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Abstract

A 1-factorisation of a graph is called perfect if it satisfies each of the
following equivalent conditions: the union of each pair of 1-factors is
isomorphic to the same connected subgraph, the union of each pair of 1-
factors is connected, and the union of each pair of 1-factors is a Hamilton
cycle. A 1-factorisation of a graph is called uniform if the union of each
pair of 1-factors is isomorphic to the same subgraph.

In this paper, we generalise the concept of uniform 1-factorisations
from graphs to hypergraphs in the natural way, and, based on the three
conditions above, we define four generalisations of perfect 1-factorisations
of graphs to the context of hypergraphs (called connected-uniform, con-
nected, Hamilton �, and Hamilton Berge 1-factorisations). We then ask,
for which values of k and n does the complete k-uniform hypergraph
Kk

n admit such 1-factorisations. We show that, for k ≥ 3, uniform and
uniform-connected 1-factorisations of complete k-uniform hypergraphs
can exist only when k = 3, and when they exist they can be used to
construct biplanes. We also show that, for k ≥ 2, all 1-factorisations of
Kk

2k and Kk
3k are connected 1-factorisations, and prove the existence of

non-connected 1-factorisations of Kk
mk for every m ≥ 4. We prove that

Hamilton � 1-factorisations of complete k-uniform hypergraphs do not
exist for k ≥ 3. We then prove that, for k ≥ 2, all 1-factorisations of
Kk

2k are Hamilton Berge 1-factorisations, and demonstrate a strong con-
nection between Hamilton Berge 1-factorisations of Kk

3k and Häggkvist’s
conjecture on Hamilton cycles in 2-connected k-regular bipartite graphs,
leading us to conjecture that all 1-factorisations of Kk

3k are Hamilton
Berge 1-factorisations.
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1 Introduction

A 1-regular spanning subgraph of a graph is known as a 1-factor. A partition of
the edge set of a graph G into α 1-factors is called a 1-factorisation of G (often
denoted by F = {F1, . . . , Fα}). A natural question is: under what conditions does
a 1-factorisation of the complete graph on n vertices, Kn, exist? Clearly n must be
even, and one of the earliest proofs that this condition is sufficient is Kirkman’s 1847
construction of 1-factorisations of Kn for all even integers n ≥ 2 [21].

Given a 1-factorisation of a graph G, a well-studied problem is to ask if the 1-
factorisation has the property that the union of each pair of 1-factors is isomorphic to
the same subgraph H of G. Such a 1-factorisation is called a uniform 1-factorisation
(U1F) of G and the subgraph H is called the common graph. Furthermore, a uniform
1-factorisation in which the common graph is a Hamilton cycle is called a perfect 1-
factorisation (P1F). The following famous conjecture is due to Kotzig [23].

Conjecture 1.1. [23] For any n ≥ 2, K2n admits a perfect 1-factorisation.

Kotzig [22] provided an infinite family of 1-factorisations of the complete graph
K2n that are perfect when 2n− 1 is an odd prime. Bryant, Maenhaut, and Wanless
[7] constructed another infinite family of P1Fs of K2n where 2n− 1 is an odd prime,
which is not isomorphic to the family given by Kotzig. Anderson [1] gave an infinite
family of 1-factorisations of K2n that are perfect when n is an odd prime. Besides
these infinite families there are a number of sporadic values of n such that K2n has
been shown to admit a P1F. Most recently a P1F of K56 was found by Pike [27],
which leaves K64 as the smallest complete graph for which the existence of a P1F is
unknown; for more information on the orders of complete graphs with known P1Fs,
a paper on the number of non-isomorphic P1Fs of K16 by Gill and Wanless [15] is
recommended.

For uniform 1-factorisations that are not perfect, the common graph will be a
collection of two or more disjoint cycles of even lengths. We say that a U1F has
type (c1, c2, . . . , ct) if the common graph of the U1F is a collection of t cycles of
lengths c1, c2, . . . , ct. For complete graphs K2n with 2n ≤ 16, all types of U1Fs up
to isomorphism are known due to a result by Meszka and Rosa [25].

Theorem 1.2. [25] If F is a U1F of K2n, where 2n ≤ 16, then F is one of the
following:

(a) a P1F;

(b) a U1F of K8 of type (4, 4);

(c) a U1F of K10 of type (4, 6);

(d) a U1F of K12 of type (6, 6);

(e) a U1F of K16 of type (4, 4, 4, 4).

Further, the U1Fs from cases (b), (c), (d), (e) are unique up to isomorphism.
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Besides the above U1Fs there are several known infinite families of U1Fs; for
further information on these families the survey paper on P1Fs by Rosa [28] is rec-
ommended.

The goal of this paper is to generalise the concepts of uniform and perfect 1-
factorisations from graphs to hypergraphs. A hypergraph H consists of a non-empty
vertex set V (H) and an edge set E(H) where each element of E(H) is a non-empty
subset of the vertex set V (H). The complete k-uniform hypergraph of order n,
denoted Kk

n, is the hypergraph on n vertices, where the edges are precisely all the
k-sets of the vertex set. In this paper, to avoid the case of graphs we will consider
only k-uniform hypergraphs for k ≥ 3.

A path between two vertices, x and y, of a hypergraph is an alternating sequence
of vertices and edges of the hypergraph:

[x = v1, e1, v2, e2, . . . , vs, es, vs+1 = y]

such that v1, v2, . . . , vs+1 are distinct vertices, and e1, e2, . . . es are distinct edges such
that vi ∈ ei for 1 ≤ i ≤ s and vj ∈ ej−1 for 2 ≤ j ≤ s + 1. If every two vertices of a
hypergraph H have a path between them we say that H is connected. Generalising
the concept of 1-factors and 1-factorisations from graphs to hypergraphs is relatively
straightforward. A 1-factor of a hypergraph is a spanning 1-regular sub-hypergraph,
and a decomposition of a hypergraph into edge-disjoint 1-factors is a 1-factorisation.
An obvious necessary condition for the existence of a 1-factorisation of the complete
k-uniform hypergaph on n vertices is that k|n. Baranyai [3] showed that for k ≥ 3,
this condition is also sufficient.

Theorem 1.3. [3] Suppose k ≥ 3 is an integer. A 1-factorisation of the complete
k-uniform hypergraph on n vertices, Kk

n, exists if and only if k divides n.

In Sections 2, 3, and 4, we propose four generalisations of the concept of a perfect
1-factorisation of a graph to the context of hypergraphs. With each generalisation
we will give some existence results, and also provide some interesting connections to
other combinatorial objects and conjectures. These four generalisations come from
three equivalent definitions of a perfect 1-factorisation of a graph:

1. The union of each pair of 1-factors in the 1-factorisation is isomorphic to the
same connected subgraph.

2. The union of each pair of 1-factors in the 1-factorisation is connected.

3. The union of each pair of 1-factors in the 1-factorisation is a Hamilton cycle.

In Section 5 we will discuss some known 1-factorisations of complete k-uniform
hypergraphs and which, if any, of the four generalisations they satisfy. Finally, in
Section 6 we pose several open problems for the four generalisations.
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2 Uniform and Uniform-connected 1-Factorisations

The concept of a uniform 1-factorisation of a graph generalises naturally to hyper-
graphs.

Definition 2.1. A 1-factorisation of a hypergraph H is a uniform 1-factorisation
(U1F) if the union of each pair of 1-factors of the 1-factorisation is isomorphic to the
same hypergraph, called the common hypergraph.

We can then define uniform-connected 1-factorisations to be uniform 1-factoris-
ations for which the common hypergraph is connected.

Definition 2.2. A 1-factorisation of a hypergraph H is a uniform-connected 1-
factorisation (UC1F) if the union of each pair of 1-factors of the 1-factorisation
is isomorphic to the same connected hypergraph.

We begin our investigation of U1Fs of complete k-uniform hypergraphs by intro-
ducing some terminology, notation and lemmas. For two distinct 1-factors F1 and
F2 of a hypergraph, we say that a set of vertices, B = {v1, v2, . . . , vw}, is repeated in
the pair F1 and F2 if B ⊆ e for some edge e ∈ F1 and B ⊆ e′ for some edge e′ ∈ F2.
By counting repeated (k − 1)-sets in pairs of 1-factors of a 1-factorisation of Kk

n, we
determine a necessary condition for the existence of a U1F of Kk

n.

Lemma 2.1. For k ≥ 3, if Kk
n admits a U1F then

(
n

k−1

)(
n−k+1

2

)
((n−1

k−1)
2

)
is a positive integer.

Proof. Suppose F = {F1, F2, . . . , Fα} is a U1F of Kk
n. First we count the number of

repeated (k−1)-sets occurring over all pairs of 1-factors of F . Consider a (k−1)-set,
{a1, a2, . . . , ak−1} of vertices of Kk

n. This set occurs in an edge of n−(k−1) factors of
F , so this (k− 1)-set will be repeated in

(
n−(k−1)

2

)
pairs of 1-factors. Thus, there are(

n
k−1

)(
n−k+1

2

)
repeated (k − 1)-sets over all vertices and all pairs of 1-factors. Next,

we count the number of pairs of 1-factors of F . A 1-factorisation of Kk
n has

(
n−1
k−1

)
1-factors, so there are

((n−1
k−1)
2

)
pairs of 1-factors.

Now, since the union of each pair of 1-factors of F is isomorphic to the same
hypergraph, it follows that each pair of 1-factors must have exactly

(
n

k−1

)(
n−k+1

2

)
((n−1

k−1)
2

)

repeated (k−1)-sets of vertices. Thus, this expression must be a positive integer.
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The necessary condition in Lemma 2.1 quickly rules out the existence of U1Fs of
Kk

n for some values of n and k. Note that a 1-factorisation of Kk
k is trivially a U1F,

so we only consider 1-factorisations of Kk
n with n ≥ 2k.

Lemma 2.2. For k ≥ 3 and n ≥ 2k, if a U1F of Kk
n exists, then k = 3.

Proof. To rule out the existence of a U1F of Kk
n with k ≥ 4 and n ≥ 2k we first

consider the case k = 4 with n = 8; this case is quickly ruled out by Lemma 2.1. We
then rule out the existence of a U1F of Kk

n for n ≥ 9 and 4 ≤ k ≤ n
2
by showing that

(
n

k − 1

)(
n− k + 1

2

)
<

((n−1
k−1

)
2

)
and hence

(
n

k−1

)(
n−k+1

2

)
((n−1

k−1)
2

) < 1. (1)

Using the identity
(
a
b

)(
a−b
c

)
=

(
a
c

)(
a−c
b

)
we can see that

(
n

k − 1

)(
n− (k − 1)

2

)
<

((n−1
k−1

)
2

)

if and only if

n(n− 1)

(
n− 2

k − 1

)
<

(
n− 1

k − 1

)((
n− 1

k − 1

)
− 1

)
.

This clearly holds for n = 9, k = 4 and for n = 10, k = 4 or 5. For larger values of n
it suffices to show that n(n−1) <

(
n−1
k−1

)−1. We note that for n ≥ 11 and 4 ≤ k ≤ n
2
,

n(n− 1) <

(
n− 1

3

)
− 1 ≤

(
n− 1

k − 1

)
− 1.

Hence (1) holds. Thus, for k ≥ 3 and n ≥ 2k, a U1F of Kk
n can exist only when

k = 3.

We say that a pair of 1-factors in a 1-factorisation of a hypergraph has pair
overlap number d if the number of repeated 2-sets in that pair of 1-factors is d. A
1-factorisation of a hypergraph is said to have pair overlap number d if the pair
overlap number is d for every pair of 1-factors in the 1-factorisation. Note that a
uniform 1-factorisation must have pair overlap number d for some positive integer
d, but that a 1-factorisation with pair overlap number d might not be uniform. For
k = 3, Lemma 2.1 gives the pair overlap number of any U1F of K3

n, and it is 2. We
will now consider 1-factorisations of the 3-uniform complete hypergraph on n vertices
that have a pair overlap number 2.

Generalising a construction that was used by Husain in [18] to construct a biplane
of order 4, we can construct symmetric balanced incomplete block designs of index
2 from 1-factorisations of K3

n with pair overlap number 2.

Lemma 2.3. If there exists a 1-factorisation of K3
n with pair overlap number 2, then

there exists a symmetric (
(
n
2

)
+ 1, n, 2)-design.
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Proof. Let F = {F1, F2, . . . , F(n−1
2 )} be a 1-factorisation of K3

n with pair overlap

number 2. Consider the design D = (V,B) constructed in the following way:

• Let V = V (K3
n) ∪ {F1, F2, . . . , F(n−1

2 )}.

• Let B0 = V (K3
n).

• For every unordered pair of distinct vertices x, y ∈ V (K3
n), let

Bxy = {x, y} ∪ {Fi | there exists e ∈ Fi such that {x, y} ⊂ e}.

• Let B = B0 ∪
⋃
xy

Bxy.

We claim that this design is a symmetric (
(
n
2

)
+ 1, n, 2)-design. First, we can

see that D has n +
(
n−1
2

)
=

(
n
2

)
+ 1 points. Also, from the definition it is clear we

have
(
n
2

)
+ 1 blocks. Second, we note that each block contains n points. For B0 this

is obvious and for Bxy this follows because each unordered pair of distinct vertices
appears together in an edge in n− 2 of the 1-factors of F . Furthermore, each point
occurs in n blocks. For the points corresponding to the vertices of K3

n, this is obvious.
If u′ is a point corresponding to a 1-factor Fi, u

′ will occur in block Bxy for each pair
of vertices x, y that come from the same edge of Fi; as any 1-factor has n

3
edges, and

each edge contains 3 pairs of vertices, it follows that u′ occurs in n blocks.

Finally we show that every pair of points occurs in exactly two blocks. Any pair of
points, u, v, each corresponding to a vertex ofK3

n will appear in B0 and Buv. Any pair
of points u′, v′, each corresponding to a 1-factor of F will occur in the blocks Bab and
Bcd, where a, b and c, d are the repeated 2-sets in the pair of 1-factors corresponding
to u′ and v′. Consider the pair of points of the design u, v′, where u corresponds to
a vertex of K3

n, and v′ corresponds to a 1-factor, Fi, of F . Then the pair of points
u, v′ will appear in the blocks Bua and Bub where a, b are the vertices that appear
with u in an edge of Fi. Thus it follows that any pair of points in the design appear
in precisely two blocks. Therefore D is a symmetric (

(
n
2

)
+ 1, n, 2)-design.

With this connection, we can use the Bruck-Ryser-Chowla theorem [10] to rule
out the existence of a U1F of K3

n for some values of n. Applying the Bruck-Ryser-
Chowla theorem and Lemma 2.3 for values of n ≤ 30 we see that if there exists a
U1F of K3

n then n ∈ {3, 6, 9, 18, 21, 27}. Below we give examples of U1Fs (which are
in fact UC1Fs) of K3

3 , K
3
6 and K3

9 . Thus n = 18 is the smallest value for which the
existence of a U1F of K3

n is unknown.

We note that K3
3 is the hypergraph that consists of 3 vertices and 1 edge and

the 1-factorisation of K3
3 is trivially uniform (uniform-connected). Also the unique

1-factorisation of K3
6 is uniform, and in fact uniform-connected.

The 103 000 non-isomorphic 1-factorisations ofK3
9 were enumerated by Khatirine-

jad and Österg̊ard [20]. Any U1F of K3
9 will be a UC1F, and by exhaustive com-

puter search we were able to determine that, up to isomorphism, there is a unique
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{123, 456} {135, 246} {124, 356} {136, 245} {125, 346}
{145, 236} {126, 345} {146, 235} {134, 256} {156, 234}

Table 1: The unique 1-factorisation of K3
6 .

U1F (UC1F) of K3
9 , see Table 2. This 1-factorisation is the 1-factorisation with

automorphism group of size 1512 found by Khatirinejad and Österg̊ard [20]. This 1-
factorisation is isomorphic to the 1-factorisation of K3

9 in the infinite family provided
by Chen and Lu [9].

{123, 456, 789} {134, 268, 579} {146, 259, 378} {159, 236, 478}
{124, 369, 578} {135, 249, 678} {147, 289, 356} {167, 234, 589}
{125, 347, 689} {136, 257, 489} {148, 235, 679} {168, 239, 457}
{126, 358, 479} {137, 269, 458} {149, 237, 568} {169, 278, 345}
{127, 359, 468} {138, 247, 569} {156, 248, 379} {178, 256, 349}
{128, 367, 459} {139, 258, 467} {157, 238, 469} {179, 245, 368}
{129, 348, 567} {145, 267, 389} {158, 279, 346} {189, 246, 357}

Table 2: The unique UC1F of K3
9 .

3 Connected 1-Factorisations

Another natural way of generalising the concept of perfect 1-factorisations to hy-
pergraphs is by asking that the union of every pair of 1-factors be a connected
hypergraph. We note that in the case of graphs, the definition below is equivalent
to the standard definition of a perfect 1-factorisation.

Definition 3.1. A 1-factorisation of a hypergraph is a connected 1-factorisation
(C1F) if the union of each pair of 1-factors of the 1-factorisation is connected.

Note that the 1-factorisation ofKk
k is trivially a C1F, and it is easy to see that the

1-factorisation of Kk
2k is also a C1F. We will now show that that every 1-factorisation

of the complete k-uniform hypergraph on 3k vertices is a C1F.

Theorem 3.1. For k ≥ 3, every 1-factorisation of Kk
3k is a C1F.

Proof. Let V = V (Kk
3k) and consider a 1-factorisation F of Kk

3k. Let H be the hy-
pergraph formed by the union of two 1-factors Fx = {ex1 , ex2 , ex3} and Fy = {ey1, ey2, ey3}
of F . To show that H is connected, we consider an arbitrary vertex v ∈ ex1 and show
that there exists a path in H from v to every other vertex in V . Note that since the
factors are edge-disjoint, there exist α, β ∈ {1, 2, 3} with α �= β such that ex1 ∩ eyα �= ∅
and ex1 ∩ eyβ �= ∅. Thus there exists a path from v to each of the 2k vertices in eyα∪ eyβ.
Furthermore (eyα ∪ eyβ) ∩ exi �= ∅ for each i = 1, 2, 3 so there exists a path from v to
every vertex in V .
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To show the existence of non-connected 1-factorisations of Kk
mk for m ≥ 4 we rely

on a result from Häggkvist and Hellgren [17] that shows that a 1-factorisation of Kk
m

can be embedded in a 1-factorisation of Kk
n if and only if n ≥ 2m and k divides both

m and n.

Lemma 3.2. For m ≥ 4, there exists a 1-factorisation of Kk
mk that is not a C1F.

Proof. Let F be the unique 1-factorisation of Kk
2k with vertex set V . Using the

result of Häggkvist and Hellgren, we can embed this 1-factorisation F of Kk
2k into

a 1-factorisation F ′ of Kk
mk with vertex set V ∪ S for any m ≥ 4. To show that F ′

is not a C1F, take two 1-factors F1, F2 from F and consider the two corresponding
1-factors from F ′, say F ′

1, F
′
2, that contain F1 and F2 respectively. Clearly the union

of these two 1-factors is disconnected since there is no edge e ∈ F ′
1 ∪ F ′

2 that has
both a vertex from V and a vertex from S. Thus F ′ is not a C1F.

It is natural to ask for which values of n and k a C1F of Kk
n can exist. In Section 5

we identify some C1Fs of Kk
mk for values of m ≥ 4.

4 Hamilton � 1-factorisations and Hamilton Berge

1-Factorisations

To generalise the idea of P1Fs to hypergraphs by requiring the union of each pair of
1-factors to be a Hamilton cycle, we must first decide which definition of a Hamilton
cycle in a hypergraph to use. We will consider two common definitions, Hamilton
�-cycles and Hamilton Berge cycles, and propose a generalisation of a P1F of a graph
for each.

Given an integer � with 1 ≤ � < k, a k-uniform hypergraph C is an �-cycle if
there exists a cyclic ordering of the vertices of C such that every edge of C consists of
k consecutive vertices in the ordering and such that every two consecutive edges, in
the natural ordering of the edges, intersect in precisely � vertices. An �-cycle C is a
Hamilton �-cycle of a k-uniform hypergraph H if V (C) = V (H) and E(C) ⊆ E(H).
Note that a Hamilton �-cycle in a hypergraph H has |V (H)|/(k−�) edges. If � = k−1
the �-cycle is called a tight cycle, and if � = 1, it is called a loose cycle. Decomposition
of complete k-uniform hypergraphs into tight Hamilton cycles has been studied by
various authors, see for example [2] and [26].

Using this definition of a Hamilton �-cycle, a natural approach to generalise P1Fs
to hypergraphs is to ask for the union of each pair of 1-factors of a 1-factorisation to
be a Hamilton �-cycle. Since a Hamilton �-cycle in a k-uniform hypergraph of order
n has n

k−�
edges and a 1-factor of a k-uniform hypergraph of order n has n

k
edges,

this generalisation requires � = k
2
. We propose the following definition of a Hamilton

� 1-factorisation of a k-uniform hypergraph, as a generalisation of a P1F of a graph.
Note that for k = 2, this agrees with the standard definition of a P1F.
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Definition 4.1. A 1-factorisation of a k-uniform hypergraph is called a Hamilton �
1-Factorisation (HL1F) if the union of every pair of 1-factors of the 1-factorisation
is a Hamilton

(
k
2

)
-cycle.

It is quick to see that an obvious necessary condition will quickly rule out the
existence of such 1-factorisations for complete k-uniform hypergraphs.

Lemma 4.1. Let H be a k-uniform hypergraph. If H admits an HL1F, then each
edge of H intersects all other edges in either 0 or k

2
vertices.

Proof. Let H be a k-uniform hypergraph and suppose for a contradiction that F is
an HL1F of H and that H contains two edges, e1, e2 such that |e1 ∩ e2| �∈ {0, k

2
}.

Note that this implies k ≥ 3. As F is a 1-factorisation, e1 and e2 must belong to
separate 1-factors; call these F1 and F2 respectively. Now consider the union of F1

and F2. Clearly this union does not form a Hamilton
(
k
2

)
-cycle, and thus F cannot

be an HL1F.

Corollary 4.2. Kk
n does not admit an HL1F for any k ≥ 3 and n ≥ 3.

Although complete k-uniform graphs do not admit HL1Fs, it is possible to find
other k-uniform hypergraphs that do. For example, consider the 4-uniform hyper-
graph on 8 vertices whose vertices and edge set are the points and blocks of a Steiner
quadruple system on 8 vertices constructed from a Steiner triple system on 7 vertices,
see Table 3. It is easy to confirm that it is an HL1F where � = 2.

{1248, 3567} {2358, 1467} {3468, 1257} {4578, 1236}
{1568, 2347} {2678, 1345} {1378, 2456}

Table 3: An HL1F of a 4-uniform hypergraph on 8 vertices with seven 1-factors.

We leave it as an open question to explore what other families of k-uniform
hypergraphs admit HL1Fs.

A Berge cycle in a hypergraph H = (V,E) is an alternating sequence

(v1, e1, v2, e2, . . . , vm, em)

of distinct vertices vi ∈ V and distinct edges ei ∈ E, where ei contains vi and vi+1

for each i ∈ {1, 2, . . . , m−1} and em contains vm and v1. Note that each edge ei may
contain vertices other than vi and vi+1 including vertices outside of {v1, . . . , vm}. A
Hamilton Berge cycle in a hypergraph H is a Berge cycle in H for which {v1, . . . , vm}
is the vertex set of H.

It is well-known that for n ≥ 2k and k ≥ 2, Kk
n has a Hamilton Berge cycle and

many authors have investigated decompositions of Kk
n into Hamilton Berge cycles,

see for example [4], [5], [24], and [29].

Similar to before, when equipped with the definition of a Hamilton Berge cycle,
a natural approach to generalise P1Fs to hypergraphs is to ask for the union of each
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pair of 1-factors of a 1-factorisation to have a Hamilton Berge cycle. However, a
Hamilton Berge cycle in Kk

n has n edges and a 1-factor in Kk
n has n

k
edges, so this

generalisation would require k = 2. Hence we propose the following definition of a
Hamilton Berge 1-factorisation of a k-uniform hypergraph, as a generalisation of a
P1F of a graph.

Definition 4.2. A 1-factorisation of a k-uniform hypergraph is called a Hamil-
ton Berge 1-factorisation (HB1F) if the union of each k-set of 1-factors of the 1-
factorisation has a Hamilton Berge cycle.

The incidence graph of a hypergraph H = (V,E) is a bipartite graph, denoted
IG(H), with vertex set S = V ∪ E, and where v ∈ V and e ∈ E are adjacent if and
only if v ∈ e. The incidence graph of the union of k edge-disjoint 1-factors of Kk

n

will be a k-regular bipartite graph with n vertices in each part. Let H be the union
of k edge-disjoint 1-factors of Kk

n. We make the observation that finding a Hamilton
Berge cycle in H is equivalent to finding a Hamilton cycle in the incidence graph
IG(H). Consider a Hamilton Berge cycle of H, denoted (v1, e1, v2, e2, . . . , vn, en); we
see that this is also a Hamilton cycle of IG(H), noting that the ei are now vertices
of IG(H). Similarly, a Hamilton cycle of IG(H) corresponds to a Hamilton Berge
cycle of H.

Note that the 1-factorisation of Kk
k is trivially an HB1F, and we now show that

the 1-factorisation of Kk
2k is an HB1F. The following result from [11] (a proof of

which can be found in [8]) can be applied to the incidence graph of the union of k
edge-disjoint 1-factors of Kk

2k, thereby showing that the 1-factorisation of Kk
2k is an

HB1F.

Proposition 4.3. [11] If G is a connected spanning m
2
-regular subgraph of Km,m,

then G is Hamiltonian.

Corollary 4.4. The 1-factorisation of the hypergraph Kk
2k is an HB1F.

We now consider complete uniform hypergraphs where each edge consists of ex-
actly one third of the vertices. For n = 9 and k = 3 we ran an exhaustive computer
search and found a Hamilton Berge cycle in every set of three edge-disjoint 1-factors
of K3

9 . This implies that every 1-factorisation of K3
9 is an HB1F.

The incidence graph of the union of k edge-disjoint 1-factors of Kk
3k is a k-regular

bipartite graph on 6k vertices, and is 2-connected. There is a well-known conjecture
from Häggkvist [16] that, if true, would prove that every 1-factorisation of Kk

3k is an
HB1F.

Conjecture 4.5. [16] Every 2-connected k-regular bipartite graph on at most 6k
vertices is Hamiltonian.

The result that comes closest to proving Häggkvist’s conjecture is a result of
Jackson and Li [19] that shows that every 2-connected, k-regular bipartite graph on
6k − 38 vertices is Hamiltonian. This leads us to explicitly conjecture the following.
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Conjecture 4.6. Every 1-factorisation of Kk
3k is an HB1F.

One can also show the existence of 1-factorisations of Kk
�k that are not HB1Fs for

� ≥ 4 using a similar argument to Lemma 3.2. In Section 5 we identify some HB1Fs
of Kk

�k for values of � ≥ 4.

5 Considering known 1-Factorisations of Kk
n

1-Factorisations of complete uniform hypergraphs have been studied under several
guises. A 1-factorisation of Kk

n can also be viewed as a proper edge colouring of Kk
n,

where each colour class is a 1-factor. A 1-factorisation of Kt
n is also equivalent to a

resolvable complete t-design, where the resolution classes are 1-factors. In this sec-
tion, we investigate some known 1-factorisations of Kk

n with respect to the properties
we have introduced. We call a 1-factorisation of Kk

n uninteresting if it is not a U1F,
C1F, or HB1F.

Deo and Micikevicius [14] construct 1-factorisations of K3
9 , K

3
15, K

3
21. They con-

jecture that their construction technique can be used to build 1-factorisations of K3
n

where n ≡ 3 (mod 6). The 1-factorisation of K3
9 given by this construction is not

isomorphic to the unique U1F of K3
9 , we also know that it is a C1F and HB1F from

our earlier results. Their 1-factorisations of K3
15 and K3

21 were both found to be
uninteresting.

In [6], Beth gives a construction of a 1-factorisation of K3
n whenever n − 1 is a

prime. Using this construction we built 1-factorisations of K3
12, K

3
18, K

3
24, and K3

30.
The 1-factorisations of K3

12, K
3
18, and K3

24 are all HB1Fs but not U1Fs or C1Fs, while
the 1-factorisation of K3

30 is uninteresting.

Chen and Lu [9] completely classify all non-homogeneous symmetric 1-factoris-
ations of complete uniform hypergraphs. They found two infinite families and 21
sporadic examples; the first infinite family is the unique 1-factorisation of Kk

2k (which
has been classified in earlier sections), and the second is a 1-factorisation of K3

q+1

where q ≡ 2 (mod 3) is a prime power. In this second infinite family we have found
some 1-factorisations that are C1Fs but they are not all C1Fs. Of the 21 sporadic
examples, only one was found to be interesting; the third 1-factorisation of K3

12 from
Example 5.3 in [9] is both a C1F and an HB1F.

A large set of Kirkman triple systems (LKTS) of order n is equivalent to a 1-
factorisation of K3

n. The 1-factorisation of K3
15 corresponding to the LKTS(15) given

by Denniston as a solution to Sylvester’s schoolgirl problem [13] was found to be
uninteresting. Denniston’s construction [12] of an LKTS(3m) for any m > 1, can be
quickly shown to be uninteresting for m > 2, and when m = 2, gives a 1-factorisation
of K3

9 that is a C1F and HB1F (which we know from Sections 3 and 4) but is not
a U1F. Similarly, the 1-factorisations of K3

n corresponding to the LKTS(n)s from
Zhang and Zhu’s product construction [30] are uninteresting for n > 9.

Table 4 presents a summary of these constructions of 1-factorisations Kk
n that

were found to be interesting. We have not included 1-factorisations of Kk
2k or of K3

9 ,
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as both are fully understood (in terms of interesting 1-factorisations).

n k Construction U1F UC1F C1F HB1F
12 3 Chen & Lu Symmetric Infinite [9] N N Y Y
12 3 Chen & Lu Symmetric Sporadic 3 [9] N N Y Y
12 3 Beth [6] N N N Y
18 3 Beth [6] N N N Y
24 3 Beth [6] N N N Y
33 3 Chen & Lu Symmetric Infinite [9] N N Y Y
129 3 Chen & Lu Symmetric Infinite [9] N N Y ?

Table 4: Some known constructions of 1-factorisations of Kk
n.

6 Open Problems

For future directions, we pose the following existence questions.

Open Problem 6.1. Does K3
n admit a U1F for all admissible values of n?

Open Problem 6.2. Does K3
n admit a UC1F for all admissible values of n?

Open Problem 6.3. Does Kk
mk admit a C1F for all m ≥ 2, k ≥ 3?

Open Problem 6.4. Does Kk
mk admit an HB1F for all m ≥ 2, k ≥ 3?

Beyond questions on existence, we also pose questions about the relationship
between the different generalisations. Clearly every UC1F is a C1F. All the known
examples of C1Fs are also HB1Fs, but we have examples of 1-factorisations ofKk

n that
are HB1Fs but not C1Fs and examples of 1-factorisations of Kk

n that are C1Fs but
not UC1Fs. To understand the relationship between these types of 1-factorisations,
we pose the following question.

Open Problem 6.5. If F is a C1F of Kk
n, is F also an HB1F?

Finally, since we have only three examples of U1Fs of complete 3-uniform hyper-
graphs, each of which is also a UC1F, we ask if it is possible to find a U1F that is
not also a UC1F.

Open Problem 6.6. Does there exist a U1F of K3
n that is not a UC1F?
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[24] D. Kühn and D. Osthus, Decompositions of complete uniform hypergraphs into
Hamilton Berge cycles, J. Combin. Theory Ser. A 126 (2014), 128–135.

[25] M. Meszka and A. Rosa, Perfect 1-factorizations of K16 with nontrivial auto-
morphism group, J. Combin. Math. Combin. Comput. 47 (2003), 97–111.

[26] M. Meszka and A. Rosa, Decomposing complete 3-uniform hypergraphs into
Hamiltonian cycles, Australas. J. Combin. 45 (2009), 291–302.

[27] D.A. Pike, A perfect one-factorisation of K56, J. Combin. Des. 27(6) (2019),
386–390.

[28] A. Rosa, Perfect 1-factorizations, Math. Slovaca 69(3) (2019), 479–496.

[29] H. Verrall, Hamilton decompositions of complete 3-uniform hypergraphs, Dis-
crete Math. 132(1-3) (1994), 333–348.

[30] S. Zhang and L. Zhu, An improved product construction for large sets of Kirk-
man triple systems, Discrete Math. 260(1-3) (2003), 307–313.

(Received 21 Jan 2022; revised 2 Nov 2022)


