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Abstract

Two of the most important invariants associated with a poset P are
the number of linear extensions, e(P ), and the number of order ideals,
i(P ). Many important techniques to generate random linear extensions
assume that e(P ) ≥ i(P ) and consequently choose to deal with ideals
instead of linear extensions. However, this condition does not hold for
every poset. In this paper we characterize when this condition holds for
chain-irreducible posets, providing a complete list of posets where this
fails. The proof is divided into three parts: for non-connected posets, for
connected posets whose width exceeds 2, and for connected posets with
width 2. We also give some applications of this result.

1 Introduction

Consider a finite partially ordered set (briefly, poset) (P,�). There are several
invariants that can be associated with P , such as height, width and so on. Perhaps
the two most important invariants in terms of mathematical properties and practical
applications are the number of linear extensions and the number of (order) ideals.
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Counting linear extensions of a general poset is a #P -complete problem [2], and
the same is true for generating random linear extensions. For this reason, finding
formulas for solving these problems for a particular family of posets is an interesting
and relevant problem [3, 9, 11, 12, 13]. The same can be said for the number of
ideals of a poset [4, 14, 23]. For example, if we consider the Boolean poset over a
referential of n elements, it can be proved that the number of ideals coincides with
the nth Dedekind number, and no simple formula is known to derive this number [15].

The difficulty of these problems is due to the fact that both the number of linear
extensions and the number of ideals usually grow very fast when the cardinality of the
poset increases. However, it seems that “in general”, the number of linear extensions
grows faster [16]. The relationship between the number of ideals and the number
of linear extensions of a poset has been studied by using computational techniques
(see [16]).

In this paper we characterize what “in general” means. More concretely, we
determine which posets satisfy the property that the number of linear extensions
exceeds the number of ideals.

Note that given a poset, if we add to this poset a chain, then the number of linear
extensions remains the same while the number of ideals grows. Hence, any poset can
be “turned” into a poset with more ideals than linear extensions. As this case is
trivial, we have focused on the case of posets that cannot be written as sums of other
posets and chains.

On the other hand, it seems that the width of the poset should have an influence
on the answer to the question. Indeed, “in general,” if the width is large, there are
more linear extensions than ideals.

The main motivation of this research is the justification of many algorithms that
generate random linear extensions. The existence of an easy bijection between linear
extensions of P and maximal chains of the lattice of ideals of P is used by many
algorithms to generate and simulate linear extensions. Consider for example the
algorithm proposed in [16], that follows the following steps:

• Build the ideal lattice I(P ) of P.

• Select randomly a maximal chain ∅ = I0 ⊆ I1 ⊆ · · · ⊆ I|P | = P in I(P ). We
can do this by defining Ii+1 = Ii ∪ {x}, where x ∈ MIN (P \ Ii) is chosen
at random. Equivalently, this can be done by selecting a path in the Hasse
diagram between ∅ and P in I(P ).

• Consider the corresponding linear extension ε given by ε(i) = Ii+1 \ Ii.

This algorithm has been applied in other papers such as [6, 17].

The other algorithm uses “conditional probabilities” of elements given an ideal,
that represent the proportion of linear extensions satisfying that I appears in the
first positions and x is assigned to the next position among all linear extensions
such that I appears in the first positions. Then, starting with I = ∅, the algorithm
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selects minimal elements with probability given by the conditional probability, then
adds the selected element to I and repeats this step until I = P . An application
of this algorithm appears in [10] for generating points in the polytopes of 3-tolerant
measures and other polytopes appearing in Decision Making with fuzzy measures.

These algorithms need to know in advance the set of ideals in order to randomly
generate a linear extension. One could think that when the number of ideals is greater
than the number of linear extensions, it is better to spend energy on counting linear
extensions rather than ideals. We will see that the strategy of enumerating ideals in
advance is well justified for a vast majority of posets.

The rest of the paper goes as follows. In the next section we introduce the
notation and basic results that will be needed in the paper. In Section 3 we establish
the main result of the paper, where we characterize the posets with more linear
extensions than ideals. We have called these posets abundant posets, and the proof
of this result is given in Section 5. In Section 4 we give several applications to other
branches of mathematics.

2 Basic concepts

Let us begin with a short survey of Order Theory (see [7]) in order to introduce
the notation that will be used in the paper. Let P be a finite set with p elements.
Elements of P are denoted x, y and z and subsets of P are denoted by capital letters
A,B, and so on. Over P we consider a binary relation � satisfying

(i) Reflexivity: x � x, ∀x ∈ P .

(ii) Antisymmetry: If x � y and y � x, then x = y, ∀x, y ∈ P .

(iii) Transitivity: If x � y and y � z, then x � z, ∀x, y, z ∈ P .

The pair (P,�) is a partially order set (or poset for short). With some abuse
of notation, we will usually omit � and write P instead of (P,�) when referring
to posets. For a poset P , we can define the dual poset P ∂ = (P,�∂) such that
x �∂ y ⇔ y � x.

If x �� y and y �� x, we write x ‖ y. We say that y covers x, denoted x � y, if
x � y and there is no z ∈ P \ {x, y} satisfying x � z � y.

A poset can be represented through Hasse diagrams. In Figure 1 we can see the
Hasse diagram of two posets shaped like the letters “N” and “V” respectively, so we
will name them after these letters.

If x ∈ P satisfies that x �
 y, for all y ∈ P, y �= x, then x is a minimal element.
The set of minimal elements of P is denoted by MIN (P ). Similarly, if x ∈ P
satisfies x �� y, for all y ∈ P, y �= x, then x is a maximal element and we denote
the set of maximal elements of P by MAX (P ).

A poset is a chain if x � y or y � x, for all x, y ∈ P . We will denote the generic
chain of n elements by n; similarly, an antichain is a poset where � is given by
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•

• •• •

••
Figure 1: Hasse diagram of poset N (left) and V (right).

x � y if and only if x = y. We will denote the generic antichain of n elements by n̄.
In this paper we admit the empty set as an antichain. We denote by A(P ) the set of
antichains of P and a(P ) := |A(P )|. A chain C ⊆ P is said to be a maximal chain
in P if there is no other different chain C ′ such that C ⊂ C ′. Symmetrically, we can
define maximal antichains. The height of P , denoted by h(P ), is defined as the
cardinality of a longest chain in P . Similarly, the width of P , denoted by w(P ), is
defined as the cardinality of a largest antichain in P .

Given an element x, we denote

↓x := {y : y � x}, ↑x := {y : x � y}, � x := {y : x � y or y � x}.

An ideal or down-set I of P is a subset of P such that if x ∈ I, then ↓x ⊆ I.
We will denote the set of all ideals of P by I(P ) and i(P ) := |I(P )|. Symmetrically,
a subset F of P is a filter or up-set if for any x ∈ F , then ↑ x ⊆ F . We will assume
that P and the empty set are both filters and ideals; therefore I(P ) and F(P ) have
both maximum and minimum. One of the most important constructions in order
theory is the poset of ideals ordered by inclusion, (I(P ),⊆). It is easy to show
that for a finite poset P ,

i(P ) = a(P ), (1)

via the bijective map f : I(P ) → A(P ) given by f(I) = MAX (I).

Two posets (P,�P ) and (Q,�Q) are isomorphic if there is a bijection f : P → Q
such that x �P y if and only if f(x) �Q f(y), and this is denoted by P ∼= Q (or
P = Q). If two posets are isomorphic, then their corresponding Hasse diagrams are
the same up to differences in the names of the elements.

Now, let us introduce some important ways of defining new posets from old. Given
two posets, (P,�P ), (Q,�Q), their ordinal sum, denoted P ⊕ Q, is a poset such
that x �P⊕Q y for every x ∈ P and y ∈ Q and preserves the original orders on P and
Q. We remark that the ordinal sum of posets is associative but not commutative (see
Figure 2). A poset is irreducible if it cannot be written as an ordinal sum of two
posets. For example, poset N in Figure 1 is irreducible, while poset V is reducible
as it can be written as V = 1⊕ 2̄.

Definition 2.1. Let P be a finite poset such that P = P1 ⊕ · · · ⊕ Pk where Pi is
an irreducible poset for i = 1, . . . , k. We denote by Φ(P ) the number of irreducible
components isomorphic to the chain with one element, i.e. Pi

∼= 1. We say that P is
chain-irreducible if Φ(P ) = 0. We also define the chain-irreducible reduction
of P as: R(P ) :=

⊕n
i=1
Pi�1

Pi.
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a
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P

1

2 3

Q

a

b c

1

2 3

P ⊕Q

a

b c

1

2 3

Q⊕ P

Figure 2: Ordinal sum of posets.

Note that a poset P is chain-irreducible if and only if every element of P is in some
antichain with at least two elements. Obviously, if P is irreducible and |P | > 1, then
P is chain-irreducible. The case P = 1 is trivially irreducible and chain-reducible.
For example, V is chain-reducible (and then reducible), 2̄⊕ 2̄ is reducible and chain-
irreducible, and poset N is irreducible (and then chain-irreducible).

Similarly, the disjoint union of two posets (P,�P ), (Q,�Q), denoted P �Q, is a
poset (P ∪Q,�P�Q) where x �P�Q y whenever x, y ∈ P and x �P y, or x, y ∈ Q and
x �Q y. The disjoint union is commutative and associative (see Figure 3). A poset
which cannot be written as the disjoint union of two posets is called connected.
Obviously, the Hasse diagram of a connected poset is also a connected graph. A
trivial property is that a non-connected poset is chain-irreducible.

a

b c

P �Q

1

2 3

1

2 3

Q � P

a

b c

Figure 3: Disjoint union of posets.

Finally, we introduce a definition regarding the height of P . Remember that
Dilworth’s Theorem states that every poset P of width w(P ) = k can be split into
k chains.

Theorem 2.1 (Dilworth [8]). Let P be a finite poset of width w(P ) = k. Then
there exists a partition of P into k chains, that is, P = C1 ∪ · · · ∪ Ck where Ci is a
chain for all i ∈ {1 . . . k} and Ci ∩ Cj = ∅, for all i �= j.
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Definition 2.2. Let P be a finite poset with w(P ) = 2, and consider all possible
partitions of P into two chains:

CP(P ) := {(C1, C2) : chain partition of P where |C1| ≥ |C2|}.
Let (C∗

1 , C
∗
2 ) be a partition in CP(P ) where |C∗

1 | is a maximum among all the par-
titions (C1, C2). We define the type 1 height h1(P ) := |C∗

1 | and type 2 height
h2(P ) := |C∗

2 |.
Example 2.1. Consider the poset Q ⊕ P from Figure 2. Then, Q ⊕ P can be
decomposed into chains 1−2−b and 3−c−a. Another decomposition is 1−2−b−a and
3− c. This is indeed the decomposition (C∗

1 , C
∗
2) of Definition 2.2. Hence h1(P ) = 4

and h2(P ) = 2.

Note that heights h1(P ) and h2(P ) are well-defined and they do not depend on
the chosen partition.

Definition 2.3. A linear extension of (P,�) is a sorting of the elements of P that
is compatible with �, i.e. x � y implies that x is before y in the sorting. In other
words, if |P | = n, then a linear extension is an order-preserving bijection ε : P → n.

We will denote by L(P ) the set of all linear extensions of poset (P,�) and by
e(P ) := |L(P )|. In a finite poset P , e(P ) equals the number of maximal chains
of (I(P ),⊆) [22]. This result is the starting point of some algorithms to randomly
generate linear extensions [16]. The goal of this paper is to find conditions for a
poset P to satisfy i(P ) ≤ e(P ).

The next lemma shows how i(P ) and e(P ) behave with respect to ordinal sum
and disjoint union.

Lemma 2.1. [7, 22] Let P and Q be two non-empty finite posets.

(i) i(P ⊕Q) = i(P ) + i(Q)− 1.

(ii) i(P �Q) = i(P ) · i(Q).

(iii) e(P ⊕Q) = e(P ) · e(Q).

(iv) e(P �Q) =
(|P |+|Q|

|P |
) · e(P ) · e(Q).

Let us now introduce some basic concepts about lattice theory. These concepts
will be needed in the section on applications. Given a poset P , we can define

x ∨ y := min{z ∈ P | z 
 x, z 
 y}, x ∧ y := max{z ∈ P | z � x, z � y},
when these values exist. More generally, for a general subset S ⊆ P we can define∨

S := min{z ∈ P | z 
 x, ∀x ∈ S},
∧

S := max{z ∈ P | z � x, ∀x ∈ S},

when these values exist.
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Definition 2.4. Let P be a non-empty poset. If x∨y and x∧y exist for all x, y ∈ P ,
then P is called a lattice.

Let L and K be lattices. A function f : L → K is a lattice homomorphism if

f(x ∨L y) = f(x) ∨K f(y), f(x ∧L y) = f(x) ∧K f(y), ∀x, y ∈ L.

A bijective lattice homomorphism is a lattice isomorphism. An element x of
a lattice L is said to be join-irreducible if x is not a minimum and x = a ∨ b
implies x = a or x = b. A meet-irreducible element is defined dually. The set of
join-irreducible elements of a lattice L is denoted by J (L). A lattice L is said to be
distributive if it satisfies the distributive law,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), ∀x, y, z ∈ L.

Theorem 2.2 (Birkhoff’s representation theorem for finite lattices [7]). Let
L be a finite distributive lattice. Then the map η : L → I(J (L)), x �→ J (L)∩ ↓x is
an isomorphism between L and I(J (L)).

In this way, for any distributive lattice L, all the information is concentrated in
the poset J (L). Note that the number of elements of J (L) is in general much lower
than the cardinality of L.

Definition 2.5. We say that a finite poset P is abundant if i(P ) ≤ e(P ). Other-
wise, we say that P is deficient.1

The set of abundant finite posets is denoted by A, and the set of deficient finite
posets by D.

The first problem we face when characterizing abundant posets is the possibility
of encountering a poset that can be written as a ordinal sum of a poset and a chain.

Theorem 2.3. Let P be a finite poset. Then there exists m ∈ N such that m⊕P is
deficient.

Proof. By Lemma 2.1 note that e(m⊕ P ) = e(P ) but i(m ⊕ P ) = i(P ) +m. It is
enough to choose m > e(P )− i(P ).

In this way, we can always add large enough chains to a poset such that the new
poset is deficient. However, from a combinatorial point of view, adding or removing
chains as ordinal summands does not change most of the combinatorial structure of
the poset. For this reason we will focus on working with chain-irreducible posets.

1This notation is inspired by number theory. Remember that a number is said to be abundant
if the sum of its divisors is greater than the number itself; otherwise it is said to be deficient.
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3 Characterization of chain-irreducible abundant posets

In this section we summarize the main result of the paper, which characterizes chain-
irreducible abundant posets. Let P be a non-connected finite poset. We will see that
P is abundant if and only if P is not in the family CD1, where:

CD1 := {1 �m, 1 � (m1 ⊕ 2̄⊕m2), 2 � 2, 2 � 3}.

Now let us define the poset N3 given in Figure 4.

• •

••
•

Figure 4: Hasse diagram of poset N3.

We will see that this is the only deficient connected poset with w(P ) ≥ 3. Next,
consider the family

CD2 = {CDm
1 , CDm

2 , CD3, CD4, CD5, CD6, CD7, CD8},

given in Figure 5.

•
•
...

•

•

••

CDm
1

m

•
•
...

•

•

••

CDm
2

m

• •

••
•
CD3

• •

••
•

•

CD4

• •

••
•

•

CD5

• •

••
•

•

•
CD6

• •

••
•

CD7

• •

••
•
•
CD8

Figure 5: Connected deficient posets with w(P ) = 2 and h2(P ) = 2 (modulo duality).

We will see that these (and their duals) are the only deficient connected posets
with w(P ) = 2 and h2(P ) = 2. Finally, we will denote CD9 = 2̄⊕2̄⊕2̄, CD10 = 2̄⊕N
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and CD11, CD12 the posets of Figure 6. Let us denote

CD3 := {CD9, CD10, CD11, CD12}.

It is easy to check that posets in CD3 are chain-irreducible and deficient. Indeed,
the pairs (i(P ), e(P )) for CD9, CD10, CD11 and CD12 are (10, 8), (11, 10), (12, 10) and
(14, 13) respectively. We will see that these (and their duals) are the only deficient
connected posets with w(P ) = 2 and h2(P ) > 2.

•

•

•

•

•

•
CD11

•

•

•

•

•

•

•
CD12

Figure 6: CD11 and CD12 posets.

The main result in the paper is the following:

Theorem 3.1 (Characterization of chain-irreducible abundant posets). Let
P be a chain-irreducible finite poset. Then P is abundant if and only if P and P ∂

are not in CD∗, where:

CD∗ := CD1 ∪ CD2 ∪ CD3 ∪ {N3}.

Proof. See Section 5.

In other words, every chain-irreducible poset is abundant except for 17 exceptions.

Note that the set CD∗ is the set of chain-irreducible deficient posets modulo
duality. We can remove the chain-irreducibility condition from the last result to get
a more general one.

Theorem 3.2 (General Ideal-Extension Inequality). Let P be a finite poset
such that R(P ),R(P )∂ /∈ CD∗. Then:

i(P ) ≤ e(P ) + Φ(P ).
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Proof. Since the chain-irreducible reduction R(P ) �∈ CD∗, applying Theorem 3.1,

i(P )− Φ(P ) = i(R(P )) ≤ e(R(P )) = e(P ).

Corollary 3.1. Let P be a chain-irreducible finite poset. Then e(P ) ≥ |P |. More-
over, e(P ) = |P | if and only if P = 2 ⊕ 2 or P = 1 �m, where m is the chain of
length |P | − 1.

Proof. Suppose first that P is abundant. Consider the ideals of the form ↓ x and
the empty ideal. Thus, we obtain e(P ) ≥ i(P ) ≥ |P | + 1 and we conclude that
e(P ) ≤ |P | is not possible in this case.

On the other hand, if P is not abundant, by Theorem 3.1 we know that P ∈ CD∗.
It is straightforward to check that e(P ) ≥ |P | for every P ∈ CD∗ and the equality
holds just for the cases P = 2⊕ 2 and P = 1 �m, where m is the chain of length
|P | − 1.

Therefore, the chain-irreducible poset with cardinal n > 4 with a minimum num-
ber of linear extensions is P = 1 � (n− 1), having exactly n linear extensions and
both P = 1 � 3 and P = 2⊕ 2 for n = 4.

4 Applications

As mentioned above, the main application of Theorem 3.1 is to offer a mathematical
justification for enumerating ideals in algorithms for random generation of linear
extensions. However, in this section we are going to see some further applications
of the characterization of chain-irreducible abundant posets in different branches of
mathematics.

4.1 Discrete Geometry

A convex polytope is a bounded convex polyhedron. The faces of a convex polytope
P ordered by inclusion form a lattice L(P) which is known as the face lattice of P.

Let P be a poset. If there is a rank function r : P → N such that r(x) = 0 for
any minimal element x and r(y) = r(x)+1 whenever y�x, then P is called graded
or ranked with rank r.

It is known that the face lattice of a polytope is always graded by the dimension
of the face (see [22]). Let us also denote L∗(P) = L(P) \ {∅,P}.
Corollary 4.1. Let P be a convex polytope with dim(P) > 1. Then L∗(P) is chain-
irreducible and abundant.

Proof. Note that L∗(P) is graded by the dimension and the only dimensions k
such that the number of k-dimensional faces is 1 are k = −1 (the empty set) and
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k = dim(P) (the whole polytope). This implies that L∗(P) is chain-irreducible.
Moreover, L∗(P) is always connected and w(L∗(P)) ≥ 3 if dim(P) > 1 because P
has at least three vertices. By Theorem 3.1, the only deficient chain-irreducible con-
nected poset with width greater than or equal to 3 is N3, which is not associated
with any polytope (because P must have at least three vertices).

Therefore, for every polytope different from a line segment, the number of sets of
faces that are not related by inclusion (i.e. antichains) is smaller than the number of
ways of ordering all the faces by inclusion (i.e. linear extensions).

4.2 Number Theory

Let n ∈ N. The division lattice Dn of n is defined as the poset consisting in all
the divisors of n ordered by divisibility: a � b ⇔ a divides b, ∀a, b ∈ Dn. Dn is
a bounded distributive lattice (see [7]). Let us call the pruned division lattice
D∗

n := Dn \ {1, n}.
Observe that the join-irreducible elements of Dn are the prime powers pk dividing

n. Therefore, if n = pk11 pk22 · · · pkrr , by Birkhoff’s representation theorem, we get
Dn

∼= I(k1 � · · · � kr). Using the relationship between the ideal lattice of the union
and the product of posets (defined coordinatewise) we obtain [7]:

Dn
∼= I(k1 � · · · � kr) ∼= I(k1)× · · · × I(kr) ∼= (k1 + 1)× · · · × (kr + 1).

Theorem 4.1. Let n ≥ 2. The pruned division lattice D∗
n is abundant if and only if

n is neither a prime power n = pk nor of the form n = pk11 p2 with k1 ≤ 2.

Proof. If n is a prime power n = pk, then Dn
∼= k + 1 is a chain, so D∗

n is also a
chain and thus deficient. If n = p1p2, then Dn

∼= 2× 2 ∼= 1⊕ 2̄⊕ 1, and D∗
n
∼= 2̄ is

also deficient. Also if n = p21p2, then Dn
∼= 3× 2 ∼= 1⊕ N ⊕ 1, and D∗

n
∼= N is also

deficient.

Now suppose that n = pk11 pk22 · · ·pkrr is neither a prime power nor of the form n =
pk11 p2 with k1 ≤ 2. It is clear that D∗

n is chain-irreducible. Indeed, for every element
d1 = ps11 ps22 · · · psrr we can suppose without loss of generality that s1 < k1, s2 > 0 and
take d2 = ps1+1

1 ps2−1
2 · · · psrr and d1 ‖ d2.

Now let us show that D∗
n /∈ CD∗. If n has three different prime divisors, then

the boolean lattice B3 = 2× 2 × 2 is a subposet of Dn, so D∗
n /∈ CD∗. Therefore n

should have at most two different prime divisors n = pk11 pk22 . If k1, k2 ≥ 2 then the
set A = (p21, p1p2, p

2
2) is an antichain of three elements. Thus D∗

n is connected and
w(D∗

n) ≥ 3. By Theorem 3.1, the only posibility for Dn being deficient is D∗
n
∼= N3,

which is impossible (1 ⊕ N3 ⊕ 1 is not a product of chains). Finally, in the case
n = pk11 p2 we get Dn

∼= 2× (k1 + 1), leading to D∗
n ∈ CD∗ if and only if k1 ≤ 2.
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5 Proof of Theorem 3.1

In this section, we prove the main theorem of the paper. To shed light on this proof,
we divide it into several cases.

5.1 Technical lemmas

Lemma 5.1. Let P be a finite poset. Then the following inequalities hold:

(i) i(P ) ≤ |P | · e(P ) + 1,

(ii) 2 · i(P ) ≤ (1 + |P |) · e(P ), if e(P ) ≥ 3.

Proof. (i) For every non-empty ideal I ∈ I(P ), there exists a linear extension ε ∈
L(P ) starting with the ideal I (note that two ideals I1, I2 may be related to the
same linear extension if I1 ⊂ I2). Therefore, adding 1 for the empty ideal, we have
i(P ) ≤ |P | · e(P ) + 1.

(ii) We consider two cases. Firstly, let us suppose that for every non-empy ideal
I ∈ I(P ), I or P \ I is not a chain in P . Indeed, without loss of generality we can
suppose that I is not a chain. Then, two different linear extensions ε0, ε1 ∈ L(P )
starting with ideal I �= ∅ exist. Moreover, since e(P ) ≥ 3, we can assign two different
linear extensions δ0, δ1 to the empty ideal I = ∅. Hence 2 · i(P ) ≤ (1 + |P |) · e(P ),
and the result holds.

Assume now that a non-empty ideal I exists for which both sets I and P \ I are
chains in P . Since e(P ) > 1, we have I �= P , and the filter P \ I is non-empty. Thus
there exist x, y ∈ P with I =↓ x and P \ I =↑ y. Due to (↑ x) \ {x} ⊆ P \ I and
(↓y) \ {y} ⊆ I, the poset P looks as in Figure 7.

•
...

•
•x

...
...

y•
•
...

•
A

B

C D

Figure 7: Poset P in proof of Lemma 5.1 ii).
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In this Figure 7, P can be written as P = A⊕ (C �D)⊕B, where ↓x = A⊕C,
B = (↑ x) \ {x}, ↑ y = D ⊕ B, and A = (↓ y) \ {y}. Additionally, P contains an
arbitrary number of edges from (C \ {x}) × (D \ {y}) (represented by dotted lines
connecting elements of C and D). Let us denote a = |A|, b = |B|, c = |C| and
d = |D|. Observe that a, b ≥ 0 and c+ d ≥ 3 due to e(P ) ≥ 3.

There is a single linear extension of P with ε(y) = ε(x) + 1, i.e. y follows x in the
linear extension ε. Moreover, for every element z ∈ C\{x} there exist at least d linear
extensions with ε(y) = ε(z) + 1. In fact, we can take ε = (↓z, y, C \ (↓z ∪ {x}), . . . )
and we can place element x next or following any element in D, so we have at
least d different linear extensions. For the same reason, there exist at least d linear
extensions with element y following chain A. We conclude e(P ) ≥ cd + 1. Defining
Q as poset P by erasing dashed lines, we have i(P ) ≤ i(Q) = a+ (c+ 1)(d+ 1) + b.
Joining these two facts, we get:

(1+|P |) · e(P )− 2 · i(P ) ≥ (a+b+c+d+1) · (cd+1)− 2 · [a+ (c+1)(d+1)+b]

= (a+b+c+d+1) · (cd−1)− 2cd

≥ (c+d+1) · (cd−1)− 2cd.

The last expression is greater than or equal to zero for all pairs (c, d) with c+d ≥ 3,
so the inequality holds.

Lemma 5.2. Let P be a finite irreducible poset. Then:

(i) There exists x ∈ MIN (P ) and y ∈ MAX (P ) such that P \ {x} and P \ {y}
are irreducible.

(ii) If P �∼= 1 � Q for any poset Q and there is an antichain A of P such that
A ∩ MIN (P ) �= ∅, A ∩ MAX (P ) �= ∅, then there exists x ∈ MIN (P )\A
satisfying P \ {x} is irreducible.

Proof. (i) Consider a partition {Mi}i=0,...,t of P , where Mi := MIN
(
P \⋃i−1

k=0Mk

)
.

Note that M0 := MIN (P ) and P =
⋃t

i=1Mi for some t ∈ N. Now, for all i ∈
{1 . . . , t} there exists x+

i ∈ Mi and x−
i−1 ∈ ⋃i−1

k=0Mk such that x−
i−1 ‖ x+

i ; otherwise

P =
(⋃i−1

k=0Mk

)
⊕

(
P \⋃i−1

k=0Mk

)
which is a contradiction. Besides, |M0| ≥ 2

and we can choose some x ∈ M0, x �= x−
0 . We claim that P \ {x} is irreducible.

Indeed, if we define M 0 := M0 \ {x} and M i := Mi for i ≥ 1, we get a partition
for P \ {x}. Since the elements of each M i form an antichain, they must be in the
same irreducible component of P \ {x}. As x−

i−1 ‖ x+
i , M i is in the same irreducible

component as M i−1 for all i and we conclude that the whole P \ {x} is in just one
irreducible component.

By duality, there is also y ∈ MAX (P ) such that P \ {y} is irreducible.

(ii) We remark that if x ∈ MIN (P ) ∩ MAX (P ), this implies that x is isolated
and thus P can be written as 1 � Q. Hence, MIN (P ) ∩ MAX (P ) = ∅. Let
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us see that there is a minimal element x /∈ A. Otherwise, as A ∩ MAX (P ) �= ∅
and A is an antichain, there would exist some maximal element z ∈ A such that
z ‖ y, ∀y ∈ MIN (P ), which is a contradiction.

Therefore, we can take x ∈ MIN (P )\A, y ∈ MIN (P )∩A and z ∈ MAX (P )∩
A. As y ‖ z, P \ {x} is irreducible.

Lemma 5.3. Let P be a poset and x ∈ P such that w(P ) = w(P \ {x}) = 2.
Consider a partition (C∗

1 , C
∗
2) of P \{x} into two chains such that |C∗

1 | = h1(P \{x}).
If C∗

1 ∪ {x} or C∗
2 ∪ {x} is a chain, then h1(P \ {x}) ≤ h1(P ).

Proof. If C∗
1 ∪ {x} is a chain then (C∗

1 ∪ {x}, C∗
2) is a partition of P into two chains.

Hence,
h1(P \ {x}) = |C∗

1 | < |C∗
1 ∪ {x}| ≤ h1(P ).

Now suppose C∗
2 ∪ {x} is a chain. We can assume without loss of generality that

|C∗
1 | > |C∗

2 |, otherwise we are in the conditions of the first case. Then (C∗
1 , C

∗
2 ∪{x})

is a partition of P into two chains and we get

h1(P \ {x}) = |C∗
1 | ≤ h1(P ).

Definition 5.1. Let P be a finite poset. We define the class of equivalence of P as:

[P ] = {Q : |P | = |Q|, i(P ) = i(Q) and e(P ) = e(Q)}.

In particular, P , P ∂ ∈ [P ]. Obviously, if Q ∈ [P ] and Q ∈ A, it follows that
Q′ ∈ A, ∀Q′ ∈ [P ].

Lemma 5.4. Let P be a finite poset. Suppose there exists Q ∈ [P ] satisfying that
there are x, y ∈ MIN (Q) such that Q \ {x} ∈ A and e(Q \ {x, y}) ≥ 2. Then,
P ∈ A.

Proof. Let P be a poset and consider Q, x, y satisfying the previous conditions. As
Q \ {x} ∈ A, there exists an injective map f : I(Q \ {x}) → L(Q \ {x}). Let us
consider F : I(Q) → L(Q) given by

F (I) :=

⎧⎪⎪⎨
⎪⎪⎩

(x, f(I)) if x �∈ I
(x, f(I \ {x})) if x ∈ I, x �∈ MAX (I)
(I \ {x}, x, f(I \ {x}) \ (I \ {x})) if x ∈ I, x ∈ MAX (I), I �= {x}
(y, x, f̂({y}) \ {y}) if I = {x}

where in the third case the elements of I \ {x} are ordered in a compatible way.
In the fourth case, we define f̂({y}) as a linear extension of Q \ {x} such that
f({y})\{y} �= f̂({y})\{y}. We remark that this is possible because e(Q\{x, y}) ≥ 2.

Let us first show that F is well-defined. As f(I) ∈ L(Q \ {x}), it suffices to see
that the inclusion of x does not violate the order. For this, as x, y ∈ MIN (Q), cases
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1, 2 and 4 are straightforward. For the third case, note that x ∈ MAX (I), so that
for z ∈ I, z �= x, it cannot happen that z 
 x. Besides, as x ∈ MIN (Q), for z �∈ I,
it cannot happen that x 
 z.

Let us now see that F is injective. Let us show that F is injective within each
case. For the first two cases, this holds because f is injective. The third case holds
because it starts with I \ {x}.

Finally, let us see that F is injective between the different cases. For this, we
have to compare the two first cases and the two last. For the two first cases, equality
could arise if there exists I ∈ I(Q) such that x ∈ I, and I \ {x} ∈ I(Q). But
this would imply that x ∈ MAX (I) and in the second case we have excluded this
possibility. For the third and fourth cases, we could have equality for I = {x, y} and
I ′ = {x}. But as f({y}) \ {y} �= f̂({y}) \ {y}, injectivity holds.

Thus, Q ∈ A and hence P ∈ A.

5.2 Characterizing non-connected abundant posets

Theorem 5.1 (Characterization of non-connected abundant posets). Let P
be a non-connected finite poset. Then P is abundant if and only if P is not in the
family CD1, where:

CD1 := {1 �m, 1 � (m1 ⊕ 2̄⊕m2), 2 � 2, 2 � 3}.

Proof. Let P = P1�P2 and n := |P1|, m := |P2|, with n ≤ m. Applying Lemma 5.1 i)
and Lemma 2.1 yields

i(P ) = i(P1) · i(P2)

≤ (n · e(P1) + 1) · (m · e(P2) + 1)

≤ (n+ 1) · (m+ 1) · e(P1) · e(P2)

=
(n+ 1) · (m+ 1)(

n+m
m

) e(P ).

Therefore, the poset P is abundant if

(n+ 1) · (m+ 1) ≤
(
n+m

n

)
,

which is true for all combinations (n,m) with the exception of (1, m), (2, 2), and
(2, 3). For the latter two alternatives, P must be one of the posets (see [18]):

2�2, 2�2, 4, 2�3, 2�(1⊕2),2�(2⊕1), 2�3, 2�(1�2), 5,2�3, 2�(1⊕2), 2�(2⊕1).

As we can see in Table 1, all of these posets are abundant except 2�2 and 2�3.
Now let n = 1. According to Lemma 2.1, P = 1 � P2 is abundant if and only if

i(P ) = 2 · i(P2) ≤ (1 +m) · e(P2) = e(P ),
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P i(P ) e(P ) P i(P ) e(P )

2 � 2 9 6 2 � 2 12 12

4 16 24 2 � 3 12 10

2 � (1⊕ 2) 15 20 2 � (2⊕ 1) 15 20

2 � 3 24 60 2 � (1 � 2) 18 30

5 32 120 2 � 3 16 20

2 � (1⊕ 2) 20 40 2 � (2⊕ 1) 20 40

Table 1: Number of ideals and linear extensions for some non-connected posets.

which holds according to Lemma 5.1 (ii) for e(P2) ≥ 3. Finally, for the case e(P2) ≤ 2,
poset P2 is the chain m or isomorphic to m1⊕2⊕m2 which lead to deficient posets.
Indeed,

i(1 �m) = 2(m+ 1) > (m+ 1) = e(1 �m)

and

i(1 � (m1 ⊕ 2⊕m2)) = 2(m1 +m2 + 4) > 2(m1 +m2 + 2) = e(1� (m1 ⊕ 2⊕m2)).

So the result holds.

5.3 Chain-irreducible connected abundant posets with w(P ) ≥ 3

We first treat the reducible case.

Theorem 5.2. Let P be a finite, chain-irreducible, connected and reducible poset
with w(P ) ≥ 3. Then P ∈ A.

Proof. Let P be a poset in these conditions. Then, as P is reducible, we can write

P = P1 ⊕ P2 ⊕ . . .⊕ Pk,

where each Pi is irreducible, |Pi| > 1, k > 1, and there exists i∗ such that w(Pi∗) ≥ 3.

If every Pi is equal to 2̄ or 3̄, then we can reorder the ordinal summands to get
Q ∈ [P ] given by

Q := 2̄⊕ k1. . .⊕ 2̄⊕ 3̄⊕ k2. . .⊕ 3̄, k1 ≥ 0, k2 ≥ 1, k1 + k2 ≥ 2.

Then, by Lemma 2.1

i(Q) = 4k1 + 8k2 − (k1 + k2 − 1) = 3k1 + 7k2 + 1 ≤ 2k16k2 = e(Q), ∀k1, k2,
and Q ∈ A.

In the other case, let us make the proof by induction in |P |. There are no
chain-irreducible, connected and reducible posets with w(P ) ≥ 3 and less than five



P. GARCÍA-SEGADOR AND P. MIRANDA/AUSTRALAS. J. COMBIN. 85 (2) (2023), 164–194 180

elements. So let us prove the basis step for |P | = 5. The only posets with five
elements in these conditions are (see [18]) P = 2̄ ⊕ 3̄ and P ∂ = 3̄ ⊕ 2̄, and hence
P, P ∂ ∈ A.

Let us now assume |P | > 5 and suppose that the result holds until |P | − 1. We
have to consider several cases.

Case 1: If Pi∗ = 3̄, by hypothesis there is some j∗ �= i∗ such that Pj∗ � 2̄. We
can use Lemma 5.2 i) to obtain some minimal element x of Pj∗ with Pj∗ \ {x}
irreducible. Hence, x is also minimal element of Q := Pj∗

⊕
i �=j∗ Pi ∈ [P ]. Note

that Q \ {x} = (Pj∗ \ {x})⊕i �=j∗ Pi is chain-irreducible because Pj∗ � 2̄. Now,
w(Q) ≥ w(Pi∗) = 3. Applying induction, we conclude that Q \ {x} ∈ A. Finally, we
can choose any minimal element y �= x of Q and we get e(Q \ {x, y}) ≥ 2. Hence, by
Lemma 5.4 the result holds.

Case 2: If Pi∗ = H � 1 �= 3̄. Hence, as w(Pi∗) ≥ 3, it follows w(H) ≥ 2. Conse-
quently, there is some antichain {h1, h2} ∈ H such that {h1, h2, 1} is an antichain in
Pi∗ . Moreover, since Pi∗ �= 3̄, then H \ {h1, h2} �= ∅ and we can take a minimal (or
maximal) element x ∈ H different from h1 and h2. Obviously, Pi∗ \{x} is irreducible
because it is not connected. Besides, {h1, h2, 1} ⊆ Pi∗ \{x}, so that w(Pi∗ \{x}) ≥ 3.

Now, consider

Q := Pi∗
⊕
i �=i∗

Pi ∈ [P ], (or Q := P ∂
i∗
⊕
i �=i∗

Pi ∈ [P ], if x ∈ MAX (P )).

Hence, Q \ {x} is reducible, chain-irreducible and w(Q \ {x}) ≥ w(Pi∗ \ {x}) ≥ 3,
so using the induction hypothesis, Q \ {x} ∈ A. Finally we can choose any minimal
element y �= x of Q and we get e(Q \ {x, y}) ≥ 2. Hence, by Lemma 5.4, Q ∈ A.

Case 3: Finally, assume Pi∗ �= 3̄ and Pi∗ �= H � 1. Let us see that we can find
Q ∈ [P ] and x ∈ MIN (Q) such that Q\{x} ∈ A. Let A be a 3-element antichain of
Pi∗ . If there is no minimal element in A we can apply Lemma 5.2 (i) to obtain some
x ∈ MIN (Pi∗) with Pi∗ \{x} irreducible. Besides, w(Pi∗ \{x}) ≥ w(A) = 3. Hence,
considering Q = Pi∗

⊕
i �=i∗ Pi ∈ [P ], we conclude by induction that Q \ {x} ∈ A.

If there is some minimal element in A but there is no maximal element, we
can apply Lemma 5.2 (i) to the dual P ∂

i∗ and we obtain the same conclusions for
Q = P ∂

i∗
⊕

i �=i∗ Pi ∈ [P ].

Finally, if A has some minimal element and some maximal element, we can apply
Lemma 5.2 (ii) to obtain a minimal element x �∈ A such that Pi∗ \ {x} is irreducible.
Hence, considering Q = Pi∗

⊕
i �=i∗ Pi ∈ [P ], it follows that Q \ {x} is reducible,

chain-irreducible and w(Q \ {x}) ≥ 3. We conclude by induction that Q \ {x} ∈ A.

Now, we can choose any minimal element y �= x of Q and we get e(Q\{x, y}) ≥ 2.
Hence, by Lemma 5.4 the result holds.

Let us now generalize the last result to every chain-irreducible, connected poset
P with w(P ) ≥ 3. In order to achieve this, let us consider a previous lemma.
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Lemma 5.5. Let P be a chain-irreducible connected poset with w(P ) ≥ 3 and x ∈
MIN (P ).

(i) If |P | ≥ 6 and P \ {x} is disconnected, then at least one of P or P \ {x} is
abundant.

(ii) If P \ {x} ∼= N3, then P ∈ A.

Proof. (i) If P \ {x} ∈ A we are finished, so let us suppose that P \ {x} /∈ A and we
are going to show that P ∈ A. Since w(P ) ≥ 3, this implies that 2 ≤ w(P \{x}) ≤ 3.
Thus we need to distinguish two cases.

Case 1: If w(P \{x}) = 2, as P \{x} ∈ D, P \{x} is disconnected and |P \{x}| ≥ 5,
we know by Theorem 5.1 that P \ {x} ∼= 1 �m, m ≥ 4 or P \ {x} ∼= 2 � 3.

If P \ {x} ∼= 1 �m, the Hasse diagram of P is given in Figure 8 (left) where it
is clear that w(P ) = 2, which is a contradiction.

If P \ {x} ∼= 2 � 3, the only choices for P such that w(P ) ≥ 3 are depicted in
Figure 8 (center and right). These two posets are abundant since their corresponding
pairs (i(P ), e(P )) are (16, 26) and (18, 35), respectively.

•
...

•
...

•

•
x

•
•
•

•
•x

•
•
•

•
•x

Figure 8: Hasse diagram of P when P \ {x} ∼= 1 �m (left) and choices for P when
P \ {x} ∼= 2 � 3 (center and right).

Case 2: If w(P \{x}) = 3, as P \{x} ∈ D, P \{x} is disconnected and |P \{x}| ≥ 5,
we know by Theorem 5.1 that P \ {x} ∼= 1 � (m1 ⊕ 2̄⊕m2).

Here we can also distinguish four possible cases for P (see [18]). These four cases
(A, B, C and D) are depicted in Figure 9. Let us denote by Pk1,k2,k3 the posets
belonging to families A and B, and by Pk1,k2 the posets belonging to families C and
D.

In Case A, we have Pk1,k2,k3, k1 ≥ 1, (otherwise P = {x} ⊕ P1,), k2, k3 ≥ 0. For
counting ideals we use i(P ) = a(P ) and hence we count the number of antichains of
length 0, 1, 2 and 3. Hence

i(Pk1,k2,k3) = 1 + (5 + k1 + k2 + k3) + (4 + 2k1 + k2 + k3) + 1 = 3k1 + 2k2 + 2k3 + 11.

For counting e(Pk1,k2,k3) we can apply the fact that for every poset P,

e(P ) =
∑

x∈MIN (P )

e(P \ {x}).
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Figure 9: Different choices for P if P \ x ∼= 1 � (m1 ⊕ 2̄⊕m2).

Next, there are 2(k1 + k2 + k3 + 4) linear extensions in Pk1,k2,k3 \ {x}. Therefore,
e(Pk1,k2,k3) = 2(k1 + k2 + k3 + 4) + e(Pk1−1,k2,k3).

If k1 = 1, then e(P1,k2,k3) = 2(1 + k2 + k3 + 4) + 2(0 + k2 + k3 + 4). Thus

e(Pk1,k2,k3) = 2(k1 + 1)(k2 + k3 + 4) + 2

k1∑
t=0

t

= 2(k1 + 1)(k2 + k3 + 4) + k1(k1 + 1)

= (k1 + 1)(k1 + 2k2 + 2k3 + 8),

and Pk1,k2,k3 ∈ A, ∀k1, k2, k3.
In Case B, we have Pk1,k2,k3, k1, k2, k3 ≥ 0. Proceeding as before,

i(Pk1,k2,k3) = 3k1 + 3k2 + 2k3 + 14.

And for e(P ), it can be seen proceeding as in Case A

e(Pk1,k2,k3) = 2(k1 + k2 + 3) + e(Pk1,k2,k3−1).

If k3 = 0, then e(Pk1,k2,0) = 2(k1 + k2 + 3) + 2
(
k1+k2+4

2

)
. Thus

e(Pk1,k2,k3) = 2(k1 + k2 + 3)(k3 + 1) + (k1 + k2 + 4)(k1 + k2 + 3),

and Pk1,k2,k3 ∈ A, ∀k1, k2, k3.
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In Case C, we have Pk1,k2, k1 + k2 ≥ 1. Counting ideals we get

i(Pk1,k2) = 3k1 + 2k2 + 10.

Observe that
e(Pk1,k2) = 2(k1 + k2 + 3) + e(Pk1−1,k2).

If k1 = 0 we obtain e(P0,k2) = 2(k2 + 3) + (k2 + 2). Thus,

e(Pk1,k2) =

k1∑
t=0

2(t+ k2 + 3) + (k2 + 2) = 2(k1 + 1)(k2 + 3) + (k2 + 2) + k1(k1 + 1),

and Pk1,k2 ∈ A except for k1 = 0 and k2 = 1. However in this case |P0,1| = 5, in
contradiction with the hypothesis |Pk1,k2| ≥ 6xp.

In Case D, we have Pk1,k2, k1 ≥ 1, k2 ≥ 0. Counting ideals we get

i(Pk1,k2) = 3k1 + 2k2 + 9.

Observe that

e(Pk1,k2) = 2(k1 + k2 + 3) + e(Pk1−1,k2).

If k1 = 0 we obtain e(P0,k2) = 2(k2 + 3). Thus,

e(Pk1,k2) = 2(k1 + 1)(k2 + 3) + k1(k1 + 1),

so Pk1,k2 ∈ A, ∀k1, k2.
(ii) As x ∈ MIN (P ) and P \ {x} ∼= N3, we can consider all the possibilities for P
being chain-irreducible, connected and with w(P ) ≥ 3. These alternatives depend
on the number of elements of N3 covering x. In Figure 10 we can see the different
possible posets P (see [18]) and their corresponding pairs (i(P ), e(P )) of ideals and
linear extensions. As it can be checked, all of them are abundant, so the result
holds.

Theorem 5.3 (Characterization of chain-irreducible connected abundant
posets with w(P ) ≥ 3). Let P be a chain-irreducible connected poset with w(P ) ≥ 3.
Then P ∈ A if and only if P � N3 (as defined in Figure 4).

Proof. Start by noting that N3 ∈ D since i(N3) = 12 and e(N3) = 11.

Let us prove the other implication using induction on |P |.
There are no posets allowed by the conditions of the theorem with less than

five elements and there are just four posets (modulo isomorphism and duality) with
five elements (see [18]). These posets and their corresponding pairs (i(P ), e(P )) are
shown in Figure 11. As we can see these four posets are abundant.
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Figure 10: Choices for P such that P \ {x} ∼= N3 and pairs (i(P ), e(P )).
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(13, 16)

•• •

••
(14, 18)

•• •

••
(12, 14)

Figure 11: Chain-irreducible connected posets with w(P ) ≥ 3 and 5 elements.

Let us now prove the induction step. Let P be a poset with |P | > 5. By
Theorem 5.2, if P is reducible then P ∈ A, so we can suppose that P is irreducible.

In the same way, by Lemma 5.5 (i), if there is some x ∈ MIN (P ) such that
P \ {x} is non-connected, then P ∈ A or P \ {x} ∈ A. If P ∈ A we are done. If
P \ {x} ∈ A, we can take some y ∈ MIN (P ), y �= x such that e(P \ {x, y}) ≥ 2.
Otherwise, P \ {x, y} ∼= m and as P is connected, this implies that either P ∼=
(k1 � 1) ⊕ k2 with k2 ≥ 1 or P ∼= (((k1 � 1) ⊕ k2) � 1) ⊕ k3 with k3 ≥ 1, a
contradiction since P is chain-irreducible. Hence, P ∈ A by Lemma 5.4.

Next, by Lemma 5.5 (ii), if there is some minimal element x such that P \ {x} =
N3, then P ∈ A.

Therefore, we can suppose that P is irreducible and for every minimal element x
(or maximal element by duality), P \ {x} is connected and different from N3. Since
w(P ) ≥ 3, let A be a 3-element antichain of P . If there is no minimal element in A
we can apply Lemma 5.2 (i) to obtain some minimal element x of P with P \ {x}
irreducible and w(P \{x}) ≥ w(A) = 3, so P \{x} ∈ A by induction. If there is some
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minimal element in A but there is no maximal element, we can apply Lemma 5.2 (i)
to the dual P ∂ (Q = P ∂ ∈ [P ]) and we obtain the same conclusions. Finally, if A has
some minimal element and some maximal element then we can apply Lemma 5.2 (ii)
to obtain a minimal element x /∈ A such that P \ {x} is irreducible and P \ {x} ∈ A
by induction.

Finally, we can choose any minimal element y �= x of P and we get e(P \{x, y}) ≥
2. Indeed, A \ {y} has a 2-element antichain contained in P \ {x, y}. Therefore, by
Lemma 5.4 the result holds.

5.4 Chain-irreducible connected abundant posets with w(P ) = 2

It remains to study the case w(P ) ≤ 2. Observe that the case w(P ) = 1, i.e. chains,
is trivial since every chain is deficient (and obviously is not chain-irreducible). So let
us focus on the case w(P ) = 2. We are going to divide the study of chain-irreducible
connected abundant posets with w(P ) = 2 into two cases: h2(P ) ≤ 2 and h2(P ) ≥ 3
(see Definition 2.2). Let us start with the case h2(P ) ≤ 2. Observe that the case
h2(P ) = 1 implies (modulo duality) P ∼= (k1 � 1) ⊕ k2, k2 ≥ 1, which is always
chain-reducible. Let us study the case h2(P ) = 2.

Theorem 5.4 (Characterization of chain-irreducible connected abundant
posets with w(P ) = 2 and h2(P ) = 2). Let P be a chain-irreducible connected
poset with w(P ) = 2 and h2(P ) = 2. Then P is abundant if and only if P and P ∂

are not in the family

CD2 = {CDm
1 , CDm

2 , CD3, CD4, CD5, CD6, CD7, CD8},
given in Figure 5.

Proof. As w(P ) = 2 and h2(P ) = 2, P can be decomposed into one chain of length
two and one longer chain. Since P should be connected there are just two possible
choices for P or P ∂ given by Cases A and B in Figure 12. Let us denote by Pm1,m2

and Pm1,m2,m3 the posets belonging to Case A and Case B, respectively.

In Case A,m2 ≥ 1, because ifm2 = 0 then P = P1⊕1, a contradiction. Moreover,
counting antichains

a(Pm1,m2) = i(Pm1,m2) = 2m1 + 3m2 + 5.

For counting e(Pm1,m2) we use the fact that for every poset P ,

e(P ) =
∑

x∈MIN (P )

e(P \ {x}).

Therefore, e(Pm1,m2) = (m2 + 1) + e(Pm1−1,m2).

Next, e(P0,m2) = (m2 + 1) +
(
m2+2

2

)
and thus,

e(Pm1,m2) = (m1 + 1)(m2 + 1) +

(
m2 + 2

2

)
=

1

2
(m2 + 1)(2m1 +m2 + 4).
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•

•

•
...

•

•
•

...

•
Case A

m1

m2

•

•

•
...

•

•

•
...

•

...

•
Case B

m1

m2

m3

Figure 12: Possible chain-irreducible connected posets with w(P ) = 2 and h2(P ) = 2.

If m2 = 1, i(Pm1,1) > e(Pm1,1), so the poset is deficient and we get the dual of
CDm

1 . If m2 = 2, then Pm1,2 is abundant for m1 > 1 and deficient for m1 ≤ 1. The
values m1 = 0 and m1 = 1 give us posets CD∂

3 and CD∂
4 . It is straightforward to

check that for m2 ≥ 3, Pm1,m2 ∈ A.

In Case B, m1, m3 ≥ 0 and m2 ≥ 2. Proceeding as before,

i(Pm1,m2,m3) = 2m1 + 3m2 + 2m3 + 1.

For e(Pm1,m2,m3), it can be seen as in Case A that

e(Pm1,m2,m3) = (m2 +m3) + e(Pm1−1,m2,m3).

Moreover, e(P0,m2,m3) = (m2 +m3) +
(
m2

2

)
+ (m2 − 1)(m3 + 1). Therefore,

e(Pm1,m2,m3) = (m1 + 1)(m2 +m3) +

(
m2

2

)
+ (m2 − 1)(m3 + 1).

If m2 = 2, we get a deficient poset if and only if m1m3 < 3. So we get a deficient
poset in the next cases: when m1 = 0 (or m3 = 0) we get poset CDm

2 (or its dual)
and when m1 = 1 and 1 ≤ m3 ≤ 2 (or m3 = 1 and 1 ≤ m1 ≤ 2) we get CD5 and CD6

(or CD∂
6 ). If m2 = 3, we get a deficient poset if and only if (m1 + 1)(m3 + 1) < 3.

So we get a deficient poset when m1 = 0 and m3 ≤ 1 (or m3 = 0 and m1 ≤ 1) and
we get posets CD7 and CD8 (or their duals). Finally, if m2 ≥ 4 we always get an
abundant poset, so the result holds.

Lemma 5.6. Let P be a chain-irreducible connected poset with w(P ) = 2, h2(P ) ≥ 3
and let x ∈ MIN (P ).
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(i) If P \ {x} is disconnected, then at least one of P or P \ {x} is abundant.

(ii) Let CD
3
:= {CD9, CD10, CD∂

10, CD11, CD12, CD∂
12}. If P /∈ CD

3
and P \{x} ∈

CD
3
, then P ∈ A.

Proof. (i) If P \ {x} ∈ A then we are done, so let us suppose that P \ {x} �∈ A.
Hence, by Theorem 5.1, P \ {x} ∈ CD1. On the other hand, as w(P \ {x}) ≤ 2, it
follows that the only possible cases are

P \ {x} ∈ {1 �m, 2 � 2, 2 � 3}.

Next, since h2(P ) ≥ 3, this implies that |P | ≥ 6 and i |P \ {x}| ≥ 5. Therefore,
P \ {x} � 2 � 2.

If P \{x} ∼= 1�m, then P should be isomorphic to the poset displayed in Case 1
of Figure 13 and thus h2(P ) = 2, a contradiction.

•

x

•
...

•

•

•

...

•
Case 1

•

•

x

•

•

•

Case 2

•

•

x

•

•

•

Case 3

•

•

•

•

x

•

Case 4

Figure 13: Different cases for P when P \ {x} ∈ {1 �m, 2 � 3}.

Finally, assume P \ {x} ∼= 2 � 3. Then P should be isomorphic to one of the
posets displayed in Cases 2, 3 and 4 of Figure 13. It is easy to check that Cases 2
and 3 are abundant with pairs (i(P ), e(P )) given by (14, 16), (15, 19), respectively.
For Case 4, h2(P ) = 2, a contradiction.

(ii) Let us consider each case. If P \{x} = CD9 = 2̄⊕ 2̄⊕ 2̄, then P ∼= (2�1)⊕ 2̄⊕ 2̄
which is abundant (i(P ), e(P )) = (12, 12). If P \ {x} = CD10 = 2̄ ⊕ N , then
P ∼= (2 � 1) ⊕ N which is also abundant (i(P ), e(P )) = (13, 15). If P \ {x} is
CD∂

10, CD11, CD12 or CD∂
12 then the different cases with P irreducible and w(P ) = 2

can be seen in the first, second, third and fourth rows of Figure 14, respectively. The
pairs (i(P ), e(P )) of each case are computed in Figure 14. We can observe that in
all the possibilities, P ∈ A.

Theorem 5.5 (Characterization of chain-irreducible connected abundant
posets with w(P ) = 2 and h2(P ) ≥ 3). Let P be a chain-irreducible connected
poset with w(P ) = 2 and h2(P ) ≥ 3. Then P ∈ A if and only if P, P ∂ /∈ CD3.
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• •

••

• •

x

(14, 18)

• •
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• •

x

(13, 16)

• •
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• •

x

(13, 14)

•

•

•

•

•

•x

(16, 22)

•

•

•

•

•

•x

(14, 17)

•

•

•

•

•

•x

(15, 21)

•

•

•

•

•

•
x

•

(16, 17)

•

•

•

•

•

•x

•

(18, 28)

•

•

•

•

•

•x

•

(16, 22)

•

•

•

•

•

•x

•

(17, 27)

•

•

•

•

•

•
•
x

(16, 16)

•

•

•

•

•

•
•x

(19, 35)

•

•

•

•

•

•
•x

(16, 23)

•

•

•

•

•

•
•x

(17, 30)

•

•

•

•

•

•
•x

(18, 34)

Figure 14: Different cases for P when P \ {x} ∈ CD
3
.
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Proof. Observe that P, P ∂ /∈ CD3 if and only if P /∈ CD
3
(as defined in Lemma 5.6).

We have already seen that CD
3 ⊆ D. Hence, let us see that any other P in the

conditions of the theorem is in A. We will prove this applying induction on |P |.
For |P | = 6, there are just eight posets (up to isomorphism) such that P is chain-

irreducible, connected, P /∈ CD
3
, w(P ) = 2 and h2(P ) ≥ 3 (see [18]). These posets

and their corresponding pairs (i(P ), e(P )) are shown in Figure 15. As it can be seen,
these eight posets are abundant.

• •

••

• •

(12, 12)

• •

••

• •

(13, 14)

• •

••

• •

(12, 12)

• •

••

• •

(14, 16)

• •

••

• •

(12, 13)

• •

••

• •

(13, 15)

• •

••

• •

(15, 19)

• •

••

• •

(14, 18)

Figure 15: Posets in induction base with |P | = 6 and their corresponding pairs
(i(P ), e(P )).

Now let P be a chain-irreducible, connected poset such that w(P ) = 2, h2(P ) ≥ 3,

P �∈ CD
3
, |P | > 6, and assume the result holds until |P | − 1.

Let us first consider the case in which there exists x ∈ MIN (P ) such that P \{x}
is not connected. By Lemma 5.6 (i), this implies that P ∈ A or P \ {x} ∈ A. If
P ∈ A, then we are done.

Otherwise, P \ {x} ∈ A. Note that as P is chain-irreducible, there exists y ∈
MIN (P ) such that y �= x and e(P \ {x, y}) ≥ 2. Otherwise, P \ {x, y} would
be a chain and this would imply that either P ∼= (k1 � 1) ⊕ k2 with k2 ≥ 1 or
P ∼= (((k1�1)⊕k2)�1)⊕k3 with k3 ≥ 1, a contradiction since P is chain-irreducible.
Hence, we can apply Lemma 5.4 and conclude that P ∈ A.

Thus, we can assume that ∀x ∈ MIN (P ), P \{x} is connected. If P \{x} ∈ CD
3
,

we can apply Lemma 5.6 (ii) to conclude that P ∈ A. Hence we can also assume

that P \ {x} �∈ CD
3
.

Note that as P is chain-irreducible and w(P ) = 2, this implies that w(P\{x}) = 2.
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Otherwise, if w(P \ {x}) = 1, this would imply that P \ {x} is a chain and thus

P = (k1 � x)⊕ k2, k2 ≥ 1,

a contradiction to the fact that P is chain-irreducible.

In addition, we can assume that P = Pk ⊕
k︷ ︸︸ ︷

2̄⊕ · · · ⊕ 2̄ where Pk � 2̄ ⊕ P ′
k.

If P = 2̄ ⊕ P1 we can take Q = P1 ⊕ 2̄ ∈ [P ]. Now, if P1
∼= 2̄ ⊕ P2 we can take

Q = P2⊕2̄⊕2̄ ∈ [P ]. If we repeat this reasoning we have two choices: P =

k︷ ︸︸ ︷
2̄⊕ · · · ⊕ 2̄

which is abundant since k ≥ 4, or Q = Pk ⊕
k︷ ︸︸ ︷

2̄⊕ · · · ⊕ 2̄ ∈ [P ] where Pk � 2̄⊕ P ′
k.

With the last considerations in mind, we have to now consider two different cases:

Case 1: h2(P ) ≥ 4.

In this case, let us start by showing that there exists x ∈ MIN (P ) (or x ∈ MIN (Q)
where Q ∈ [P ]) such that P \ {x} is chain-irreducible and h1(P \ {x}) ≤ h1(P ).

First, note that without loss of generality, the Hasse diagram of P is given as in
Figure 16.

•
...

•

x+
0

...

•

•
...

x−
0

•
x0

...

•
D

B

C

A

Figure 16: Hasse diagram for P (or P ∂) in Cases 1 and 2 of Theorem 5.5.

Consider a partition (C∗
1 , C

∗
2) of P into two chains such that |C∗

1 | = h1(P ), |C∗
2 | =

h2(P ). As P is connected, there exist a ∈ C∗
1 , b ∈ C∗

2 such that either a� b or b� a.
Let us consider (a, b) minimal in the sense that there does not exist a different pair
a′ ∈ C∗

1 , b
′ ∈ C∗

2 satisfying a′ � b′ or b′ � a′ and such that a′ � a, b′ � b.

Given such (a, b), this allows the decomposition of P into several parts (namely
A,B,C andD) as shown in Figure 16. In this figure, let us denote by x0 := min{a, b}.
If x0 ∈ C∗

i , let us denote by x−
0 the element in C∗

i covering x0. Element x−
0 always

exists. Otherwise, B = ∅, A �= ∅ (a ∈ A or b ∈ A) and hence P = P1 ⊕ A, and
P would be chain-reducible. Finally, note that |C| ≥ 1 (otherwise |C| = 0 and
P = D ⊕ P1, so that P would be chain-reducible). Hence, we denote by x+

0 the
maximum of chain C.
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By construction, an element in D is not related to an element in C. Note however
that more relations between some other different parts of P are possible. This is
depicted in Figure 16 as dashed lines.

Now consider a minimal element x in P . Note that w(P \ {x}) = 2. Obviously,
x ∈ C, x ∈ D or x = x0 (if |D| = 0).

Suppose |C| > 1 and x ∈ C. Consider a partition (C∗′
1 , C

∗′
2 ) of P \ {x} such

that |C∗′
1 | = h1(P \ {x}). If x+

0 ∈ C∗′
i , then C∗′

i ∪ {x} is a chain in P . Hence, by
Lemma 5.3, h1(P \ {x}) ≤ h1(P ). It remains to see that P \ {x} is chain-irreducible,
but this holds because the elements of C are not related to x0.

Suppose D �= ∅ and x ∈ D. Consider a partition (C∗′
1 , C

∗′
2 ) of P \ {x} such that

|C∗′
1 | = h1(P \ {x}). If x0 ∈ C∗′

i , then C∗′
i ∪ {x} is a chain in P . Hence, again

by Lemma 5.3, h1(P \ {x}) ≤ h1(P ). It remains to be checked that P \ {x} is
chain-irreducible, but this holds because the elements of D are not related to x+

0 .

Finally, let us suppose C = {x+
0 } and D = ∅. Take x = x0. Consider a partition

(C∗′
1 , C

∗′
2 ) of P \{x} such that |C∗′

1 | = h1(P \{x}) and suppose x−
0 ∈ C∗′

i . If x
+
0 � x−

0

then P = 2̄⊕ P1 with P1 some poset, a contradiction. Thus x+
0 � x−

0 and C∗′
i ∪ {x}

is a chain in P . Hence, again by Lemma 5.3, h1(P \ {x}) ≤ h1(P ). Moreover, as
x−
0 ‖ x+

0 , then P \ {x} is chain-irreducible.

Therefore we know that there exists x ∈ MIN (P ) (or x ∈ MIN (Q) where
Q ∈ [P ]) such that P \ {x} is chain-irreducible and h1(P \ {x}) ≤ h1(P ). Observe
that

h2(P \ {x}) = |P | − 1− h1(P \ {x}) ≥ |P | − 1− h1(P ) = h2(P )− 1 ≥ 3.

Therefore, we can use induction to get P \ {x} ∈ A.

Finally, we have already seen that there exists y ∈ MIN (P ), y �= x, such that
e(P \ {x, y}) ≥ 2. Hence we can apply Lemma 5.4 and conclude that P ∈ A.

Case 2: h2(P ) = 3.

As in the previous case, the possibilities for P are given in Figure 16. Moreover, we
can decompose P into two chains (C∗

1 , C
∗
2) such that |C∗

1 | = h1(P ), |C∗
2 | = h2(P ) = 3

and we assume (taking duals Q = P ∂ ∈ [P ] and relabeling parts if necessary) that
C∗

2 is the chain (D, x0, B). Let us take x ∈ MIN (P ). Then x ∈ C, x ∈ D or x = x0

(if D = ∅).
Suppose |C| > 1 and let us choose x ∈ C. Then, as in the case for h2(P ) > 3,

consider a partition (C∗′
1 , C

∗′
2 ) of P \ {x} such that |C∗′

1 | = h1(P \ {x}). Now,
x+
0 ∈ C∗′

1 , then C∗′
1 ∪{x} is a chain in P . Hence, by Lemma 5.3, h1(P \{x}) ≤ h1(P ).

Moreover, since the chain containing x is C∗′
1 , we obtain h1(P \{x})+1 ≤ h1(P ) (see

the proof of Lemma 5.3). Note that the left chain (C \ {x}, A) in P \ {x} has length
|C| − 1+ |A| ≥ 3 (as |P | > 6) and is longer than or equal to the right one (with just
three elements). Thus h1(P \ {x}) ≥ h1(P )− 1. Therefore h1(P \ {x}) = h1(P )− 1
and h2(P \ {x}) = h2(P ) = 3.

Besides, P \ {x} is chain-irreducible because the chain C is not related to x0.
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Therefore P \ {x} ∈ A by the induction hypothesis, and we have already seen
that there exists y ∈ MIN (P ), y �= x, such that e(P \ {x, y}) ≥ 2. Hencex, we can
apply Lemmar 5.4 and conclude that P ∈ Axp.

Consider now the case |C| = 1. Since P is chain-irreducible and h2(P ) = 3, the
length of D is bounded, |D| ≤ 1. Suppose |D| = 1. In this case, there are just
two possibilities for P that are depicted in the first row of Figure 17. In these cases
m ≥ 2 because |C∗

1 | ≥ 4. Moreover, m ≥ 3, because for m = 2 these posets are
CD12 and CD∂

6 , respectively. Now, for the first possibility, we get i(P ) = 2m+10 ≤
3m+7 = e(P ), so it is abundant. For the second possibility we get i(P ) = 2m+9 ≤
3m+ 6 = e(P ) so it is again abundant.

Now consider the last case where |C| = 1 and |D| = 0. Here we can take
Q = P ∂ ∈ [P ] to choose x ∈ MAX (C∗

1). It holds that h2(P \ {x}) = 3. By
induction, if P \ {x} is chain-irreducible, then P \ {x} ∈ A and there exists y �= x
such that e(P \ {x, y}) ≥ 2, and we can use Lemma 5.4 to get P ∈ A. So we only
have to consider the cases where P \ {x} is not chain-irreducible for x being the
maximum of the longest chain in P . As h1(P ) ≥ 4, there are only three cases (see
Figure 17, second row). These three families of posets are abundant. In the first
case, i(P ) = 2m + 14 ≤ 4m + 16 = e(P ). For the second case, i(P ) = 2m + 13 ≤
4m + 14 = e(P ), and finally for the third case, i(P ) = 2m+ 12 ≤ 4m+ 12 = e(P ).
So the result holds.

• •

x0•

•
...

•

•

m

• •

x0•

•
...

•

•

m

•

•

x0•

•
...

•
•

• •

m

•

•

x0•

•
...

•
•

• •

m

•

•

x0•

•
...

•
•

• •

m

Figure 17: Possible families of posets P with |C| = 1 in Case 2.
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The authors want to thank M.C. López-Dı́az for very interesting comments about
the paper.

References

[1] J.A. Barmak, Algebraic Topology of Finite Topological Spaces and Applications,
Springer, 2010.

[2] G. Brightwell and P. Winkler, Counting linear extensions, Order 8 (1991),
225–242.
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