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The minimal volume of a lattice polytope
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Abstract

Let P C RY be a lattice polytope of dimension d. Let b denote the
number of lattice points belonging to the boundary of P and ¢ those
in the interior of P. It follows from a lower bound theorem of Ehrhart
polynomials that, when ¢ > 0, the volume of P is bigger than or equal
to (dc+ (d —1)b— d*> +2)/d!. In the present paper, via triangulations, a
short and elementary proof of the minimal volume formula is given.

1 Introduction

Let P C R? be a lattice polytope of dimension d. In other words, P is a convex
polytope of dimension d each of whose vertices belongs to Z4¢. A lattice point of R? is
a point belonging to Z<¢. Let b = b(P) denote the number of lattice points belonging
to the boundary 0P of P and ¢ = ¢(P) those in the interior of P. It follows from
the lower bound theorem of Ehrhart polynomials [2] that, when ¢ > 0,

vol(P) > (d- c¢(P) + (d — 1) - b(P) — d* +2)/d!, (1)

where vol(P) is the (Lebesgue) volume of P. However, the argument in [2] is rather
complicated with deep techniques on polytopes. In the present paper a short and
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elementary proof of the minimal volume formula (1) will be given. Pick’s formula
guarantees that, when d = 2, the inequality (1) is an equality [6].

A lattice polytope P C R? of dimension d is called Castelnuovo [4] if the equality
holds in (1). A few remarks on Castelnuovo polytopes will be also stated.

2 Minimal volume formula

In general, let P C R? be a convex polytope of dimension d and V C P a finite set
to which each of the vertices of P belongs. A triangulation of P on V is a collection
" of d-simplices (simplices of dimension d) for which

each vertex of each d-simplex F' € I' belongs to V;

if Fel'and G € T', then F NG is a face of F' and of G;
P =Uper F-

The existence of a triangulation of P on V' is guaranteed by [5, Lemma 1.1]. Thus
in particular, if P is a lattice polytope, then a triangulation of P on P N Z?¢ exists.

[ J
e cach x € V is a vertex of a d-simplex I’ € T';
[
[

Lemma 2.1 Let P C R? be a convez polytope of dimension d and V C P a finite
set to which each of the vertices of P belongs. Let b(P) = |V N OP|, where OP is
the boundary of P, and ¢(P) = |V N (P \ OP)|, where P\ OP is the interior of P.
Suppose that ¢(P) > 0. Then there exists a triangulation U'p of P on V with

ITp| >d-c(P)+ (d—1)-b(P) —d*+2.

Proof. We construct the required triangulation I'» by induction on d. Let d > 3.
Let I" be a triangulation of P on V. Let A denote the set of those FNIP with ' € T’
for which FNOP is a (d — 1)-simplex. Fix Gy € A. Remove Gy \ 90G, from 9P, and
one can assume that P’ = 9P\ (Go\dGy) is a simplex in R~ of dimension d—1 via a
one-point compactification. Furthermore, the number of points in V' belonging to the
boundary of P’ is b(P’) = d and that to the interior of P’ is ¢(P’) = b(P) — d. Since
b(P) > d, it follows that ¢(P’) > 0. The induction hypothesis yields a triangulation
A" of P on P’ NV for which

A} > (d—=1)- (b(P) —d) +(d—2)-d— (d = 1)* + 2.
Let I'® = A’ U {Go}. Then 0P = Jgero G-
Let x4, ..., x. denote the points in V' belonging to the interior of P. Now, set
'Y = {conv(GU{z1}) : G € 7O},

where conv(G U{z,}) is the convex hull of GU{z;} in R?, and T'") is a triangulation
of Pon VM = (P NV) U {x,}. Since [[MV| = [IFO| = |A’| + 1, it follows that
T > (d=1)-(b(P)—d)+(d—2)-d—(d—1)*+3
= d+(d—1)-b(P)—d*+2.
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Let ¢ > 2 and 2o € F with F € T®. Let F, be the smallest face of F with
o9 € Fy. Then x5 belongs to the interior of Fy. Let e = dim Fy and yg, y1, - . ., Y. the
vertices of F. Thus 1 < e < d. Let {Gy,...,G,} denote the set of those G € r®
for which Fj is a face of G and, for each 1 <17 < ¢, write W, for the set of vertices
of GG;. It follows that, for each 1 <7 < ¢ and for each 0 < j < e,

G = conv((W; \ {y;}) U {2})

is a d-simplex. Now, it then turns out that

r<2>=<r<”\{ah...,Gq}>U( U {GE”})

x4, V) >

is a triangulation of P on V® = (9P NV )U{x1,z,}. Since Fy ¢ P, one can regard

U conv({Wi\ {vo,---,%e}})

as a boundary of a convex polytope of dimension d — e. In particular ¢ > d — e + 1.
Hence

@l > d+(d—1)-bP)—d*+2+ (d—e+ 1)e
> 2-d+(d—1)-b(P) —d* +2.

Continuing the procedure yields a triangulation I'®) of P on
VO =0PNV)U{zy,..., 2.}

with
T >d-c(P)+ (d—1)-b(P) —d* + 2,

as desired. O

Example 2.2  The picture drawn below demonstrates the procedure of construct-
ing the triangulation I'p in the proof of Lemma 2.1. Let P = ABCDE denote the
pyramid over the quadrangle BOCDE. Let V = {A, B,C,D, E,y;, 21, x5} where y
belongs to the boundary of P and where each of x; and x5 belongs to the interior of
P. Combining y; with each of B, C, D, E yields the triangulation I'® of the bound-
ary OP of P. Combining x; € P \ 0P with each of A, B,C, D, E and y; yields the
triangulation '™ of P on V) = {A, B,C, D, E,y;,2,}. Let x5 belong to the interior
of the triangle Fy with the vertices 1 = o, y1, D = y». Combining x5 with each of
Yo, Y1, Y2 yields the triangulation of Fy on {z2, v, y1,92}. Finally, combining x5 with
cach of C and F yields the triangulation I'® of P on V.
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We now come to the minimal volume formula (1).

Theorem 2.3 Let P C R? be a lattice polytope of dimension d. Let b(P) denote the
number of lattice points belonging to the boundary OP of P and c¢(P) that number in
the interior of P. Suppose that ¢(P) > 0. Then one has

vol(P) > (d - ¢(P) + (d — 1) - b(P) — d* + 2)/d!, (2)

where vol(P) is the (Lebesque) volume of P.

Proof. Lemma 2.1 guarantees the existence of a triangulation I'p of P on P N Z4
with

Tp| >d-c(P)+(d—1)-b(P) —d*+2. (3)

Since the volume of a lattice d-simplex of R? is a multiple of 1/d!, the minimal volume
formula (2) follows from the inequality (3). O

3 Castelnuovo polytopes

As before, let P C R be a lattice polytope of dimension d. Following [4], we say
that P is Castelnuovo if P satisfies the equality of (1). When P is Castelnuovo and
when V' = P N Z4, the triangulation I'p constructed in the proof of Lemma 2.1 is
unimodular. (Recall that a triangulation I'p on P NZ? of a lattice polytope P C R?
of dimension d is called unimodular if the volume of each of the d-simplices of R?
belonging to I'p is 1/d!.) Furthermore, the triangulation I'p constructed in the proof
of Lemma 2.1 is reqular. We refer the reader to [1] for fundamental materials on
regular triangulations. It then follows that every Castelnuovo polytope possesses a
regular unimodular triangulation.
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It is reasonable to find all possible sequences (d,b,c) of integers with d > 3,
b>d+1, c>1 for which there exists a Castelnuovo polytope P C R of dimension
d with b = b(P) and ¢ = ¢(P).

It follows from [3] that, given integers d and ¢ with d > 3 and ¢ > 1, there exists

a Castelnuovo polytope (in fact, simplex) P C R? of dimension d with b(P) = d + 1
and ¢ = ¢(P).
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