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Abstract

A generalized Petersen graph GP (n, k) is a regular cubic graph on 2n
vertices (the parameter k is used to define some of the edges). It was
previously shown (Ball et al., 2015) that the cop number of GP (n, k) is
at most 4, for all permissible values of n and k. In this paper we prove
that the cop number of “most” generalized Petersen graphs is exactly 4.
More precisely, we show that unless n and k fall into certain specified
categories, then the cop number of GP (n, k) is 4. The graphs to which
our result applies all have girth 8.

In fact, our argument is slightly more general: we show that in any
cubic graph of girth at least 8, unless there exist two cycles of length
8 whose intersection is a path of length 2, then the cop number of the
graph is at least 4. Even more generally, in a graph of girth at least 9
and minimum valency δ, the cop number is at least δ + 1.

1 Introduction

A robber is on the loose and you need to determine how many cops are needed to
ensure his capture. Cops and robbers is a pursuit-evasion game played on graphs
[14, 15] by two players on a simple graph G. The game starts with the cop player
placing up to her allowed number of cops on her choice of vertices in G, followed by
the robber placing his single (in the original version of the game, which is what we
will be considering) pawn on his choice of vertex in G. Both players are fully aware
of the structure of the graph and the positions of all the pawns, and take turns with
the cop player having the first play. On their turn, the players may elect to have
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their pawn(s) remain static at the current position by passing play, or to move to
one of its neighbouring vertices. The cop player may move all of her pawns in a
single turn. Cops may also congregate at the same vertex, but this may not have
any advantage during the course of the game. The game ends when a cop occupies
the same vertex as the robber—the robber is thus captured, and the cop player wins.
If the robber has a strategy that will enable him to evade the cops forever, then he
wins. The question to consider is this: how many cops must be engaged in play to
guarantee that the cops can win?

Definition 1.1. The cop number of a graph G, denoted c(G), is the smallest positive
integer k such that k cops suffice to capture the robber in a finite number of moves
played on the graph G.

An interesting family of graphs to play the game on, and the family of graphs
that we will be discussing throughout this paper, is the generalized Petersen graph
family.

Definition 1.2. A generalized Petersen graph GP (n, k) is a graph with vertex set

{a0, a1, . . . , an−1, b0, b1, . . . , bn−1}
and edge set

{aiai+1, aibi, bibi+k : 0 ≤ i ≤ n− 1}
where subscripts are read modulo n, n ≥ 5, and k < n/2.

The assumption that k �= n/2 ensures that generalized Petersen graphs are always
cubic. The fact that the same graph would be produced as GP (n, k) and GP (n, n−k)
allows the assumption that k < n/2. Note that the Petersen graph is GP (5, 2).

Definition 1.3. The girth of a graph is the length of a shortest cycle contained in
the graph.

In this paper we will be focusing on generalized Peterson graphs with a girth of
8; we will explore the relationship between generalized Peterson graphs of girth 8
and their cop numbers.

For the purpose of this paper, we will separate the vertex set into two separate
sets, A and B, which are the vertices labelled ai in our definition (generally drawn
as the outer cycle) and the vertices labelled bi (generally drawn as the inner cycle),
respectively.

In [2], Ball et al. showed that for any generalized Petersen graph GP (n, k), the
cop number is at most 4. The goal of this paper is to show that many generalized
Petersen graphs of girth 8 have a cop number of exactly 4, and classify possible
exceptions.

Since the parameters of generalized Petersen graphs of girth 8 are understood
(see Table 1), our concluding result will be a reasonably short list of families of
parameters that includes all generalized Petersen graphs (up to isomorphism) that
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do not have a cop number of 4. This list includes all generalized Petersen graphs
that do not have a girth of 8. This result is presented in Corollary 5.3. What is
known about the cop number of generalized Petersen graphs from their parameters
is summarized in Table 3.

2 Previous research

In this study, we have applied a classic version of cops and robbers, whereby moves
are limited and the location of the players are visible to their opponents with per-
fect information (as if there were two helicopters perched over the neighbourhood
reporting relative locations to the escaped robber and the pursuing cops). Cops and
robbers, however, is a game with many different versions all with different rules.
Some variations include games played without perfect information [11], “lazy” cops
and robbers [5], or traps [8].

In addition to varying rules of play, there are also varying types of graphs upon
which the game can be played. We focus on generalized Peterson graphs in this
paper, although our main result applies to any cubic graph of girth 8. In [2] the
analysis was extended to I graphs. They proved that the cop number of a connected
I-graph I(n, k, j) is less than or equal to 5.

For generalized Petersen graphs, most research on the cop number has focussed
on its relation to the parameters n and k, rather than focussing on the girth of
the graph. However, the girth of a generalized Petersen graph is straightforward to
determine from n and k. Most generalized Petersen graphs have girth 8, and therefore
fall within the scope of this paper, but there are infinite families whose girth is g for
each 3 ≤ g ≤ 7. We summarize the information about this relationship in Table 1.
In understanding this table, it is important to be aware of the isomorphism classes
of generalized Petersen graphs.

Proposition 2.1 (Steimle and Staton, [16]). Two generalized Petersen graphs
GP (n, k) and GP (n, �) are isomorphic if and only if k = � or k� ≡ ±1 (mod n).

In Table 1, only the smallest value of k in any given isomorphism class is listed.
For example, when n = 2k + 1 the graph GP (n, k) has girth 5, but this relation is
not included in the table because the corresponding graph is isomorphic to GP (n, 2).
(Taking � = 2 and n = 2k + 1 gives k� ≡ −1 (mod n).)

For some families that do not have girth 8, the cop number is already known,
or tighter bounds have been found. For example, when k = 1, GP (n, 1) has a girth
of 4, and its cop number is known to be 2 [2]. Likewise, when k = 3 the girth is 6
(except for some small values of n) and the cop number is known to be at most 3 [2].

It is well-known that a graph has a cop number of 1 if and only if it has a pitfall,
also known as a corner (see for example [6, pp. 30–33]). (A pitfall is a vertex whose
neighbourhood is dominated by a neighbouring vertex.) No generalized Petersen
graph contains a pitfall, so the cop number of any generalized Petersen graph is at
least 2. In order for a generalized Petersen graph to have a cop number of 2, it must
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Table 1: The graph GP (n, k) has girth between 3 and 8. This table from
[4, Theorem 5] gives the girth for GP (n, k) as long as k has the smallest
possible value in that isomorphism class (see Proposition 2.1 to determine the
isomorphism class).

Girth 3 Girth 4 Girth 5 Girth 6 Girth 7 Girth 8
n = 3k n = 4k n = 5k n = 6k n = 7k otherwise

k = 1 k = 2 k = 3 k = 4
n = 5k/2 n = 2k + 2 n = 7k/2

n = 7k/3
n = 2k + 3
n = 3k ± 2

have girth 3 or 4, since for a cubic graph having girth 5 or more while having cop
number 2 would contravene a bound of Aigner and Fromme [1, Theorem 3], which
states that if δ(G) ≥ d and the girth of G is at least 5 then c(G) ≥ d. For the sake of
completeness, we will give a brief explicit proof of this in our situation in Section 3.
This means that when it is proved in [2] that the cop number is at most 3, it will
actually be 3 unless the girth is 4 or less. So in fact, when k = 3 the cop number of
GP (n, k) is 3 unless n ∈ {9, 12}.

Although they do not mention this, the argument given in [2] for k = 3 also serves
to show that the cop number is at most 3 when k = 2 (in which case the girth is 5
except for some small values of n). We present this result here.

Proposition 2.2. The cop number of GP (n, 2) is at most 3. In fact, as long as the
girth of this graph is 5 (that is, unless n ∈ {6, 8}), the cop number of GP (n, 2) is
exactly 3.

Proof. This is very similar to the proof of [2, Theorem 5.1]. As it is not hard to
prove following their strategy but involves very different techniques from the rest of
this paper, we omit the details.

In Table 2, we list all generalized Petersen graphs with n ≤ 40 whose cop number
achieves the upper bound of 4 given in [2]. (Our table is based on the table in [2].)
There are 60 such graphs, 57 of which have girth 8. Note that of these 60 graphs,
only GP (28, 8), GP (35, 10), and GP (35, 15) have girth 7. We remark that two of
the sets of parameters that appear in Table 2 did not appear in [2]; however, the
source code created and used by the authors of [2] is freely available [3] and we used
it to verify that these two sets of parameters do indeed produce graphs whose cop
number is 4. The parameters missing from their paper are n = 25 with k = 7 and
n = 40 with k = 17. A list of the cop number of every generalized Petersen graph
with n ≤ 30 is also given in [7], and their list also shows the cop number of GP (25, 7)
being 4.

We have presented here only a very limited description of some of the extensive
research relating to the game of cops and robbers, and to generalized Peterson graphs.



J. MORRIS ET AL. /AUSTRALAS. J. COMBIN. 83 (2) (2022), 204–224 208

Table 2: GP (n, k) with cop number 4, for n ≤ 40 [2] [7]

n k girth n k girth
25 7 8 34 6, 10, 13, 14 8, 8, 8, 8
26 10 8 35 6, 8, 10, 13, 15 8, 8, 7, 8, 7
27 6 8 36 8, 10, 14, 15 8, 8, 8, 8
28 6, 8 8, 7 37 6, 7, 8, 10, 11, 14, 16 8, 8, 8, 8, 8, 8, 8
29 8, 11, 12 8, 8, 8 38 6, 7, 8, 11, 14, 16 8, 8, 8, 8, 8, 8
31 7, 9, 12, 13 8, 8, 8, 8 39 6, 7, 9, 11, 15, 16, 17 8, 8, 8, 8, 8, 8, 8
32 6, 7, 9, 12 8, 8, 8, 8 40 6, 7, 9, 11, 12, 15, 17 8, 8, 8, 8, 8, 8, 8
33 6, 7, 9, 14 8, 8, 8, 8

Figure 1: These cops have a mate in 2.

R

C1C2

C3

3 Cop number 2

Before we begin stating our results, we must define some terminology:

Definition 3.1. The cops have achieved a mate in 2 if for each edge incident to the
robber there is a cop at distance no more than 2 away from the robber along a path
that uses that edge.

A visual representation of this situation is shown in Figure 1, using the distance-2
subgraph of the robber’s vertex. (In most of this paper, since we are assuming that
the girth is 8, this subgraph is a tree.) As illustrated by the figure, if one cop is in
each of the three branches, occupying any one of the three vertices within distance
2 of the robber, the robber will lose in at most two moves. (We are assuming that
the cops play optimally. It will take two moves only if all cops all start at distance
2 and the robber passes).

So if the cops have not achieved a mate in 2, the robber has a legal move (other
than passing) that does not result in him being caught on the cops’ turn. Thus, if
there is no configuration in which the cops can achieve a mate in 2, then the cops
cannot win, since the robber can on each turn take the legal move that does not
result in his being caught.
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In order for two cops to be able to achieve a mate in 2, some of the vertices in
Figure 1 must be identified. This means that the girth must be 4 or less. Putting this
(and our previous observation that generalized Petersen graphs do not have pitfalls)
together with the information from Table 1, we obtain the following result.

Proposition 3.2. A generalized Petersen graph cannot have cop number 1. A gen-
eralized Petersen graph can have cop number 2 only if k = 1, n = 3k, or n = 4k.

As previously mentioned, it has been observed that when k = 1 the cop number
is indeed 2, and this is also true when n = 3k or n = 4k and k ∈ {2, 3}. However,
when k = 4 and n = 3k or n = 4k the cop number is 3. All of these results are found
in [2].

4 Achieving a mate in 2 with three cops

We can extend the definition of a mate in 2 to apply to the situation that occurs
immediately before the mate in 2:

Definition 4.1. The cops have achieved a mate in 3 if the robber’s best possible
move (aside from passing) allows the cops to achieve a mate in 2 with their move.
This can be generalized to a mate in n, for n > 3: the cops have achieved a mate in
n if the robber’s best possible move (aside from passing) allows the cops to achieve
a mate in n− 1 with their move.

We ignore passing as one of the robber’s options in this definition only because
it complicates descriptions without affecting the underlying situation. As in our
definition of a mate in 2, it may be possible for the robber (by passing) to remain in
a mate in n position for one additional turn, before entering a mate in n−1 position.

With these definitions in hand, we state our key lemma. This will be the essential
ingredient that we use to prove that many generalized Petersen graphs of girth 8
have cop number 4. We will analyse the positions the cops must be in relative to
the robber, in order for three cops to achieve a mate in 3. Our strategy is to show
that many generalized Petersen graphs have no subgraphs on which three cops can
achieve a mate in 3; of course, this implies that three cops cannot win in such graphs.
We note that the fact that some generalized Petersen graphs do contain subgraphs
that theoretically allow three cops to achieve a mate in 3 does not necessarily imply
that the cop number of these graphs is 3 (or less); it may not be possible for the
cops to actually force the robber into a mate in 3 position. Full understanding of the
cop numbers for graphs where such configurations exist is beyond the scope of this
paper.

Lemma 4.2. Suppose that we play cops and robbers on a cubic graph G of girth at
least 8. Further suppose that we are playing with three cops.

The only configuration in which the cops have achieved a mate in 3 but have not
achieved a mate in 2 can be described as follows (note that the graph must have girth
8 for this to be possible):
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Figure 2: These cops have achieved a mate in 3. (Vertices joined by dashed
edges are identified, and C1 is on any one of the encircled vertices)

e1 e2
e3

C1

R

v1 v2 v3

C2 C3

• two of the cops are sitting at points antipodal to the robber on cycles of length 8;

• these two cycles have as their intersection a path of length two consisting of
two of the three edges incident with the robber’s vertex; and

• the third cop is at distance 1 or 2 from the robber, on a path that includes the
third edge incident with the robber’s vertex.

Before proving this lemma, we provide some more commentary.

Figure 2 shows a configuration in which the cops have achieved a mate in 3.
(Note that the dashed lines do not represent edges. Instead they signify that the two
vertices on each end are actually the same vertex.) Cops C2 and C3 are each at the
antipodal point of a cycle of length 8 from the robber, and the intersection of these
two cycles is the path of length 2 consisting of the edges e2 and e3. (We do not rule
out the possibility that some of the other vertices at distance 4 from the robber are
also in fact identified.)

As you can see, the cops in Figure 2 have achieved a mate in 3. The robber
cannot move to v1 without being caught by cop C1. His options if he moves to v2 or
v3 are analogous to each other, so we will only discuss the case where he moves to
v2. The cop C1 follows the robber, maintaining its current distance of 1 or 2. Cops
C2 and C3 come down the middle branch of the tree toward v2. Since they started
at a distance of 4 from the robber and both are moving toward him (and he also
moved toward them), at the end of their turn they are each at distance 2, one on
the left branch from v2 and the other on the right branch (while C1 is on the third
branch from v2: the one that includes edge e2), so the cops have achieved a mate
in 2. (The robber can only afford to pass without being caught if cop C1 begins at
distance 2 from him. In this case, cop C1 moves to v1 and the other two cops remain
in their current positions. On the robber’s next turn, he must move to v2 or v3 to
avoid being caught by cop C1, and our previous analysis is unchanged.)
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Proof of Lemma 4.2. The proof of this lemma is by case analysis of the relative
“current” positions of the robber and the cops at any given point in the game when
it is the robber’s turn to move. We start by assuming that we are playing on a cubic
graph of girth at least 8. We further assume that we are playing with three cops,
and that in the “current” position they have not achieved a mate in 2. We will show
that under these assumptions, the cops have also not achieved a mate in 3 unless
their configuration is as described in the statement of this lemma.

Label the edges incident with the robber’s current vertex as e1, e2, and e3, and use
v1, v2, and v3 to denote the vertices at the opposite end of e1, e2, and e3 (respectively)
from the robber’s current position. When we speak of a “branch from vi” (i ∈
{1, 2, 3}) we mean the set of 8 vertices that include vi itself, along with all of the
vertices that are at distance 4 or less from the robber along a path that includes a
fixed one of the two other neighbours of vi. Figure 3 has each of the two branches
from v2 circled. Note that by this definition, vi itself is on both of the branches
from vi.

Figure 3: Branches from v2 (the left branch is in a dashed ellipse).

e1 e2
e3

R

v1 v2 v3

Recall that since the girth is at least 8, if a cop is at distance 4 or more from
the robber, more than one of the vertices v1, v2, and v3 may lie on a shortest path
between the cop and the robber. Since the cops have not achieved a mate in 2, there
is at least one vertex (v1, v2, or v3) that does not lie on a shortest path of length 2
or less between the robber and some cop. The cases are as follows:

1. there is no cop within distance 2 of the robber’s current position.

2. there is at least one vertex vi (i ∈ {1, 2, 3}) that has at least one cop-free
branch, and any cop on a branch from vi is not at distance 2 or less from the
robber.

3. every vertex vi (i ∈ {1, 2, 3}) either has a cop at distance 2 or less from the
robber on one of its branches (and this is the case for some vi), or has no
cop-free branch.
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To begin with, let us explain briefly why these cases are exhaustive. If Case 1 does
not apply, then there is at least one cop within distance 2 of the robber. Without
loss of generality, let us suppose that this cop is on v1 or one of its neighbours. If
Case 3 does not apply, then there is some vertex vj that has no cop at distance 2 or
less from the robber and has a cop-free branch. So Case 2 applies to vj.

This case analysis will be illustrated with figures. Keep in mind that if the girth
is 8, some of the vertices at distance 4 from the robber in our figures may be the
same as each other, but there are no other duplicated vertices in these illustrations.

Case 1. There is no cop within distance 2 of the robber’s current

position.

This situation is illustrated in Figure 4. This case does cover configurations that
are not exactly like the illustration. For example, one cop might be sitting on a
vertex that has paths of length 4 to the robber’s position through both v1 and v2, or
both of v1’s branches might be cop-free. However, no cop is on any uncircled vertex
of the illustrated subgraph.

Figure 4: There is no cop within distance 2 of the robber’s position.

e1 e2
e3

C1 C2 C3

R

v1 v2 v3

In Case 1, the robber may move to any of its adjacent vertices (v1, v2, or v3).
Without loss of generality, suppose that the robber chooses to move to vertex v1.
The cops’ initial positions mean that none of them can use their move to reach the
robber’s initial vertex, or vertices v2 or v3. Therefore, the cops cannot achieve a mate
in 2. This means that the cops had not achieved a mate in 3 previously.

Case 2. There is at least one vertex vi (i ∈ {1, 2, 3}) that has at least

one cop-free branch, and any cop on a branch from vi is not at dis-

tance 2 or less from the robber.

In Figure 5 we have illustrated this case. Without loss of generality, suppose (as
in the illustration) that vertex v2 satisfies the hypothesis. Since there is no cop at
distance 2 or less there is no cop on v2 or its neighbours; since one of the branches
from v2 is cop-free, we may assume without loss of generality that if any cops are
here at all, they are on the left-hand branch.
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Figure 5: There is a cop-free branch from v2, and any cops on a branch from
v2 are not at distance 2 or less (from the robber). So (assuming the right
branch is cop-free) there are no cops in encircled areas.

e1 e2
e3

R

v1 v2 v3

In this case, the robber should move to vertex v2. Since no cop was within
distance 2 of the robber on either branch from v2, no cop is in a position to capture
the robber immediately on v2. Since the right-hand branch from v2 was cop-free,
after the cops’ move no cop can be within distance 2 of v2 on this branch. Therefore
the cops will not have achieved a mate in 2 after their move.

Once again, this means that the cops had not achieved a mate in 3 in the initial
configuration.

Case 3. Every vertex vi (i ∈ {1, 2, 3}) either has a cop at distance 2 or

less from the robber on one of its branches (and this is the case for

some vi), or has no cop-free branch.

Without loss of generality, we may assume that cop C1 is at distance 2 or less
from the robber, being on vertex v1 or one of its neighbours (other than the robber’s
vertex).

Suppose momentarily that there is a second cop at distance 2 or less from the
robber on one of the branches from one of the other neighbours of the robber’s vertex.
Without loss of generality, we may assume that this neighbour is v2. Since neither of
these cops is on a branch of v3, there cannot be a cop on each of the branches from
v3 unless that cop is also at distance 2 or less from the robber. This contradicts our
hypothesis that the cops have not already achieved a mate in 2.

Thus, v2 cannot have a cop-free branch, so there must be one cop on each of its
branches (and neither of these cops is within distance 2 of the robber) and (similarly)
one cop on each of the branches from v3 (not within distance 2 of the robber). Due
to our girth hypothesis, a single cop cannot be on both branches from a vertex vi
unless she is on vertex vi (and thus within 2 of the robber). Since C1 is not on either
branch from v2 or either branch from v3, these four branches must be covered by cops
C2 and C3. The only way a cop can be on a branch from v2 and a branch from v3 is
for it to be sitting at distance 4 from the robber, on a vertex that is simultaneously
on a branch from v2 and a branch from v3.
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This means that each of C2 and C3 is at the antipodal vertex of a cycle of length
8 from the robber, and (since all four branches from v2 and v3 are involved in these
8-cycles) the intersection of these two cycles consists precisely of the edges e2 and
e3. This is the configuration described in the statement of our lemma as achieving a
mate in 3 and illustrated in Figure 2.

This lemma allows us to prove our main result.

Theorem 4.3. Let G be a cubic graph of girth at least 8. Unless G contains two
cycles of length 8 whose intersection is a path of length 2 (with two edges and three
vertices), we conclude that c(G) ≥ 4: in particular, if G is a generalized Petersen
graph, then this means c(G) = 4.

Proof. Suppose that we play the game on G with 3 cops.

Choose any initial locations for the cops, and consider the set of vertices that are
at distance 3 from C1. Since the girth of G is at least 8 and the valency is 3, there are
12 such vertices, all distinct. At most two of these vertices can hold the other two
cops. Therefore, there are at least 10 vertices the robber can choose for his initial
position that are not occupied by any of the cops, and are not within distance 2 of
cop C1. Therefore the robber has choices for his initial move that do not leave him
in a position where the cops have already achieved a mate in 2.

Using Lemma 4.2 inductively, we see that since the cops have not achieved a
mate in 2, the robber can always prevent them from achieving a mate in 2, and can
therefore win the game. (Our hypothesis about the structure of G together with
Lemma 4.2 implies that the cops can never achieve a mate in 3, and can therefore
never achieve a mate in 2.)

Therefore, c(G) > 3, so c(G) ≥ 4.

By [2], if G is a generalized Petersen graph, then c(G) ≤ 4, so c(G) = 4.

Notice that this result does not necessarily imply that cubic graphs of girth 8
that do have cycles of length 8 whose intersection is a path of length 2 do actually
have cop number 3 or less. All we have shown so far about such graphs is that they
do admit placements for 3 cops and a robber in which the cops have achieved a mate
in 3.

Just as three cops could never actually achieve a mate in 2 in other cubic graphs of
girth 8, it is possible that three cops cannot actually achieve a mate in 3 in some (or
all) families of cubic graphs in which a mate in 3 configuration exists. To determine
this will require further understanding of the structure of these graphs.

In the next section, we undertake an analysis of which generalized Petersen graphs
of girth 8 admit a mate in 3 configuration. Before doing so, we provide a generaliza-
tion of Theorem 4.3 that may be of broader interest but uses very similar arguments.
It is possible that this result is known, but we did not find it in our research into
the literature on this problem. The most closely-related result seems to be Frankl’s
bound [9], showing that if δ(G) > d and the girth of G is at least 8t−3 then c(G) > dt.
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However, for girth 9 we would only have t = 1, so Frankl’s bound would only imply
that c(G) ≥ δ(G), not (as we will show) that c(G) > δ(G).

Theorem 4.4. If G is a connected graph of minimum valency δ ≥ 3 and girth at
least 9, then c(G) > δ.

Proof. We want to show that δ cops cannot capture the robber with optimal play on
both sides, because the robber can always avoid entering a situation where the cops
have achieved a mate in 2. So assume that we are playing the game with δ cops.

As in the proof of Theorem 4.3, since every vertex has valency at least δ and the
girth is at least 9, there are at least δ(δ − 1)2 ≥ 4δ vertices at distance 3 from the
initial position of cop C1, and the robber can choose any one of these that is not
occupied by or adjacent to one of the other δ − 1 cops. So the robber has numerous
options for an initial position v that avoid a mate in 2, since it is not within distance
2 of cop C1. (Every one of the δ or more neighbours of v must have a cop on either
itself or one of its neighbours in order to achieve a mate in 2, which requires all δ
cops, so C1 needs to be involved in any mate in 2 configuration.)

Because we are assuming the girth is at least 9 (rather than 8), we can employ a
simplified version of the proof of Lemma 4.2. Inductively assume that the cops have
not yet achieved a mate in 2, and call the robber’s current vertex v. Then there is
some neighbour u of v such that no cop is on u or any of the neighbours of u. If it
is possible to choose u so that no cop is at distance 4 or less from v on a path that
passes through u, then we do so.

With the goal of contradicting our choice of u, suppose that there is more than
one cop at distance 4 or less from v whose shortest path uses u. Since there are at
least δ neighbours of v and only δ cops, and because the girth of G is at least 9, the
fact that the shortest paths from two of the cops to v have distance 4 or less and pass
through u means that there must be some other neighbour x of v such that none of
the shortest paths from a cop to v that have distance 4 or less pass through x. But
in this circumstance, our criteria for choosing should have led us to choose x rather
than u, a contradiction.

So we may assume that at most one cop is at distance 4 or less from v along a
shortest path that uses u. The robber should move to u. Since there was no cop on
u or any of its neighbours, the cops cannot immediately capture the robber.

Since u has at least two neighbours other than v (δ ≥ 3), one of these neighbours
(say y) is not used in the shortest path from any cop who was within distance 4 of
v, to v. But this means that after the robber has moved to u, there will be no cop
on y or any of its neighbours, so the cops have not achieved a mate in 2.

Thus, the robber always has a move that does not allow the cops to achieve a
mate in 2 if they had not already achieved a mate in 2, so the cops cannot win.
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Figure 6: If v is in A, the labelling is as follows (where v is now labelled ai).

v = ai

ai+1 bi ai−1

ai+2 bi+1 bi+k bi−k bi−1 ai−2

ai+3 bi+2 bi+k+1 bi−k+1 bi+2k ai+k ai−k bi−2k bi+k−1 bi−k−1 bi−2 ai−3
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Figure 7: If v is in B, the labelling is as follows (where v is now labelled bi).

v = bi

bi+k ai bi−k

bi+2k ai+k ai+1 ai−1 ai−k bi−2k

bi+3k ai+2k ai+k+1 ai+k−1 ai+2 bi+1 bi−1 ai−2 ai−k+1 ai−k−1 ai−2k bi−3k
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5 Graphs of girth 8 in which three cops can achieve a mate

in 3

In this section, we determine for which values of n and k the graph GP (n, k) admits
two cycles of length 8 whose intersection is a path of length 2. In other words, we
are finding all the families of generalized Petersen graphs that admit a configuration
in which it is theoretically possible for three cops to achieve a mate in 3.

Assuming the path of length 2 has a fixed vertex v as its central vertex, we see
that we have two possible labellings for the collection of vertices that are within
distance 4 of v, as v can be in either A (shown in Figure 6) or in B (shown in
Figure 7).

Notice that some vertices at distance 4 from v are already the same as others.
The nodes of identified vertices are illustrated by four pairs of matching white shapes
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in Figures 6 and 7. In any generalized Petersen graph, these yield 4 cycles of length
8 that include the given vertex v. In fact, if v ∈ {ai, bi} then each of these cycles
includes both ai and bi. However, no pair of these cycles has for their intersection a
path of length 2 with v at its center (their pairwise intersections all have either 1 or
3 edges). So in order for a mate in 3 configuration to be possible, some of the other
vertices at distance 4 from v must be identified.

We make a list of all possible values of n and k that may give us the structure
we are looking for. These values were found by solving equations modulo n for each
possible pair of vertices at distance 4 from v (without pairing vertices in A with
vertices in B, as they could not possibly be the same). For example, we may have
bi−2k+1 = bi+2k−1, which occurs if 4k− 2 ≡ 0 (mod n). We ignore any solutions that
do not meet the definition of a generalized Petersen graph (which requires that n ≥ 5
and k < n/2).

The relationships between n and k that result in additional cycles of length 8 or
less are as follows, when v ∈ A:

• k = 1, 2, 3, 5;
• k = n− 3 (which can only arise if n = 5 and k = 2);
• k = n− 5 (which can only arise if n− 5 < n/2, so n ≤ 9);
• n = 6, 8;
• n = 2k + i where i ∈ {1, 2, 4};
• n = 3k + i where i ∈ {0,±1,±3};
• n = 4k + i where i ∈ {0,±2};
• n = 5k ± 1 or n = (5k ± 1)/2; and
• n = 6k.

Comparing this to the values in Table 1 and using the smallest value of k from
any isomorphism class (from the classes as given in Proposition 2.1), we see that
of these relationships, only the following can arise in generalized Petersen graphs of
girth 8:

• k = 5;
• n = 2k + 4;
• n = 3k ± 3; and
• n = 4k ± 2.

When v ∈ B, the exact same cases arise with the addition of one extra case where
n = 8k.

Although n = ak + b and n = ak − b produce different graphs, the structures
of their cycles of length 8 as shown in the distance 4 subgraph from any vertex are
identical. Thus, we can illustrate the cycle structure of the cases n = 3k ± 3 with a
single figure, and likewise the cases n = 4k ± 2. Additionally, the cycle structure of
the n = 3k± 3 case is the same regardless of whether v ∈ A or v ∈ B, and the cycle
structure of n = 2k+4 where v ∈ A is the same as the cycle structure of n = 4k± 2
where v ∈ B and vice versa, so these will also share figures in the following analysis.
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Figure 8: v ∈ A and k = 5

v

The first case we consider is k = 5 with v ∈ A. Figure 8 shows the structure of
the subgraph of vertices at distance at most 4 from v. One pair of cycles of length
8 whose intersection is a path of length 2 have been thickened for clarity. In this
graph, each of the three 2-paths centred at v serves as the intersection for two cycles
of length 8. One of these cycles of length 8 can be found by extending the 2-path
upwards from each end along a path of length 3, to the square-shaped vertex. The
other can be found by extending the 2-path upwards from each end along a path of
length 3, to the diamond-shaped vertex. Altogether this gives six cycles of length
8 (three involving the square vertex and three involving the diamond vertex) that
come in pairs forming the structure that makes it possible for the cops to achieve a
mate in 3.

When k = 5 and v ∈ B we do not find two cycles of length 8 whose intersection
is a path of length 2. However, this simply means that the cops cannot achieve a
mate in 3 when the robber is on a B vertex in a graph with k = 5. Since we have
just seen that the cops can achieve a mate in 3 when the robber is on an A vertex,
this family of generalized Petersen graphs must be included as possible exceptions.

The next case to consider is n = 2k + 4 with v ∈ A, which is shown in Figure 9.
As previously noted, this figure also covers the case n = 4k ± 2 with v ∈ B. In this
case, there are again three pairs of cycles of length 8 that intersect in paths of length
2 centred at v. One is to use the vertices indicated by the pentagon and the circle,
another is to use the square and the white star. The third way is to use the vertices
indicated by the white triangle and the white diamond. Again we have made the
edges of the first pair of these 8-cycles bold.

When n = 2k + 4 and v ∈ B or n = 4k ± 2 and v ∈ A, the cycle structure is
shown in Figure 10. There are two ways to make cycles of length 8 that intersect in
paths of length 2. We can use the vertices indicated by the white triangle and the
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Figure 9: Vertices within 4 of v when v ∈ A and n = 2k+ 4, and when v ∈ B
and n = 4k ± 2

v

white diamond, or we can use the vertices indicated by the circle and the square.
Again we have made the edges of the first pair of these 8-cycles bold.

Our next case is n = 3k ± 3, shown in Figure 11. Whether v is in A or B makes
no difference to the structure of the cycles. In this case there are three ways to
make cycles of length 8 that intersect in paths of length 2. We can use the vertices
indicated by the pentagon and the circle, or we can use the vertices indicated by the
white triangle and diamond. Finally, we can use the vertices indicated by the white
star and square. Again, only the first of these has been made bold.

The final case to consider is the n = 8k case, which only results in extra identified
vertices at distance 4 from v if v ∈ B. However, this case does not result in any
cycles of length 8 whose intersection is a path of length 2.

With the above analysis, we have proved the following lemma. Its corollaries
follow immediately from combining this lemma with Theorem 4.3.

Lemma 5.1. Suppose that GP (n, k) has girth 8, and includes two cycles of length
8 whose intersection is a path of length 2. Then up to isomorphism, its parameters
have one of the following forms:

• k = 5;
• n = 2k + 4;
• n = 3k ± 3; or
• n = 4k ± 2.
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Figure 10: Vertices within 4 of v when v ∈ B and n = 2k+4, and when v ∈ A
and n = 4k ± 2

v

Corollary 5.2. Suppose that a generalized Petersen graph GP (n, k) has girth 8 and
is presented with k as small as possible in its isomorphism class. Then the cop
number c(GP (n, k)) = 4 except possibly if one of the following is true:

• k = 5;
• n = 2k + 4;
• n = 3k ± 3; or
• n = 4k ± 2.

Using the information from Table 1, we can replace our hypothesis about the
girth by adding additional parameters to the forbidden list.

Corollary 5.3. Suppose that a generalized Petersen graph GP (n, k) is presented with
k as small as possible in its isomorphism class. Then the cop number c(GP (n, k)) = 4
except possibly if one of the following is true:

• k ∈ {1, 2, 3, 4, 5};
• n = 2k + i with i ∈ {2, 3, 4};
• n = 3k + i with i ∈ {0,±2,±3};
• n = 4k + i with i ∈ {0,±2};
• n = 5k/i with i ∈ {1, 2};
• n = 6k; or
• n = 7k/i with i ∈ {1, 2, 3}.

Our results do not guarantee the cop number is 3 or less in any of these cases;
indeed, from Table 2 we know that there are generalized Petersen graphs with girth 7
(which are therefore included in the above list) that also have cop number 4. All we
really know (except where other results apply, such as the cop number when k = 1)
about the cases that are listed as exceptional in Corollary 5.3 is that they either have



J. MORRIS ET AL. /AUSTRALAS. J. COMBIN. 83 (2) (2022), 204–224 221

Figure 11: n = 3k ± 3

v

girth less than 8, or they admit a configuration in which the cops could theoretically
achieve a mate in 3.

For generalized Petersen graphs with n ≤ 40, the cop numbers are known [2].
(Although a complete list does not appear in [2], the information can be completed
using their algorithm [3].) We can also find the cop number for all generalized
Petersen graphs with n ≤ 30 in [7]. While it might be of interest to provide more
information about all of these graphs, for the sake of brevity we mention only some
highlights here. A table that includes all girths is included as an appendix in the
arχiv version of this paper [13].

None of the graphs of girth 8 that appear in Table 2 have parameters that satisfy
any of the conditions of Corollary 5.2. So it is possible (though the evidence is too
limited to justify conjecturing it) that our result explains all graphs of girth 8 that
have cop number 4.

The three graphs of girth 7 that have cop number 4 are precisely the graphs
whose parameters have the form n = 7k/i where i ∈ {2, 3}. It seems likely that this
family of parameters results in different behaviour with respect to the game of cops
and robbers, than the other families of parameters that give rise to graphs of girth 7.
In fact, while this paper was in the refereeing process, it was proved that for n ≥ 42
these graphs always have cop number 4 [12]. For completeness, these results have
been added into Table 3.

As mentioned previously, a generalized Petersen graph cannot have cop number 1,
and can only have cop number 2 if its girth is 3 or 4. Thus, if n /∈ {3k, 4k} and
k �= 1, then c(GP (n, k)) ∈ {3, 4}. All of the generalized Petersen graphs with n ≤ 40
that have cop number 2 are listed in [2], although this is not clear from what they
write. These graphs are every graph with k = 1 (this is a theoretical result proven
in [2]), and the graphs with n = 3k or n = 4k for k ∈ {2, 3}. We conjecture that
these are the only generalized Petersen graphs that have cop number 2.
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In Table 3 we present what is known about the cop number of the generalized
Petersen graph GP (n, k) when n > 40 (we omit the small cases as these have been
solved completely by computer and there are small exceptional situations that would
make the table more complicated. All of these values were included in the appendix
to the arχiv version of this paper, [13]). We let k be the smallest possible value such
that GP (n, k) ∼= GP (n, �), so k = � or k� ≡ ±1 (mod n).

Table 3: The bounds on the cop number c = c(GP (n, k)) as long as n > 40 and
k has the smallest possible value in that isomorphism class (see Proposition 2.1
to determine the isomorphism class). All of these bounds arise from results in
[2, 12], or this paper.

c = 2 2 ≤ c ≤ 4 c = 3 3 ≤ c ≤ 4 c = 4
k = 1 n = 3k k = 2 4 ≤ k ≤ 5 otherwise

n = 4k k = 3 n = 2k + i, i ∈ {2, 3, 4}
n = 3k + i, i ∈ {±2,±3}
n = 4k + i, i ∈ {±2}
n = 5k/i, i ∈ {1, 2}

n = 6k

6 Conclusion

In this paper we focused on generalized Peterson graphs of girth 8. Given that such
graphs can have a girth g with 3 ≤ g ≤ 8, further research on cops and robbers
played on generalized Peterson graphs of other girths is still needed.

In the introduction we looked at some of the previous work around cops and
robbers on generalized Petersen graphs. Our paper attempts to fill the notable gap
in research on the cop numbers of such graphs that have girth 8. More research,
however, is indicated for girth 8 and for all of the other possible girths.

Problem 6.1. For each of the relationships between n and k listed in Corollary 5.3,
what is c(GP (n, k))?

As previously stated, it has been shown that the specific relationships between
n and k listed in Corollary 5.3 do not guarantee a cop number of 4. However, this
in itself does not guarantee a cop number of 3, so any specific values for their cop
numbers have not yet been proven.

In this study, we have applied a classic version of cops and robbers, whereby
the players have perfect information. However, you could easily take away this
perfect information and analyse how this changes the cop number. Different rules
can significantly affect game play and outcomes.

Problem 6.2. How is the game of cops and robbers affected (in this context) if the
robber doesn’t have perfect information?
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Our results rely heavily on all of the cops being able to move on any cop turn.
In the lazy cops variant of the game, only one cop can move at a time. The “lazy
cop number” is the number of cops required to guarantee that the cops can win with
this rule variant.

Problem 6.3. What is the lazy cop number for various classes of generalized Pe-
tersen graphs? Which generalized Petersen graphs have lazy cop number 2?

In addition to varying rules of play, there are also varying types of graphs upon
which the game can be played. We examined only generalized Petersen graphs in
this paper; however, many different graph families could be analyzed for their cop
numbers. While there has been a great deal of research along these lines, many
families remain unexplored. For example, one could look at the cop numbers for a
particular family of snark graphs.

Definition 6.4. A snark is a connected, bridgeless, simple, cubic graph whose edge-
chromatic number is 4.

Since the Petersen graph is a snark, and our structural result applies to cubic
graphs, such research would be closely related to this paper.

Definition 6.5. The flower snarks are an infinite family of snarks introduced by
Rufus Isaacs [10].

Problem 6.6. What is the cop number of the flower snark Jn?

More research could also be done on cop numbers for I-graphs. The family of
I-graphs is a generalization of the family of generalized Petersen graphs, in which
the jumps on the “outer” cycle are also based on a parameter, rather than joining
consecutive vertices. They are also cubic graphs that have girth at most 8 (although
they are not necessarily connected). Our results certainly apply to some I-graphs,
although we have not investigated this in any detail. However, the upper bound
found in [2] for the cop number of these graphs was 5 rather than 4, and nothing in
our arguments helps to distinguish whether a cop number is 4 or 5 in a cubic graph.
The following question seems quite interesting:

Problem 6.7. When is the cop number of an I graph equal to 5?

Cops and robbers, in all its variations, is a fun and interesting game to play on
different graphs. There is much more research to be done on this topic and many
more facets to explore.
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