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Abstract

In this note, we prove that the domination number of a graph of order
n and minimum degree at least 2 that does not contain cycles of length
3r + 2, where 1 < r <k, and cycles of length 3r + 1 for 1 <r < 2k 4 2,

is at most %n This improves some previous results.

1 Introduction

In this paper, G = (V, E) is a simple graph with vertex set V' of order n and edge set
E. The degree of a vertex v € V', denoted degq(v) (or simply deg(v) if no confusion
arises), is the number of vertices adjacent to it. Let § = §(G) denote the minimum
degree of G.

A subset S C V is a dominating set of G if every vertex v in V' — S has at least
one neighbor in S. The domination number 7(G) equals the minimum cardinality
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of a dominating set in G. A dominating set of cardinality v(G) is called a v(G)-set.
It is well-known that computing the domination number is NP-complete even for
some classes of graphs such as bipartite or split graphs [1], which leads to looking
for good upper and lower bounds in general graphs or in graphs with restrictions on
the minimum degree or with forbidden induced subgraphs.

Ore’s [5] classical upper bound on the domination number says that v(G) < n/2
for graphs G with §(G) > 1. Restricted to graphs G with §(G) > 2, McCuaig
and Shepherd [4] showed that y(G) < 2n/5, with the exception of seven graphs.
In 1996, Reed [6] made another improvement on the upper bound by showing that
v(G) < 3n/8 for graphs G with §(G) > 3. This last upper bound has been extended
for graphs of minimum degree at least two with forbidden cycles. Indeed, Harant and
Rautenbach [2] showed the following result, which was improved in 2011 by Henning
et al. [3].

Theorem 1 ([2]). If G is a graph of order n, minimum degree at least 2 that does
not contain cycles of length 4, 5, 7, 10 or 13, then v(G) < 3n/8.

Theorem 2 ([3]). If G is a (Cy,Cs)-free connected graph of order n > 14 with
0(G) > 2, then v(G) < 3n/8.

In this paper we provide an upper bound on the domination number of graphs
with minimum degree at least two that do not contain certain special cycles.

2 Main result

Before stating our main result, we give some definitions and notation that will be
useful in the sequel. Let G be a connected graph with 6(G) > 2, and let B be the set
of vertices of G with degree at least 3. A path P = vy ...v; in G is called a 2-path if
V(P) C V(G) — B, that is, deg(vy) = - - - = deg(vx) = 2. The 2-path P is said to be
maximal if each of the endvertices of P has a neighbor in B. Let P be a (qi, gx)-path
in G and let ¢1,qo,...,qx (k> 2) be some (distinguished) vertices belonging to P,
where ¢; 1 follows ¢; in the ordering of vertices of the path P, and let P; be a subpath
of P between ¢; and ¢; 1 but not including them such that |V (FP;)| =2 (mod 3) and
all vertices on P; have degree 2, for each i € {1,...,k—1}. For the sake of simplicity,
we will write P = q1 PigoPs . . . g, and call this a special path. Let C' be a cycle in G
and let q1,qo,...,qx (kK > 2) be some (distinguished) vertices belonging to C', where
¢i+1 follows ¢; in the ordering of vertices of the cycle C, and let P; be a subpath of
C' between ¢; and ¢; 1 but not including them, such that |V (F;)| = 2 (mod 3) and
all vertices on P; have degree 2, for each i € {1,...,k}, where P, connects g to ¢.
Again, for the sake of simplicity, we will write C' = ¢ P1q2P» . . . @ Prq1 and call this
a special cycle. Note that the order of a special path is 1 (mod 3) while the order
of a special cycle is 0 (mod 3). A cycle C' is called a tailed-cycle if all vertices of C
except one have degree 2. If C' is a tailed-triangle and x is the unique vertex of C' of
degree at least 3, then z is said to be a triangular vertex. It is worth noting that a
graph might have more tailed-triangles than triangular vertices.
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Let Ay, be the set of all cycles C' of G with length ¢(C') = 3r+2 where 1 <r < k,
and let By be the set of all cycles C of G with length ¢(C) = 3r+1 where 1 < r < k.

Now we are ready to state and prove the main result.

Theorem 3. Let G be a graph on n vertices with 6(G) > 2 and Ay U Bagio = 0.
Then

k42
< .
1G) = 55

Furthermore, the bound is sharp for an infinite family of graphs.

Proof. Suppose, to the contrary, that there is a graph G with §(G) > 2 and
A U Bagro = 0 such that v(G) > 3’“&2 n. We will assume that such a graph G
was chosen such that: (i) |V(G)| + |E(G)| = d*(G) is as small as possible, and (ii)
subject to (i), the sum of the number of tailed-triangles and triangular vertices is as
large as possible. Clearly, GG is a connected graph. Moreover, from the assumption
v(G) > 31212571 we deduce that G is not a cycle (or else, if G is a cycle, then it has
length 0 (mod 3), or has length 1 (mod 3) on at least 6k + 10 vertices, or has length
2 (mod 3) on at least 3k + 5 vertices, which leads, according to each situation, to
v(Cp) < ;k—ﬁn) and thus |B| > 1. Now, if |B| = 1, then G is a graph obtained
from a disjoint union of cycles by identifying one vertex from each cycle into one
vertex, and clearly in this case v(G) < n/3 < 31212571 a contradiction. Hence |B| > 2.
If there are two adjacent vertices x,y € B, then, by the choice of G, we must
have v(G — zy) < 3’“&2571 and since the domination number does not increase by the
removal of any edge, we get a contradiction. Hence B is an independent set of G. On
the other hand, suppose that there is a (maximal) 2-path P = vy ...v; between two
vertices z,y € B but not including them, where zvy,yv; € E(G) and t =0 (mod 3).
By our choice of G, v(G—V(P)) < 3?;25 (n t), and, clearly, any (G —V (P))-set can
be extended to a dominating set of G by adding the vertices vz; 1o for 0 <i <t/3—1.

It follows that v(G) < v(G — V(P)) + t/3 and thus

k42
< _
v(G) < 3k+5(n t)+1/3
k+2 k42
Sy U v L
_ kt2
- 3k+5

a contradiction. Therefore we can assume that such a path does not exist. For the
remainder, we need to state some claims.

Claim 1. G has no special cycle.
Proof of the claim. Suppose, to the contrary, that C' = ¢ PigoPs ... Piq1 (t > 2)
is a special Cycle in G. Note that C cannot be a tailed-cycle because t > 2. For

cach j € {1,...,t}, let P; = xja .. . Let G’ be the graph obtained from G, by
first deleting, for each j, either the Vertlces ... ,x],s _, if s; > 3 or the edge o)), if

s; = 2, and then adding the edge :E?SJ_ 2]t for each j. Observe that d*(G') < d*(G).
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If d*(G") = d*(G), then G" would have more tailed-triangles and triangular vertices
than G, which contradicts the choice of G. Hence we must have d*(G') < d*(G).
It follows that y(G') < %n(G’) and clearly G’ has a y(G’)-set S containing the
vertices qi,...,q. Moreover, S can be extended to a dominating set of G of size

S|+ 522 implying that

k+2 k+2

t
< _ 9

a contradiction. ¢

Claim 2. G has no special path.
Proof of the claim. Suppose, to the contrary, that G has a special path, and let
P=qPigaPs...qPq1 (t > 1) be alongest one in G. For each j € {1,...,t}, let

P; = i) .. xfg] We claim that not both ¢; and ¢.4; can be contained in tailed-
cycles. Assume, to the contrary, that both ¢; and ¢;.1 are contained in tailed-cycles.
Let C1 = (q1us ... upqr) be a tailed cycle containing ¢; and Cy = (qry1ws - . . WinGrt1)
be a tailed cycle containing ¢1. If p = 0 (mod 3) and degq(q1) > 4, then let
G' =G —{u,...,u,}. By the choice of G, we have y(G’) < fk—ﬁn(G’) and clearly
any v(G')-set can be extended to a dominating set of G by adding the vertices us; 1
for 1 < ¢ < p/3, yielding v(G) < ;k—ﬁn, a contradiction. Hence p #Z 0 (mod 3)
or deg,(q1) = 3. Likewise we have m # 0 (mod 3) or degq(¢+1) = 3. Assume
first that t = 1, and let G’ be the graph obtained from G by deleting the vertices
1, Ty, ..., ok, By the choice of G, we have ¥(G') < 422n(G"). We shall show that
G’ has a y(G')-set that contains ¢; and go. Let S be a v(G’)-set such that [SN{q1, ¢2}|
is as large as possible. If ¢1,¢, € S, then we are done. Hence assume, without loss
of generality, that ¢, ¢ S. This implies that degs(q1) > 4. Our earlier assumption
implies that p # 0 (mod 3). Since ¢; € S, we have |S N {uy,...,u,}| > |p/3] +1
and then (S — {uy,...,up}) U{q,us | 1 < ¢ < |p/3]} is a v(G')-set containing
¢1 which contradicts the choice of S. Thus G’ has a v(G’)-set S that contains ¢
and ¢o. Obviously, S can be extended to a dominating set of G of size |S| + %,
yielding 7(G) < £t2n, a contradiction. Assume now ¢ > 2, and let G’ be the

3k+5
graph obtained from G by ﬁrsﬁ deleting the vertices x%,x’;t, as well as, for every

j, either the vertices a2, ... ,xjsj_l if s; > 3 or the edge alad if s; = 2 and then
adding the edge xijx{“ for each j. The graph G’ satisfies d*(G’) < d*(G) and thus,
by the choice of G, we have y(G') < £tZn(G"). Also since G’ has a y(G')-set S

3k+5
containing ¢, ..., q;, and such a set S can be extended to a dominating set of G of
size |S|+5_) 2 2 we get 7(G) < 2220, which is a contradiction. Therefore ¢, and

¢:+1 cannot both be contained in tailed-cycles. Now, to achieve the proof of Claim 2,
let us assume, without loss of generality, that ¢;,; is not contained in a tailed-cycle.
Since deg(gi41) > 3, let a1, by be two neighbors of ¢4y different from 2% . By the
choice of G and our earlier assumption, a; and b; belong to 2-paths Q1 = a1 .. .ay,
Q2 = by ... by, respectively. Let aya,b,b € E(G), where a,b € B. Note that a; # a
and b; # b. Since G does not contain (maximal) 2-paths of order = 0 (mod 3),
we have |V(Q;)| # 0 (mod 3). Also, by the choice of P as being longest we have



R. KHOEILAR ET AL. /AUSTRALAS. J. COMBIN. 83 (1) (2022), 101-108 105

[V(Q:)| # 2 (mod 3). Hence |V(Q;)| =1 (mod 3) for each i € {1,2}.
Consider the following two cases.

Case 1. a # b.

Let G’ be the graph obtained from G by first deleting either the vertices ao, ..., a,

if p > 2 or the edge a;a; either the vertices bo, ..., b, if ¢ > 2 or the edge b;b; and

then adding the edge a1b;. The graph G’ satisfies d*(G") < d*(G) and thus we have
v(G") < 3’“]{125 n(G’). Moreover, G’ has a v(G')-set S containing the Vertex Gi+1, and

obviously S’ can be extended to a dominating set of G of size |S| + 55~ Ly ==, L yielding

v(G) < 3kk125n which is a contradiction.

Case 2. a =b.

If deg(a) > 4, then using an argument similar to that described in Case 1 leads to
the same contradiction. Hence we assume that deg(a) = 3. Let z; be the neighbor
of a different from a,,b,. We distinguish two situations.

Subcase 2.1. z; = ¢q.i
Let G’ be the graph obtained from G by first deleting for every j, either the vertices
... ,xj 1 if s; > 3 or the edge ]z} when s; = 2; either the vertices as, ..., a, if
p>2or the edge a b when p = 1, and the vertices 0y, ..., b,, and then adding the
edges x1b,a 2! and xj H for each j (for an example, see Figure 1). Clearly, G’

satisfies v(G") < 3]{1{125 (G’), and has a y(G’)-set S containing vertices ¢, . .., ¢. Now,
2

since S can be extended to a dominating set of G of size ||+ 2% + 4 + Z;Zl U=

we obtain v(G) < 3’21571 a contradiction.

11 1 2 2 .2 2 2
T] Ty Ty Ty XY x] T5 X3 TY X% ] T

o) q o T
0 4
a
b

Figure 1: An example of the graphs G and G’ in Subcase 2.1

Subcase 2.2. z; # ¢.
Suppose first that ¢; is not contained in a tailed-cycle. By symmetry with vertex qt+1
and noting the above situations, we may assume that there are two 2- paths =
ayay . ..a, and Q4 = byl ...b;l and a vertex a' such that ga}, q1b},d'a;, ,a'by, €

E(G) and deg(a’) = 3. Let G’ be the graph obtained from G by first deleting either
the vertices ao, ..., a, if p > 2 or the edge a;a; either the vertices aj, . .. ,al’m ifpp > 2
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and for every j either the vertices 3 ...,xirl it s; > 3 or the

o _ o=
edge ziz) when s; = 2; and then adding the edges a2 , zid}, xirle for each

j. By the choice of G, we have 7(G') < £tZn(G") and clearly G’ has a (G')-set S

or the edge ajd/,

3k+5
containing qi,...,q. Moreover, since S can be extended to a dominating set of GG
of size | S|+ B3 4+ Bt 4 22:1 8'7:3_2, we deduce that v(G) < fk—ff)n, a contradiction.

Assume now that ¢; is contained in a tailed-cycle C'. Let G’ be the graph obtained
from G by first deleting either the vertices as,...,a, if p > 2 or the edge a;a; for
every j, either the vertices x3,..., 27 _; if s; > 3 or the edge 123 when s; = 2, and
then adding the edges aiz} , xi‘j_lx{‘“ for each j. Clearly G’ is the union of the
graph C' + ¢z1 and a graph G” with 6(G”) > 2. By the induction hypothesis, G”

satisfies v(G") < fk—ﬁn(G”) and has a v(G")-set Sy containing g, ..., ¢41. On the

other hand, clearly (C + q12}) < 3220 (C + qia1) and C + g} has a v(C + qiz})-
set Sy containing ¢;. Now S7 U Sy can be extended to a dominating set of G of size

|S1 U Ss| + ;%1 + Z;Zl SgQ, which leads to v(G) < 312%2571, a contradiction. ¢

Claim 3. G has no cycle C such that |V (C) N B| > 2.

Proof of the claim. Suppose, to the contrary, that G has a cycle C such that |V (C)N
B| > 2. Thus there are vertices q1,...,q, € B and 2-paths Py, ..., P, such that
C=qPigP...,q:Pq. Let P = x{:c% .. xgj for each j. Suppose first that k£ > 3.
By the argument before Claim 1 and according to Claim 2, G has no 2-path of length
= 0,2 (mod 3) between two vertices of B and thus we have |[V(FP;)| = 1 (mod 3).
Let G’ be the graph obtained from G by first deleting either the vertices x1,. .., z!

»Fs1—1

if s1 > 2 or the edge q1z1 when s; = 1, and either the vertices 23, ..., 22 if 55 > 2
or the edge gsz2, when s, = 1 and then adding the edges z! 7. The graph G’
satisfies d*(G’) < d*(G) and thus we have y(G') < ;“k—ﬁn(G’). Furthermore, G’ has
a 7(G')-set S containing ¢y and since S can be extended to a dominating set of G of

size |S| 4 252 + 224 we obtain v(G) < fk—ff)n, a contradiction.

Assume now that k& = 2. If deg(q2) > 4, then by considering the graph G’
obtained from G by first deleting either the vertices z3, ..., z} if s1 > 2 or the edge
q2x% if s; = 1, either the vertices x%, o ,x?rl if s > 2 or the edge q2x§2 if s, = 1 and
then adding the edges :E?Q:E%, we get a contradiction as above. Hence let deg(qs) = 3,
and, by symmetry, we have deg(q;) = 3. Since C' = ¢; Pig2P2q; is a cycle of length
3r + 1 for some r, we deduce from the assumption Boyio = () that » > 2k + 3 and
son > 3r+4 1> 6k + 10. If there exists another 2-path z3z3 ... 23 between ¢; and
G2, then we have B = {q1, ¢} and the set S = {q1, ¢} U {a};, 23,25 | 1 < i <
(s1—1)/3,1 <75 <(se—1)/3,1 <t < (s3—1)/3}is a dominating set of G of size
”T“ < 3kk125n, which leads to a contradiction. Hence we can assume that P; and P,
are the only 2-paths between ¢; and ¢s. Let a; be the neighbor of ¢; different from
1,22 and by be the neighbor of ¢, different from z} , 23. Then a; belongs to a 2-path
Q1 = a1 ...a, and by belongs to a 2-path Qo = by ...b,. Let a,2,b,2" € E(G) where
2,2 € B. By our earlier assumption p = 1 (mod 3) and ¢ = 1 (mod 3). Now, if
z =72/, then G contains a cycle ¢, P1¢2(Q22Q7 *q; which contains three vertices of B,
and as above we get a contradiction. Hence, we may assume that z # 2’. In this case,

let G’ be the graph obtained from G by first deleting either the vertices z3, ...,z if

y sy
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s1 > 2 or the edge z1gs if s1 = 1, either the vertices z3,...,22 if s5 > 2 or the edge
q2? otherwise, either the vertices as, ..., a, if p > 2 or the edge a1z otherwise, either

the vertices by, ..., b, if ¢ > 2 or the edge b,2’ otherwise, and then adding the edges
a;ri, byx?. The graph G’ has minimum degree at least 2, having in particular two
components which are triangles: one contains the vertex ¢; and the other contains
the vertex go. Moreover, G’ satisfies d*(G’) < d*(G), and thus y(G') < 3’%2571((?’).
Since G’ has a v(G')-set S containing ¢, g2, and such a set S can be extended to a
dominating set of G of size |S| + 21 4 221 4 P21 4 424 we obtain v(G) < 312%2571,
which leads to a contradiction again.

We deduce from Claim 3 that all cycles of G are tailed-cycles. Let G be the
graph obtained from G by deleting the vertices of all cycles apart from the vertices
with degree at least 3. Clearly, G is a tree.

Claim 4. G, is a path.

Proof of the claim. We only need to prove that A(G7) < 2. Suppose, to the contrary,
that G; has a vertex = with degree at least 3. Assume that zi,...,z} are the
neighbors of x in G;. Then for each i, vertex 2! belongs to a maximal 2-path

zixh ...zl in G. By our earlier assumption, we have s; = 1 (mod 3) for each 1.

Assume first that = belongs to no cycle in GG. In this case, let G’ be the graph
obtained from G by deleting the vertex z and the vertices xi,... 2% for each i.

Clearly 6(G’) > 2 and by the choice of G’ we have v(G') < %n(G’). Obviously, any

v(G")-set can be extended to a dominating set of G of size v(G') +1+>_;_, 2=t and

it follows that v(G) < ;k—ﬁn, which is a contradiction. Assume now that x belongs

to a cycle C' in G. In this case, let G’ be the graph obtained from G by deleting the
vertices x7,...,z% for each i. Clearly 6(G’) > 2 and G satisfies y(G’) < %n(G’).
Moreover, there is a v(G")-set that contains z, and such a set can be extended to a
dominating set of G of size y(G')+>_;_, =L, which leads as before to a contradiction.

¢

Thus G is a path. It follows that all vertices in B contained in a tailed cycle. Let
x be a vertex of degree 1 in GG, and let za; . .. a,y be a subpath of GGy such that y € B
and deg(a;) = 2 for each ¢ € {1,...,p}. By our earlier assumption p =1 (mod 3).
Let G’ be the graph obtained from G by deleting the vertices ay,...,a,. By the

choice of G, we have v(G’) < ;“k—ﬁn(G’) and clearly G’ has a y(G’)-set S containing

x. Now, since S can be extended to a dominating set of G of size |S|+ I%l, we obtain
k+2

Y(G) < 35 n, which leads to a contradiction. This proves the bound.

To see the sharpness of the bound, let G be the connected graph obtained from
m > 2 disjoint cycles C3, 5 = (w1xy.. .24, ,21),1 < j < m, by adding the edges
rix?, ... xiz". Clearly, §(G) > 2, n(G) = m(3k +5), A U Bapio = 0 and 7(G) =

m(k+2) = 3f‘“k—JfE)n(G') This completes the proof. O
It is worth mentioning that, for & = 1, Theorem 1 immediately follows from

Theorem 3. Moreover, for k > 2, Theorem 3 provides an improvement on the %n—
upper bound for graphs without special cycles.
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We conclude this paper with an open problem and a conjecture.
Problem. Characterize all graphs G on n vertices with §(G) > 2 and with

k+2
Ay U Bago = 0 such that v(G) = 3]{—:_ P

Conjecture. Let k& be a nonnegative integer and let G' be a multigraph of order
n > 6k + 10 with 6(G) > 2. If G has no induced cycle of lengths 3r + 1,3r + 2 for

bt 2
0 <7<k then +(C
<7<k then 5(G) < o

n.
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