

i . Here

B̂γ
i is called the mutant left γ1-boat (see Figure 4).

∗ If Bγ
i = {vsi , . . . , vsi+4, vqi−1, vqi} is a left γ2-boat, let Bγ+

i be the 13-vertex tourna-
ment obtained from Bγ

i , such that E(B(Bγ+
i , α̂)) = E(B(Bγ

i , α))∪{xigi, wimi, riyi},
where α̂ := (vsi , xi, vsi+1, vsi+2, vsi+3, wi, vsi+4, ri, gi,mi, yi, vqi−1, vqi). Let B̂γ

i be the
digraph obtained from Bγ+

i by deleting the arcs (vsi+2, vqi−1), (vsi+3, vqi), (vsi , vsi+1).

We write B̂γ
i = {vsi , xi, vsi+1, vsi+2, vsi+3, wi, vsi+4, ri, gi,mi, yi, vqi−1, vqi}, and we call

α̂ the forest ordering of B̂γ
i and xi, vsi+1, vsi+2, vsi+3, wi, ri, vqi−1 the leaves of B̂γ

i .

Here we call B̂γ
i the mutant left γ2-boat (see Figure 4).

∗ If Bγ
i = {vqi−1, vqi , vsi , . . . , vsi+4} is a right γ1-boat, let Bγ+

i be the tournament ob-
tained from Bγ

i , such that E(B(Bγ+
i , α̂)) = E(B(Bγ

i , α)) ∪ {xigi, wimi, riyi}, where

α̂ := (yi, vqi−1, vqi ,mi, gi, ri, vsi , wi, vsi+1, vsi+2, vsi+3, xi, vsi+4). Let B̂γ
i be the digraph

obtained from Bγ+
i by deleting the arcs (vqi−1, vsi+2), (vqi , vsi+1), (vsi+3, vsi+4). We

write B̂γ
i = {yi, vqi−1, vqi ,mi, gi, ri, vsi , wi, vsi+1 , vsi+2, vsi+3, xi, vsi+4}, and we call α̂

the forest ordering of B̂γ
i and xi, vsi+1, vsi+2, vsi+3, wi, ri, vqi−1 the leaves of B̂γ

i . We

say that B̂γ
i is the mutant right γ1-boat (see Figure 4).

∗ If Bγ
i = {vqi , vqi+1, vsi , . . . , vsi+4} is a right γ2-boat, let Bγ+

i be the tournament ob-
tained from Bγ

i , such that E(B(Bγ+
i , α̂)) = E(B(Bγ

i , α)) ∪ {xigi, wimi, riyi}, where

α̂ := (vqi , vqi+1, yi,mi, gi, ri, vsi , wi, vsi+1, vsi+2, vsi+3, xi, vsi+4). Let B̂γ
i be the digraph

obtained from Bγ+
i by deleting the arcs (vqi+1, vsi+2), (vqi , vsi+1), (vsi+3, vsi+4). We

write B̂γ
i = {vqi , vqi+1, yi,mi, gi, ri, vsi , wi, vsi+1, vsi+2, vsi+3, xi, vsi+4}, and we call α̂

the forest ordering of B̂γ
i and xi, vsi+1, vsi+2, vsi+3, wi, ri, vqi+1 the leaves of B̂γ

i . We

say that B̂γ
i is the mutant right γ2-boat (see Figure 4).

We are ready now to define the corresponding digraph of a flotilla-galaxy.

Let Ĥ be the digraph obtained from H by replacing Bγ
i by its corresponding

digraph B̂γ
i for i = 1, . . . , l, and let θ̂ be the obtained ordering of Ĥ (i.e. θ̂ is obtained

from θ by replacing the vertices of Bγ
i by the vertices of B̂γ

i for i = 1, . . . , l, such that

for all 1 ≤ i ≤ l, B̂γ
i has its forest ordering under θ̂, and such that:
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Figure 4: Mutant left γ1-boat B̂γ
b , mutant right γ1-boat B̂γ

t , mutant left

γ2-boat B̂γ
k , and mutant right γ2-boat B̂γ

z . All the backward arcs are
drawn. All the non-drawn arcs are forward except that the arcs (vsb+2,

vqb+1), (vsb+3, vqb), (vsb , vsb+1) /∈ A(B̂γ
b ), (vsk+2, vqk−1), (vsk+3, vqk), (vsk , vsk+1)

/∈ A(B̂γ
k ), (vqt−1, vst+2), (vst+3, vst+4), (vqt , vst+1) /∈ A(B̂γ

t ), (vqz+1, vsz+2),

(vsz+3, vsz+4), (vqz , vsz+1) /∈ A(B̂γ
z ).

• if Bγ
i is a left γ1-boat, then vsi , xi, vsi+1, vsi+2, vsi+3, wi, vsi+4, ri, gi,mi are con-

secutive under θ̂, and vqi , vqi+1, yi are consecutive under θ̂;

• if Bγ
i is a left γ2-boat, then vsi , xi, vsi+1, vsi+2, vsi+3, wi, vsi+4, ri, gi,mi are con-

secutive under θ̂, and yi, vqi−1, vqi are consecutive under θ̂;

• if Bγ
i is a right γ1-boat, then yi, vqi−1, vqi are consecutive under θ̂, and mi, gi, ri,

vsi , wi, vsi+1, vsi+2, vsi+3, xi, vsi+4 are consecutive under θ̂;

• if Bγ
i is a right γ2-boat, then vqi , vqi+1, yi are consecutive under θ̂, and mi, gi, ri,

vsi , wi, vsi+1, vsi+2, vsi+3, xi, vsi+4 are consecutive under θ̂).

We have V (Ĥ) = V (H) ∪ (
⋃l
i=1{xi, wi, ri, gi,mi, yi}) and

E(B(Ĥ, θ̂)) = E(B(H, θ)) ∪ {xigi, wimi, riyi : i = 1, . . . , l}.

In what follows we give a detailed description of A(Ĥ):

• Since Ĥ is obtained from H by replacing Bγ
i by B̂γ

i for i = 1, .., l, then the arcs

of
⋃l
i=1B

γ
i are removed, and the arcs of

⋃l
i=1 B̂

γ
i are added to A(Ĥ). Thus,

A(Ĥ) contains the arcs A := (A(H)\
⋃l
i=1A(Bγ

i )) ∪
⋃l
i=1A(B̂γ

i ).

• Let i ∈ {1, . . . , l} and let Vi := V (B̂γ
i ). After replacing Bγ

i by B̂γ
i , it remains

to describe the orientation of the arcs connecting Vi with V (Ĥ)\Vi. Let p ∈ Vi
and let x ∈ V (Ĥ)\Vi. Simply we can say that the arc connecting x and p is a

forward arc under θ̂. More formally (x, p) ∈ A(Ĥ) if x <θ̂ p, and (p, x) ∈ A(Ĥ)
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if p <θ̂ x. Thus, A(Ĥ) contains the arcs B :=
⋃l
i=1[

⋃
p∈Vi({(x, p) : x <θ̂ p and

x ∈ V (Ĥ)\Vi}∪{(p, x) : p <θ̂ x and x ∈ V (Ĥ)\Vi})].

Now according to the first two bullet points, A(Ĥ) = A ∪B.

We say that Ĥ is the digraph corresponding to H under θ, and θ̂ is the ordering
of V (Ĥ) corresponding to θ.

4.1.3 Corresponding smooth (c, λ, w)-structure

Let χ := (A1, . . . , A|w|) be a smooth (c, λ, w)-structure of a tournament T , where
c and λ are positive constants. Let Ai be a transitive set of χ. Let A1

i , . . . , A
r
i be

disjoint subsets of Ai with approximately the same size. {A1
i , . . . , A

r
i} is called a

transitive partition of Ai if for all j ∈ {1, . . . , r − 1}, Aji is complete to Ati, for all
t ∈ {j + 1, . . . , r}.

Let s be a {0, 1}-vector and let sc be the vector obtained from s by replacing
every subsequence of consecutive 1’s by a single 1. In other words, sc is obtained
from s by contracting every subsequence of more than one consecutive 1’s by just a
single 1 (the c in sc stands for contraction and it is not a number). Let z := sc and
let i be such that zi = 1. Let j be such that sj = 1. We say that sj corresponds to
zi if sj belongs to the subsequence of consecutive 1’s that is replaced by the entry zi.
Below we explain the importance of sc in defining corresponding smooth structures.

Let H be a regular flotilla-galaxy under an ordering θ of its vertices. Let Bγ
1 , . . . ,

Bγ
l be the γ-boats of H under θ. In the proof we showed that we can construct

a copy of Ĥ in a tournament T . Specifically, we constructed this copy in some
smooth (c, λ, w)-structure in T . Denote this structure by χ. It is done in a way that
consecutive leaves are constructed in the same transitive set of χ. Recall that each
1 in w corresponds to a transitive set in χ. Here the role of s and sc appears. s and
sc are used to encode the structure of Ĥ under θ̂. Each 1 in s corresponds to a leaf

of one of the stars or one of the B̂γ
j ’s of Ĥ under θ̂. Consecutive 1’s correspond to

consecutive leaves. Since we constructed consecutive leaves in the same transitive
set, we replaced every subsequence of consecutive 1’s in s by only a single 1. So by
this way instead of choosing w = s and constructing consecutive leaves in distinct
consecutive transitive sets, we take w = sc and construct consecutive leaves in the
same transitive set. This is done by using a transitive partition of the transitive set
to get for free the right type of adjacency between leaves constructed in the same
transitive set. In this case we say that χ := (A1, . . . , A|sc|) is a corresponding smooth

(c, λ, sc)-structure of Ĥ under θ̂ (see Figure 5).

Let 1 ≤ i ≤ l and let Σi := B̂γ
i ∪Qi. In the proof, we constructed Σi’s one by one

in a way that we can merge a copy of some Σi by the previous constructed Σi’s, and
so constructing a copy of Ĥ in χ. To this end, we used induction. We would like to
give a brief description of how the induction works, shed the light on an issue that
we may face when applying the induction hypothesis, and how we will deal with such
an issue (this will explain why dealing with sc only is not sufficient, and so this is
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Figure 5: Flotilla-galaxy tournament H drawn under its flotilla-galaxy ordering
θ. H consists of one γ-boat (in blue) and one right star (in black) under θ.

The figure shows the digraph Ĥ corresponding to H under θ. Here Ĥ is drawn
under θ̂, the ordering of Ĥ corresponding to θ. The smooth (c, λ, w)-structure

corresponding to Ĥ under θ̂ is drawn below Ĥ. This structure consists of seven
linear sets: A1, A3, A5, A6, A8, A10, A11, and four transitive sets: A2, A4, A7,
and A9. Note that only the backward arcs are drawn.

the purpose behind the definitions below). For i ∈ {0, . . . , l} define Ĥ i = Ĥ|
⋃i
j=1 Σi

where Ĥ l = Ĥ, and Ĥ0 is the empty digraph.

• Let χ := (A1, . . . , A|sc|) be a smooth (c, λ, sc)-structure corresponding to Ĥ

under θ̂.

• For l = 0, it is trivial that χ contains Ĥ.

• Our goal is to extract from χ the sets assigned to the vertices of Ĥ l−1 to

form a corresponding structure for Ĥ l−1 and apply the induction hypothesis.
But in this case we may get two or more consecutive transitive sets in the
extracted smooth structure (see Figure 6). This contradicts the definition of
the corresponding structure, since corresponding structure as defined above,
has no consecutive transitive sets (every sequence of consecutive 1’s is replaced
by a single 1 and then each single 1 represents a transitive set). This case will
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occur when there is a 0 corresponding to one of the vertices of Σl that appears
between two subsequences of consecutive 1’s corresponding to the vertices of

Ĥ l−1 (see Figure 6).

Figure 6: Flotilla-galaxy tournament H under an ordering θ = (1, . . . , 10) of its

vertices. H consists of only three stars: Q1, Q2, and Q3 under θ (here H = Ĥ).
The figure shows the smooth (c, λ, sc)-structure corresponding to H under θ.
The structure χ consists of three linear sets: A1, A2, A4, and two transitive
sets A3 and A5 that are divided respectively into three and four transitive
chunks. One can see the form of the smooth structure (χ′) that consists of the
sets of χ corresponding to the vertices of H2. The {0, 1}-vector that encodes
the nature of the sets of χ′ is exactly csH,θH2 , then χ′ is considered a smooth
structure corresponding to H2 under (H, θ). Note that all the non-drawn arcs
are forward.

• Since the extracted smooth structure may have consecutive transitive sets, in
order to apply the induction hypothesis, we need to modify the definition of the
corresponding smooth structure when 1 ≤ k ≤ l−1. Let s′ be the restriction of

s to the 0’s and 1’s corresponding to V (Ĥk). The difference now is in the way
we replace subsequences of consecutive 1’s by a single 1. Instead of replacing
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each maximal subsequence of consecutive 1’s by a single 1 as in sc, we replace
every maximal subsequence of 1’s in s′ that corresponds to the same 1 in sc by
a single 1 (Figure 6 is a clear illustration of this point, where every maximal
subsequence of 1’s in s′ that corresponds to the same 1 in sc have the same
color).

Remark 4.1 The tournament presented in Figure 6 contains only stars. Since
choosing a tournament that contains also γ-boats will require dealing with a large or-
der tournament in order to show the issue faced when extracting a smooth structure

for Ĥk, with k < l − 1.

We are now ready to state formally some technical definitions that play a central
role in the proof.

Let H be a regular flotilla-galaxy under an ordering θ of its vertices with |H| = h.
Let Bγ

1 , . . . , B
γ
l be the γ-boats of H under θ, and let Q1, . . . , Ql be the frontier stars

of H|X under θ. Let θ̂ = (u1, . . . , uh+6l) be the ordering of V (Ĥ) corresponding to

θ. For i ∈ {0, . . . , l}, define Ĥ i = Ĥ|
⋃i
j=1(V (B̂γ

j ) ∪ V (Qj)), where Ĥ l = Ĥ, and Ĥ0

is the empty digraph. Let sĤ,θ̂ be the {0, 1}-vector such that sĤ,θ̂(i) = 1 if and only

if ui is a leaf of one of the stars or one of the B̂γ
j ’s of Ĥ under θ̂ for j = 1, . . . , l. For

k ∈ {1, . . . , l} let θ̂k = (uk1 , . . . , uktk ) with tk = |Ĥk| be the restriction of θ̂ to V (Ĥk).

Let sĤ,θ̂
Ĥk

be the restriction of sĤ,θ̂ to the 0’s and 1’s corresponding to V (Ĥk) (notice

that sĤ,θ̂
Ĥk

= sĤ
k,θ̂k), and let csĤ,θ̂

Ĥk
be the vector obtained from sĤ,θ̂

Ĥk
by replacing every

subsequence of consecutive 1’s corresponding to the same entry of sĤ,θ̂c by a single 1.

We say that a smooth (c, λ, w)-structure of a tournament T corresponds to Ĥk under

(Ĥ, θ̂) if w =c sĤ,θ̂
Ĥk

. Notice that sĤ,θ̂
Ĥl

= sĤ,θ̂ and csĤ,θ̂
Ĥl

= sĤ,θ̂c .

Let ν = csĤ,θ̂
Ĥk

. Let δν : {j : νj = 1} → N be a function that assigns to

every nonzero entry of ν the number of consecutive 1’s of sĤ,θ̂
Ĥk

replaced by that

entry of ν (δν is used to know the size of the transitive partition of each tran-
sitive set). Fix k ∈ {0, . . . , l}. Let (S1, . . . , S|w|) be a smooth (c, λ, w)-structure

corresponding to Ĥk under (Ĥ, θ̂). Let i be such that w(i) = 1. Assume that

Si = {s1i , . . . , s
|Si|
i } and (s1i , . . . , s

|Si|
i ) is a transitive ordering. Write m(i) = b |Si|

δw(i)
c.

Let Sji = {s(j−1)m(i)+1
i , . . . , s

jm(i)
i } for j ∈ {1, . . . , δw(i)}. For every v ∈ Sji , let

ξ(v) := (| {k < i : w(k) = 0} | +
∑

k<i:w(k)=1

δw(k)) + j.

Thus ξ(v) is the index of the vertex of Ĥk (under θ̂k) associated with the set Sji
obtained by unfolding the contraction introduced by ν. For every v ∈ Si such that

w(i) = 0, let ξ(v) := (| {k < i : w(k) = 0} | +
∑

k<i:w(k)=1

δw(k)) + 1. We say that Ĥk
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is well-contained in (S1, . . . , S|w|) that corresponds to Ĥk under (Ĥ, θ̂) if there is an

injective homomorphism f of Ĥk into T |
⋃|w|
i=1 Si such that ξ(f(ukj)) = j for every

j ∈ {1, . . . , tk}, where θ̂k = (uk1 , . . . , uktk ).

4.2 An Overview of the Proof

The proof that every flotilla-galaxy satisfies the Erdős-Hajnal conjecture is very
technical. To this end, before going into details of the formal proof, we would like to
give an intuition as to how the proof works, explain the techniques that allowed the
breakthrough in flotilla-galaxies, and explain the key steps of the proof.

Let H be a flotilla-galaxy under an ordering θ of its vertices. Assume that H has
l γ-boats and l frontier stars under θ. The proof is by contradiction. Assume that
EHC is not true for H. Then by taking ε > 0 small enough, we can assume the
existence of an H-free ε-critical tournament T . Now by Theorem 3.8, we can assume
that there exists in T a smooth (c, λ, w)-structure χ corresponding to Ĥ under θ̂,
where c and λ are positive constants. Our goal is to find a copy of H in T .

Obviously, Lemmas 3.5 and 3.6 are insufficient to construct a copy of a γ-boat
in χ. So we cannot proceed here by constructing the γ-boats one by one following
the ordering θ to get a copy of H. This simply means that following the ordering
θ alone is insufficient and ineffective. At this point, we began to consider other
orderings for H that provided different configurations of the backward arcs from the
ones produced under the ordering θ. Hence, we created the set of orderings denoted
by ΘH(θ), that contains orderings of H, such that every connected component of the
graph of backward arcs of H under θ

′ ∈ ΘH(θ) is one of a triangle, a 4-vertex path
or a star.

Our goal now is to construct a copy of H in T in a way that this copy is viewed
under some ordering θ

′ ∈ Θ. To do this, we constructed a copy of the corresponding
digraph of H in χ. We created this copy by constructing mutant γ-boat and star
couples one by one in a way that we can merge all the constructed couples together
to get a copy of Ĥ. Note that this copy of Ĥ will be viewed in χ under the ordering
θ̂. Let us now order the vertices of the Ĥ copy according to their appearance in χ.
Denote this ordering by α (α is exactly the ordering θ̂). Denote by Γ1,. . . ,Γl, the
copies of mutant γ-boats constructed in χ, and by Q1,. . . ,Ql the constructed copies
of the frontier stars. Observe that for all i ∈ {1, . . . , l}, we do not know how the
arcs in A(T |

⋃l
i V (Γi))\A(

⋃l
i Γi) are oriented in T . To this purpose, we completed

the proof based on how the arcs in A(T |
⋃l
i=1 V (Γi))\A(

⋃l
i Γi) are possibly oriented.

Fix i ∈ {1, . . . , l}. If all the arcs in A(T |V (Γi)\A(Γi) are forward under α, then we
can extract from T |V (Γi) a γ-boat. Otherwise, there exists a backward arc under
α among A(T |V (Γi)\A(Γi), and so we can extract a triangle from T |V (Γi) that is
formed by backward arcs under α. It is the time to extract a copy of H from the
tournament in T induced by the vertex set of the copy of Ĥ. So, for all i, we can
extract either a γ-boat or a triangle. If the former holds, we extract the γ-boat with
the frontier star Qi. If the latter holds, we extract the triangle, Qi, and the two stars
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that form together with the triangle the cyclic ordering of the γ-boat. Finally, we
delete from α all the vertices of the nonextracted substructures. The outcome is an
ordering θ

′ ∈ Θ. We are done.

4.3 Proof

Theorem 4.2 Let H be a regular flotilla-galaxy under an ordering θ of its vertices
with |H| = h. Let Bγ

1 , . . . , B
γ
l be the γ-boats of H under θ and let Q1, . . . , Ql be

the frontier stars of H|X under θ. Let 0 < λ < 1
(4h)h+4 , c > 0 be constants, and w

be a {0, 1}-vector. Fix k ∈ {0, . . . , l} and let λ̂ = (2h)l−kλ and ĉ = c
(2h)l−k . There

exist εk > 0 such that for all 0 < ε < εk, for every ε-critical tournament T with |T |
= n containing χ = (S1, . . . , S|w|) as a smooth (ĉ, λ̂, w)-structure corresponding to

Ĥk under (Ĥ, θ̂), we have Ĥk is well-contained in χ.

Proof. The proof is by induction on k. For k = 0 the statement is obvious since Ĥ0 is
the empty digraph. Suppose that χ = (S1, . . . , S|w|) is a smooth (ĉ, λ̂, w)-structure in

T corresponding to Ĥk under (Ĥ, θ̂), with θ̂ = (h1, . . . , hh+6l). Let θ̂k = (hk1 , . . . , hks)

be the restriction of θ̂ to V (Ĥk), where s = |Ĥk|.
Let B̂γ

k = {hkq1 , . . . , hkq13}. Let hkp0 be the center of Qk and hkp1 , . . . , hkpq be its

leaves for some integer q > 0. Our goal is to find a copy of Ĥ|(V (B̂γ
k )∪V (Qk)) in χ.

• Let Di = {v ∈
⋃|w|
j=1 Sj; ξ(v) = qi} for i = 1, . . . , 13. To construct a copy of

Ĥ|V (B̂γ
k ) in χ, we are going to to find vertices xi ∈ Di for i = 1, . . . , 13, such

that T |{x1, . . . , x13} contains a copy of Ĥ|V (B̂γ
k ).

Assume that Bγ
k is a left γ1-boat (otherwise, the argument is similar, and we

omit it). Then there exist 1 ≤ y ≤|w| and 1 ≤ b ≤|w|, such that y + 5 < b
and D1 = Sy, D2 = S1

y+1, D3 = S2
y+1, D4 = S3

y+1, D5 = S4
y+1, D6 = S5

y+1,
D7 = Sy+2, D8 = Sy+3, D9 = Sy+4, D10 = Sy+5, D11 = Sb, D12 = Sb+1,
D13 = Sb+2 with w(y) = w(y+2) = w(y+4) = w(y+5) = w(b) = w(b+2) = 0
and w(y+1) = w(y+3) = w(b+1) = 1. By Lemma 3.6, since T is ε-critical and
ε < min{log ĉ

4
(1
2
), log ĉ

2
(1− ĉ

6
)}, there exist vertices x1 ∈ D1, x3 ∈ D3, x5 ∈ D5,

x11 ∈ D11, such that {x1, x3} ← x11 and x1 ← x5. Let D∗4 = {x4 ∈ D4;x1 →
x4 → x11}, D∗7 = {x7 ∈ D7; {x1, x3, x5} → x7 → x11}, and D∗12 = {x12 ∈
D12; {x1, x3, x5, x11} → x12}. Then by Lemma 3.9, |D∗7| ≥ (1−4λ̂)ĉn ≥ ĉ

2
n since

λ̂ ≤ 1
8
, |D∗12| ≥ (1−4λ̂)ĉtr(T ) ≥ ĉ

2
tr(T ) since λ̂ ≤ 1

8
, and |D∗4| ≥ 1−12λ̂

6
ĉtr(T ) ≥

ĉ
12
tr(T ) since λ̂ ≤ 1

24
. Since we can assume that ε < log ĉ

8
(1− ĉ

12
), then Lemma

3.5 implies that there exist vertices x4 ∈ D∗4, x7 ∈ D∗7, and x12 ∈ D∗12 such
that x4 ← x7 ← x12. Let D∗2 = {x2 ∈ D2;x1 → x2 → {x7, x11, x12}} and
D∗9 = {x9 ∈ D9; {x1, x3, x4, x5, x7} → x9 → {x11, x12}}. Then by Lemma 3.9,

|D∗2| ≥ 1−24λ̂
6

ĉtr(T ) ≥ ĉ
12
tr(T ) since λ̂ ≤ 1

48
and |D∗9| ≥ (1 − 7λ̂)ĉn ≥ ĉ

2
n

since λ̂ ≤ 1
14

. Since ε < log ĉ
2
(1− ĉ

12
), then Lemma 3.2 implies that there exist
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vertices x2 ∈ D∗2 and x9 ∈ D∗9 such that x2 ← x9. Let D∗6 = {x6 ∈ D6;x1 →
x6 → {x7, x9, x11, x12}} and D∗10 = {x10 ∈ D10; {x1, . . . , x5, x7, x9} → x10 →
{x11, x12}}. Then by Lemma 3.9, |D∗6| ≥ 1−30λ̂

6
ĉtr(T ) ≥ ĉ

12
tr(T ) since λ̂ ≤ 1

60

and |D∗10| ≥ (1−9λ̂)ĉn ≥ ĉ
2
n since λ̂ ≤ 1

18
. Since ε < log ĉ

2
(1− ĉ

12
), then Lemma

3.2 implies that there exist vertices x6 ∈ D∗6 and x10 ∈ D∗10 such that x6 ← x10.
Let D∗8 = {x8 ∈ D8; {x1, x2, x3, x4, x5, x6, x7} → x8 → {x9, x10, x11, x12}} and
D∗13 = {x13 ∈ D13; {x1, . . . , x7, x9, . . . , x12} → x13}. Then by Lemma 3.9, |D∗8|
≥ (1− 11λ̂)ĉtr(T ) ≥ ĉ

2
tr(T ) since λ̂ ≤ 1

22
and |D∗13| ≥ (1− 11λ̂)ĉn ≥ ĉ

2
n since

λ̂ ≤ 1
22

. Since ε < log ĉ
2
(1− ĉ

2
), then Lemma 3.2 implies that there exist vertices

x8 ∈ D∗8 and x13 ∈ D∗13 such that x8 ← x13. Then T |{x1, . . . , x13} contains a

copy of Ĥk|V (B̂γ
k ) where (x1, . . . , x13) is its forest ordering. Denote this copy

by W .

• Now we will construct a copy of Ĥ|V (Qk) in χ. To this end, for all 0 ≤ i ≤ q, let

Ri = {v ∈
⋃|w|
j=1 Sj; ξ(v) = pi} and let R∗i =

⋂
x∈V (W )Ri,x. More precisely, we

are going to find vertices r0, r1, . . . , rq that induces a copy of Ĥ|V (Qk), such that
ri ∈ R∗i for i = 0, 1, . . . , q. The definition of R∗i for i = 0, 1, . . . , q implies that
there exist m, f ∈ {1, . . . , |w|}\{y, . . . , y+ 5, b, b+ 1, b+ 2} with w(m) = 0 and
w(f) = 1, such that R0 = Sm and for all 1 ≤ i ≤ q, Ri ⊆ Sf . Then by Lemma

3.9, |R∗0| ≥ (1 − 13λ̂) |R0| ≥ |R0|
2
≥ ĉ

2
n since λ̂ ≤ 1

26
, and |R∗i | ≥ 1−13hλ̂

h
|Sf |

≥ ĉ
2h
tr(T ) since λ̂ ≤ 1

26h
. Since we can assume that ε < log ĉ

4h
(1 − ĉ

2h
), then

Lemma 3.4 implies that there exist vertices r0, r1, . . . , rq such that ri ∈ R∗i for
i = 0, 1, . . . , q and
• r1, . . . , rq are all adjacent from r0 if m > f ;
• r1, . . . , rq are all adjacent to r0 if m < f .

So T |{x1, . . . , x13, r0, r1, . . . , rq} contains a copy of Ĥk|(V (B̂γ
k )∪V (Qk)). Denote this

copy by Y .

In what follows we are going to extract from χ a smooth structure corresponding

to Ĥk−1 under (Ĥ, θ̂), and then apply the induction hypothesis to complete the proof.
For all i ∈ {1, . . . , |w|}\{y, . . . , y+5, b, b+1, b+2,m, f}, let S∗i =

⋂
x∈V (Y ) Si,x. Then

by Lemma 3.9, |S∗i | ≥ (1− |Y | λ̂) |Si| ≥ (1− (h + 6)λ̂) |Si| ≥ |Si|
2h

since λ̂ ≤ 2h−1
2h(h+6)

.

Write H = {1, . . . , s}\{q1, . . . , q13, p0, . . . , pq}. If {v ∈ Sf : ξ(v) ∈ H} 6= ∅, then
define Jf = {η ∈ H : there exists v ∈ Sf with ξ(v) = η}. Now for all η ∈ Jf , let
S∗ηf = {v ∈ Sf : ξ(v) = η and v ∈

⋂
x∈V (Y )\{r1,...,rq} Sf,x}. Then by Lemma 3.9, for

all η ∈ Jf , we have |S∗ηf | ≥ 1−14hλ̂
h
|Sf | ≥ |Sf |

2h
since λ̂ ≤ 1

28h
. Now for all η ∈ Jf ,

select arbitrary d |Sf |
2h
e vertices of S∗ηf and denote the union of these |Jf | sets by S∗f .

So we have defined t sets S∗1 , . . . , S
∗
t , where t =|w| −10 if S∗f is defined and t =|w|

−11 if S∗f is not defined. We have |S∗i | ≥ ĉ
2h
tr(T ) for every defined S∗i with w(i) = 1,

and |S∗i | ≥ ĉ
2h
n for every defined S∗i with w(i) = 0. Now Lemma 3.7 implies that

χ∗ = (S∗1 , . . . , S
∗
t ) form a smooth ( ĉ

2h
, 2hλ̂, w∗)-structure of T corresponding to Ĥk−1



S. ZAYAT AND S. GHAZAL/AUSTRALAS. J. COMBIN. 86 (2) (2023), 351–372 370

under (Ĥ, θ̂), where ĉ
2h

= c
(2h)l−(k−1) , 2hλ̂ = (2h)l−(k−1)λ, and w∗ is an appropriate

{0, 1}-vector. Now take εk < min{εk−1, log ĉ
4
(1
2
), log ĉ

8
(1 − ĉ

16
), log ĉ

4h
(1 − ĉ

2h
)}. So by

the induction hypothesis Ĥk−1 is well-contained in χ∗. Now by merging the well-

contained copy of Ĥk−1 and Y we get a copy of Ĥk. �

In the following corollary we introduce a rule that uses the corresponding digraph
of a flotilla-galaxy H to find H as an induced copy in T .

Corollary 4.3 Let H be a regular flotilla-galaxy under an ordering θ of its vertices.
Let Bγ

1 , . . . , B
γ
l be the γ-boats of H under θ, and let Q1, . . . , Ql be the frontier stars of

H|(V (H)\
⋃l
i=1 V (Bγ

i )) under θ. Let λ > 0 (λ is small enough), c > 0 be constants,
and let w be a {0, 1}-vector. Suppose that χ = (S1, . . . , S|w|) is a smooth (c, λ, w)-

structure of an ε-critical tournament T (ε is small enough) corresponding to Ĥ under

(Ĥ, θ̂). Then T contains H.

Proof. Now Ĥ = Ĥ l is well-contained in χ by the previous theorem when taking

k = l. For all 1 ≤ i ≤ l, let B̃γ
i = {xi, di, bi, ui, ni, ri, pi, qi, zi, si, fi, ai, ti} be the

copy of B̂γ
i in T , and let Q̃i be the copy of Qi in T . Let θ

′
be the ordering of

A =
⋃l
i=1(V (B̃γ

i )∪ V (Q̃i)) according to their appearance in (S1, . . . , S|w|) (that is, if
a, b ∈ A and a ∈ Si, b ∈ Sj with i < j, then a precedes b in θ

′
, and if a ∈ Smj , b ∈ Srj

with m < r then a precedes b in θ
′
).

Let 1 ≤ i ≤ l such that Bγ
i is a left γ1-boat. If ui ← ai, then we remove

xi, di, bi, ni, zi, fi from θ
′
. Otherwise, if xi ← bi, then we remove ui, ni, ri, pi, si, ai

from θ
′
. Otherwise, if ni ← fi, then we remove bi, ui, ri, pi, si, ai from θ

′
. Otherwise,

ui → ai, xi → bi and ni → fi; in this case we remove di, ri, qi, zi, si, ti from θ
′
. Note

that in the first three cases we obtain the cyclic ordering of the left γ1-boat and in
the last case we obtain the forest ordering of the left γ1-boat.

Let 1 ≤ i ≤ l such that Bγ
i is a left γ2-boat. If ui ← ai, then we remove

xi, di, bi, ni, zi, ti from θ
′
. Otherwise, if xi ← bi, then we remove ui, ni, ri, pi, si, ai

from θ
′
. Otherwise, if ni ← ti, then we remove bi, ui, ri, pi, si, ai from θ

′
. Otherwise,

ui → ai, xi → bi and ni → ti; in this case we remove di, ri, qi, zi, si, fi from θ
′
. Note

that in the first three cases we obtain the cyclic ordering of the left γ2-boat and in
the last case we obtain the forest ordering of the left γ2-boat.

Let 1 ≤ i ≤ l such that Bγ
i is a right γ1-boat. If di ← si, then we remove

bi, ni, zi, fi, ai, ti from θ
′
. Otherwise, if bi ← zi, then we remove di, ui, pi, qi, si, fi

from θ
′
. Otherwise, if fi ← ti, then we remove di, ui, pi, qi, zi, si from θ

′
. Otherwise,

di → si, bi → zi and fi → ti; in this case we remove xi, ui, ni, ri, qi, ai from θ
′
. Note

that in the first three cases we obtain the cyclic ordering of the right γ1-boat and in
the last case we obtain the forest ordering of the right γ1-boat.

Let 1 ≤ i ≤ l such that Bγ
i is a right γ2-boat. If di ← si, then we remove

xi, ni, zi, fi, ai, ti from θ
′
. Otherwise, if xi ← zi, then we remove di, ui, pi, qi, si, fi

from θ
′
. Otherwise, if fi ← ti, then we remove di, ui, pi, qi, zi, si from θ

′
. Otherwise,

di → si, xi → zi and fi → ti; in this case we remove bi, ui, ni, ri, qi, ai from θ
′
. Note
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that in the first three cases we obtain the cyclic ordering of the right γ2-boat and in
the last case we obtain the forest ordering of the right γ2-boat. We apply this rule
for all 1 ≤ i ≤ l. We obtain one of the orderings in Θθ(H). So T contains H. �

We are ready to prove Theorem 1.4:

Proof. Let H be a flotilla-galaxy under θ. We may assume that H is a regu-
lar flotilla-galaxy since every flotilla-galaxy is a subtournament of a regular flotilla-
galaxy. Let Bγ

1 , . . . , B
γ
l be the γ-boats of H under θ, and let Q1, . . . , Ql be the frontier

stars of H|(V (H)\
⋃l
i=1 V (Bγ

i )) under θ. Let ε > 0 be small enough and let λ > 0
be small enough. Assume that H does not satisfy EHC, then there exists an H-free
ε-critical tournament T . By Theorem 3.8, T contains a smooth (c, λ, w)-structure

(S1, . . . , S|w|) corresponding to Ĥ under (Ĥ, θ̂) for some c > 0 and appropriate {0, 1}-
vector w. Then by the previous corollary, T contains H, a contradiction. �

Theorem 4.4 If H is a subtournament of a flotilla-galaxy, then H has the Erdős-
Hajnal property.

Proof. The result follows from Theorem 1.4 and the fact that the Erdős-Hajnal
property is a hereditary property. �
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