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Abstract

Let A be an abelian group. An A-vertex magic labeling of a graph G is a
mapping from the vertex set of G to the set of all non-identity elements
of A if there exists μ in A such that for any vertex v of G, the sum of
labels of all the neighbors of v is μ. A graph G is A-vertex magic if G
admits such a labeling. Moreover, if G is A-vertex magic for any abelian
group A, then G is group vertex magic. In this article, we characterize
A-vertex magic trees of diameter at most 5 for any finite abelian group
A. We prove that A-vertex magic graphs do not possess any forbidden
structures, and finally we give certain techniques to construct larger A-
vertex magic graphs from the existing ones.

1 Introduction

By a graph G = (V,E) we mean a finite undirected graph without loops or multiple
edges. The order of the vertex set |V | and the size of the edge set |E| of G are denoted
by n and m respectively. For graph theoretic terminology, we refer to Chartrand and
Lesniak [1].

For any vertex v of G, the set N(v) = {u ∈ V : uv ∈ E} is called the open
neighborhood of v, and |N(v)| = d(v) is the degree of v. A vertex v with d(v) = 1 is
a pendant vertex and the unique vertex adjacent to v is a support vertex. If a vertex
v is adjacent to two or more pendant vertices, then v is a strong support vertex. Also,
a vertex v is a weak support vertex if there is a unique pendant vertex adjacent to v.
The distance d(u, v) between two vertices u and v is the length of a shortest u − v
path in G. The diameter of G is defined by diam(G) = max{d(u, v) : u, v ∈ V }. The
eccentricity of a vertex v is the distance from v to the vertex which is farthest from
v. The center C(G) of a graph G is the set of vertices with minimum eccentricity.
For a tree T ,

C(T ) =

{
{vc} if diam(T ) is even

{vc1 , vc2} if diam(T ) is odd.

Also, if |C(T )| = 2, then the two central vertices vc1 and vc2 are adjacent in T . A
bi-star Br,s is a tree with the vertex set {u, v, ui, vj : 1 ≤ i ≤ r, 1 ≤ j ≤ s} and the
edge set {uv, uui, vvj : 1 ≤ i ≤ r, 1 ≤ j ≤ s}. Note that Br,s has two strong support
vertices u and v, when r ≥ 2, s ≥ 2. Let G and H be two graphs of orders m and n,
respectively. The corona product G � H is the graph obtained by taking one copy
of G and m copies of H and joining each vertex from the ith copy of H with the ith
vertex of G by an edge.

Throughout this article, A denotes an additive abelian group with identity zero,
and |A| denotes the order of the group A. The order of an element g of A is denoted
by o(g).

For a finite abelian group A, we write e(A) = k if k is the least positive integer
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such that kg = g + · · ·+ g︸ ︷︷ ︸
k times

= 0, for all g �= 0. For group theoretic terminology, we

refer to Herstein [2].

A magic square is an n× n array with the elements 1, 2, . . . , n2, each appearing
exactly once such that the elements in any row or column or main diagonal or main
back diagonal add up to the same sum. Various authors introduced labelings that
generalize the idea of magic squares. For an excellent treatment of various types of
magic labeling, the reader can refer to the book by Wallis and Marr [8]. Lee et al. [5]
introduced, and authors like Lee et al. [4], Low and Lee [6, 7], and Shiu and Low [10],
studied the concept of group-magic graphs.

Definition 1.1. Let A be an abelian group. A graph G = (V,E) is said to be
A-magic if there exists a labeling � : E → A − {0} such that the induced vertex
labeling �+ : V → A defined by �+(v) =

∑
uv∈E �(uv) is a constant map.

Kamatchi et al. [3] introduced the concept of group vertex magic graphs.

Definition 1.2. A mapping � : V → A−{0} is said to be anA-vertex magic labeling
of G if there exists an element μ of A such that w(v) =

∑
u∈N(v) �(u) = μ, for any

vertex v of G. A graph G that admits such a labeling is called an A-vertex magic
graph and the corresponding μ is said to be a magic constant. If G is an A-vertex
magic graph for every non-trivial abelian group A, then G is called a group vertex
magic graph.

Kamatchi et al. [3] and Sabeel et al. [9] together obtained a characterization of
all A-vertex magic trees of diameter up to 4 for A = Z2 × Z2. In this article we
characterize group vertex magic trees of diameter up to 5. We also give certain
techniques to construct infinitely many families of group vertex magic graphs.

Observation 1.3. [3] If P4 = (u1, u2, u3, u4) is a path in G such that d(u1) = 1 and
d(u3) = 2, then G is not A-vertex magic for any abelian group A. In fact, if � is an
A-vertex magic labeling of G, then �(u2) = w(u1) = �(u2) + �(u4) = w(u3). Hence
�(u4) = 0, which is a contradiction.

2 Main results

We know that a graph G is Z2-vertex magic if and only if the degrees of all vertices
of G are of the same parity. Therefore, we assume that A is a finite abelian group
with at least 3 elements.

Lemma 2.1. Let A be a finite abelian group with |A| ≥ 3 and let g ∈ A. Then, for
each n ≥ 2, there exist a1, a2, . . . , an in A− {0} such that g = a1 + a2 + · · ·+ an.

Proof. The proof is by induction on n. Since g = a1+(g−a1), for any a1 ∈ A−{0, g},
the result is true for n = 2. Now suppose there exist a1, a2, . . . , ak ∈ A − {0} such
that g = a1+a2+ · · ·+ak, where 2 ≤ n ≤ k. Then g = a1+a2+ · · ·+a′k+ak+1, where
ak+1 = ak − a′k and a′k ∈ A− {0, ak}. Hence by induction the proof is complete.
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The next theorem gives a sufficient condition for a graph G to be an A-vertex
magic graph.

Theorem 2.2. Let A be a finite abelian group with |A| ≥ 3. If G is a graph in which
every non-pendant vertex is a strong support vertex, then G is A-vertex magic.

Proof. Let v be a vertex of G with d(v) ≥ 2. Let k(v) denote the number of pen-
dant neighbors of v in G. Let g ∈ A − {0}. Then by Lemma 2.1, there exist
a1(v), a2(v), . . . , ak(v)(v) ∈ A− {0} such that(

1− d(v) + k(v)
)
g = a1(v) + a2(v) + · · ·+ ak(v)(v).

Now consider � : V → A given by �(v) = g if d(v) ≥ 2 and �(ui) = ai(v), where
ui is a pendant neighbor of v, 1 ≤ i ≤ k(v).

Clearly, � is an A-vertex magic labeling of G with magic constant g.

Corollary 2.3. Any graph G is an induced subgraph of an A-vertex magic graph H.

Proof. Take H = G�K2, where G�K2 is the corona of G with K2.

Corollary 2.4. For any finite abelian group A with |A| ≥ 3, all trees of diameter 2
are A-vertex magic.

Proof. If T is a tree of diameter 2, then T = K1,n for some n ≥ 2. Clearly, K1,n

has a unique non-pendant vertex, which is a strong support vertex. Hence the result
follows from Theorem 2.2.

Let T be a tree with diameter 3. Then T is isomorphic to a bi-star Br,s.

Corollary 2.5. Let T be a tree of diameter 3. Then T is A-vertex magic if and only
if T = Br,s, where r ≥ 2 and s ≥ 2.

Proof. If r = 1 or s = 1, then it follows from Observation 1.3 that T is not A-vertex
magic. If r ≥ 2 and s ≥ 2, then it follows from Theorem 2.2 that T is A-vertex
magic.

The following theorems provide a characterization for A-magicness of trees of
diameter 4, where A is any finite abelian group.

Theorem 2.6. Let A be a finite abelian group with |A| ≥ 3 and let T be a tree of
diameter 4 with the central vertex vc. Then T is A-vertex magic if and only if T
satisfies one of the following conditions:

(i) Any non-pendant vertex of T is a strong support vertex.

(ii) vc is a weak support vertex, d(vc) �≡ 2 (mod e(A)), and all other non-pendant
vertices are strong support vertices.

(iii) vc is not a support vertex and gcd(d(vc)− 1, |A|) �= 1.
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Proof. Let T be an A-vertex magic tree with a labeling � and magic constant g.
Let P5 = (x1, y1, vc, y2, x2) be a diametral path in T . Since T is of diameter 4, all
other neighbors of y1 and y2 except vc are pendant vertices. Here the subtree T1 of
T induced by the set of all non-pendant vertices of T is a star with vc as its central
vertex.

�
�
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�
�
�
�
�
��

�

� � � �

� � � � � � � � � � � � � � � �

� � ��

vc

y1 y2 y3 yn

Figure 1: A typical tree of diameter 4

Let V (T1) = {vc, y1, y2, · · · , yn}. All vertices of V (T )−V (T1) are pendant vertices.
There are three cases.

Case 1: vc is a strong support vertex.
Clearly �(v) = g for all v ∈ V (T1) and some g ∈ A − {0}. If yi is a weak support
vertex with pendant neighbor xi, then g = w(yi) = �(vc) + �(xi) = g + �(xi), which
is a contradiction. Hence all yi are strong support vertices and T satisfies (i).

Case 2: vc is a weak support vertex.
Proceeding as in case 1, we find that yi is a strong vertex. Now g = w(vc) = (d(vc)−
1)g+�(z), where z is the unique pendant neighbor of vc. Hence �(z) = (2−d(vc))g �= 0
and therefore d(vc) �≡ 2 (mod e(A)). Thus T satisfies (ii).

Case 3: vc is not a support vertex.
In this case, g = w(vc) = d(vc)g. Then (d(vc) − 1)g = 0. Therefore d(vc) − 1 ≡ 0
(mod o(g)). Also, |A| ≡ 0 (mod o(g)) implies gcd(d(vc) − 1, |A|) ≡ 0 (mod o(g)).
Now g �= 0 implies o(g) �= 1. Hence gcd(d(vc)−1, |A|) �= 1. Therefore T satisfies (iii).

Conversely, let T satisfy (i), (ii) or (iii). If T satisfies (i), it follows from The-
orem 2.2 that T is A-vertex magic. Suppose T satisfies (ii). For any non-pendant
vertex yi �= vc, let ri denote the number of pendant vertices adjacent to yi. Since
ri ≥ 2, we can choose ri elements in A − {0} such that their sum is zero. Label
the pendant neighbors of yi with these ri elements. Now choose an element g ∈ A
such that o(g) = e(A). Assign label g to all the non-pendant vertices and the label
(2 − d(vc))g for the unique pendant neighbor z of vc. Since d(vc) �≡ 2 (mod e(A)),
it follows that (2 − d(vc))g �= 0. Now w(vc) = (d(vc) − 1)g + (2 − d(vc))g = g and
w(v) = g for all the vertices v of T . Thus T is A-vertex magic.
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Assume that T satisfies (iii). Let gcd(d(vc) − 1, |A|) = m > 1 and p be a prime
divisor of m. By Cauchy’s theorem, A has an element g of order p. Hence o(g)
divides d(vc) − 1 and d(vc)g = g. Assign g as label to all the non-pendant vertices
yi �= vc, assign an element g′ ∈ A−{0, g} to vc and label the pendant neighbors of yi
such that that their label sum is g − g′. This completes an A-vertex magic labeling
of T . Thus T is an A-vertex magic graph.

Thus we have characterized all A-vertex magic trees of diameter 4 for any fi-
nite abelian group A. Now we proceed to characterize all A-vertex magic trees of
diameter 5.

Theorem 2.7. Let A be a finite abelian group with |A| ≥ 3 and let T be a tree of
diameter 5 such that neither of the central vertices vc1 and vc2 are support vertices.
Then T is A-vertex magic if and only if the following conditions are satisfied:

(i) d(vci) �≡ 2 (mod e(A)).

(ii) If there exists a weak support vertex u such that vci �∈ N(u), then d(vci) �≡ 1
(mod e(A)).

Proof. Suppose T is A-vertex magic with a labeling � and magic constant g. Clearly
g �= 0 and �(v) = g for all the support vertices v. Then g = w(vc1) = (d(vc1)− 1)g +
�(vc2). Hence �(vc2) = (2−d(vc1))g. Since �(vc2) �= 0, o(g) does not divide d(vc1)−2.
On the other hand o(g) divides e(A) and hence d(vc1) �≡ 2 (mod e(A)). Similarly
d(vc2) �≡ 2 (mod e(A)). Therefore T satisfies (i).

vc1 vc2

. . . . . .

... ... ... .........

Figure 2: A typical tree of diameter 5 with neither vc1 nor vc2 supports

Suppose u is weak support vertex adjacent to vc1 . Let N(u) = {y, vc1}. Now
g = w(vc2) = (d(vc2) − 1)g + �(vc1). Also g = w(u) = �(vc1) + �(y), and hence
(d(vc2) − 1)g = �(y). Since �(y) �= 0, we have d(vc2) �≡ 1 (mod e(A)). Therefore T
satisfies (ii).

Conversely, suppose T satisfies (i) and (ii). Choose g ∈ A such that o(g) = e(A).
Let g′ = (d(vc1) − 1)g and g′′ = (d(vc2) − 1)g. Since d(vci) �≡ 2 (mod e(A)), g − g′

and g − g′′ are non-zero. Now define �(vc1) = g − g′′, �(vc2) = g − g′, and �(v) = g
for any support vertex v. If u is a support vertex adjacent to vc1 , label the pendant
neighbors of u in such a way that their label sum is g′′. If u is a support vertex
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adjacent to vc2 , label the pendant neighbors of u in such a way that their label sum
is g′. Clearly � is an A-vertex magic labeling of T with magic the constant g.

Theorem 2.8. Let A be any finite abelian group with |A| ≥ 3 and let T be a tree of
diameter 5 such that both its central vertices vc1 and vc2 are support vertices. Then
T is A-vertex magic if and only if T satisfies the following conditions:

(i) T has no vertex of degree 2.

(ii) If vci is a weak support vertex, then d(vci) �≡ 2 (mod e(A)).

vc1 vc2

... ...

. . . . . .

... ... ... .........

Figure 3: A typical tree of diameter 5 with both vc1 and vc2 supports

Proof. Suppose T is A-vertex magic with a labeling � and a magic constant g. Since
vc1 and vc2 are support vertices, �(vc1) = g = �(vc2), and both vc1 and vc2 have
degrees more than 2. Suppose T has a vertex u with d(u) = 2. Then N(u) = {vci, y}
for some i and a pendant vertex y. Now g = w(u) = �(vci) + �(y) = g + �(y), and
so �(y) = 0, which is a contradiction. Hence T has no vertex of degree 2. Thus T
satisfies (i).

Suppose vc1 is a weak support vertex with the unique pendant neighbor z. Then
g = w(vc1) = (d(vc1)− 1)g + �(z). Hence (2− d(vc1))g = �(z) �= 0, and so d(vc1) �≡ 2
(mod e(A)). Therefore T satisfies (ii).

Conversely, suppose T satisfies (i) and (ii). Choose g ∈ A such that o(g) = e(A).
Let ri denote the number of pendant neighbors adjacent to vci and g′ = (d(vc1)−r1)g
and g′′ = (d(vc2)− r2)g. Label all the support vertices of T by g. Label the pendant
neighbors of vc1 such that their label sum is g − g′. Similarly label the pendant
neighbors of vc2 such that their label sum is g− g′′. If u is a support vertex adjacent
to vci, then label all the pendant neighbors of u such that their label sum is 0.

Theorem 2.9. Let A be a finite abelian group such that |A| ≥ 4 and let T be a tree
of diameter 5 such that vc1 is a support vertex and the other central vertex vc2 is not
a support vertex. Then T is A-vertex magic if and only if T satisfies the following
conditions:

(i) gcd(d(vc2)− 1, |A|) �= 1;

(ii) vc1 is not adjacent to a weak support vertex.
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vc1 vc2

...

. . . . . .

... ... ... .........

Figure 4: A typical tree of diameter 5 with vc1 a support and vc2 not a support

Proof. Suppose T is A-vertex magic with a labeling � and magic constant g. Any
vertex v �= vc2 with d(v) ≥ 2 is a support vertex and hence �(v) = g.

If vc1 is adjacent to a weak support vertex u and if y is the pendant vertex
adjacent to u, then g = w(u) = �(y) + �(vc1) = �(y) + g. Hence �(y) = 0, which is a
contradiction. Thus T satisfies (ii).

Now g = w(vc2) = d(vc2)g and so (d(vc2) − 1)g = 0. Therefore o(g) divides
d(vc2) − 1. Also o(g) divides |A| and hence o(g) divides gcd(d(vc2) − 1, |A|). Since
g �= 0, o(g) �= 1, and hence gcd(d(vc2)− 1, |A|) �= 1. Thus T satisfies (i).

Conversely, suppose T satisfies (i) and (ii). There are two cases.

Case 1. Suppose that |A| ≥ 5.
Let gcd(d(vc) − 1, |A|) = m and let p be a prime divisor of m. By using Cauchy’s
theorem, A has an element g of order p. Let �(v) = g for each support vertex v.
Let r be the number of pendants adjacent to vc1 and g′ = (d(vc1)− r)g and choose
h ∈ A − {0, g, g′}. If vc1 is a weak support vertex with pendant neighbor z, and
if 2g − (h + g′) = 0, then choose an h′ ∈ A − {0, g, g′, h}, which is possible since
|A| ≥ 5. Define �(vc2) = h′ and �(z) = 2g − (g′ + h′). Otherwise, label �(vc2) = h
and label the r pendant neighbors of vc1 such that their label sum is 2g − (h + g′).
Then w(vc1) = g = w(vc2).

Now, if u is a support vertex adjacent to vc1, then label pendant neighbors of u
such that their label sum is 0. If v is a support vertex adjacent to vc2 then label the
pendant neighbors of v such that their label sum is g−�(vc2). This gives an A-vertex
magic labeling of T .

Case 2. Suppose that |A| = 4.
Then A = Z4 or A = Z2 ×Z2. Suppose A = Z4 = {0, 1, 2, 3}. Define �(v) = 1 for all
support vertices. Let k ≡ (d(vc1)−r−1) (mod 4), where r is the number of pendant
neighbors of vc1 .

If r = 1 and k = 3, then define �(vc2) = 3 = �(z), where z is the unique pendant
vertex adjacent to vc1 . Otherwise, define �(vc2) = 2 and label pendant vertices of vc1
such that their label sum is −(k + 1).
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Now, if u is a support vertex adjacent to vc1, then label pendant neighbors of u
such that their label sum is 0. If v is a support vertex adjacent to vc2 then label the
pendant neighbors of v such that their label sum is 1− �(vc2). Hence T is Z4-vertex
magic.

If A = Z2 × Z2, then define �(v) = (1, 1), for all support vertices and �(vc2) =
(1, 0). Label all the pendant neighbors of vc1 in such a way that their label sum
is (0, 1) or (1, 0) respectively, accordingly as the number of non-pendant neighbors
of vc1 is odd or even. Hence w(vc1) = w(vc2) = (1, 1). The remaining pendant
vertices can be labeled such that w(v) = (1, 1), for each support vertex v. Hence T
is A-vertex magic.

Theorem 2.10. Let T be a tree of diameter 5 such that vc1 is a support vertex and
the other central vertex vc2 is not a support vertex. Then T is Z3-vertex magic if and
only if T satisfies the following conditions:

(i) d(vc2) ≡ 1 (mod 3).

(ii) vc1 is not adjacent to a weak support vertex.

(iii) If vc1 is a weak support vertex and d(vc1) ≡ 1 (mod 3), then vc2 is not adjacent
to a weak support vertex other than vc1.

Proof. Suppose T is Z3-vertex magic with a labeling � and magic constant g �= 0.
Since w(vc2) = d(vc2)g = g and o(g) = 3, we have d(vc2) ≡ 1 (mod 3).

The proof for T satisfying (ii) is analogous to the proof of Theorem 2.9.

Suppose z is the unique pendant neighbor of vc1 and d(vc1) ≡ 1 (mod 3). Then
g = w(vc1) = 2g + �(vc2) + �(z). Since �(vc2), �(z) �= 0, �(vc2) = �(z) = g. Since
�(vc2) = g, the vertex vc2 cannot be adjacent to a weak support vertex other than
vc1 . Hence T satisfies (iii).

Conversely, suppose T satisfies (i), (ii) and (iii). Define a labeling � such that
�(v) = 1 for any support vertex v. If x is a support vertex adjacent to vc1, label the
pendant neighbors of x in such a way that their label sum is 0. Labels of remaining
vertices are defined based on two cases.

Case 1: vc1 is adjacent to a unique pendant z and d(vc1) ≡ 1 (mod 3).
Define �(vc2) = 1, �(z) = 1, and if y is a support vertex adjacent to vc2, then label
the pendant neighbors of y such that the label sum is 0.

Case 2: Otherwise.
Define �(vc2) = 2, and if y is a support vertex adjacent to vc2, label the pendant
neighbors of y such that the label sum is 2. Let m be the number of support vertices
adjacent to vc1 and let r be the remainder when m is divided by 3. Then label the
pendant neighbors of vc1 such that the label sum is⎧⎪⎨

⎪⎩
2 if r = 0

1 if r = 1

0 if r = 2.

Hence � is a Z3-vertex magic labeling of T .
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Therefore the above theorems provide a complete characterization of A-vertex
magic trees of diameter 5 for any finite abelian group A.

3 Technique to construct infinite classes of group vertex

magic graphs

In this section we establish a technique to construct an infinite number of group
vertex magic graphs. The following theorem provides a technique to construct A-
vertex magic graphs from existing ones by preserving the same magic constant in
both graphs.

Theorem 3.1. Let t ≥ 2. Suppose G is an A-vertex magic graph of order n with a
labeling � and magic constant g. If there exists an edge uv in G with �(u) = �(v) = g,
then the graph G†, obtained from G by subdividing the edge uv and by attaching t
pendant vertices at the new vertex x, is an A-vertex magic graph of order n + t + 1
with the same magic constant g.

Proof. Define �† : V (G†) → A by �†(x) = g, and label the t pendant vertices adjacent
to x such that its label sum is −g and �†(w) = �(w) for all w ∈ V (G). Clearly �† is
an A-vertex magic G† with magic constant g.

G G†

Figure 5: The graph G and its graph G†

Theorem 3.2. Let G be a graph of order n. Let G† be the graph obtained from G
by subdividing an edge xy four times. Then G is A-vertex magic if and only if G† is
A-vertex magic.

Proof. Let P = (x, u1, u2, u3, u4, y) be the x− y path in G†. Suppose G† is A-vertex
magic with labeling �† and magic constant g. Since w(u1) = w(u3) and w(u4) =
w(u2), we get �†(x) = �†(u4) and �†(y) = �†(u1). Hence the labeling � obtained by
restricting �† to V (G) gives an A-vertex magic labeling of G with the same magic
constant g. Conversely, let � be an A-vertex magic labeling of G. Consider a mapping
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�† : V (G†) → A− {0} given by

�†(v) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�(v) if v ∈ V (G)

�(y) if v = u1

g − �(x) if v = u2

g − �(y) if v = u3

�(x) if v = u4.

Clearly, �† is an A-vertex magic labeling of G† with the magic constant g.

4 Concluding Remarks

In this article, a characterization of A-vertex magic trees of diameter at most 5
has been given, where A is any finite abelian group. Further, certain techniques to
construct larger A-vertex magic graphs from existing A-vertex magic graphs have
been provided.
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