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Abstract

In this note, we prove that the domination number of a graph of order
n and minimum degree at least 2 that does not contain cycles of length
3r + 2, where 1 ≤ r ≤ k, and cycles of length 3r + 1 for 1 ≤ r ≤ 2k + 2,
is at most k+2

3k+5
n. This improves some previous results.

1 Introduction

In this paper, G = (V,E) is a simple graph with vertex set V of order n and edge set
E. The degree of a vertex v ∈ V , denoted degG(v) (or simply deg(v) if no confusion
arises), is the number of vertices adjacent to it. Let δ = δ(G) denote the minimum
degree of G.

A subset S ⊆ V is a dominating set of G if every vertex v in V − S has at least
one neighbor in S. The domination number γ(G) equals the minimum cardinality
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of a dominating set in G. A dominating set of cardinality γ(G) is called a γ(G)-set.
It is well-known that computing the domination number is NP-complete even for
some classes of graphs such as bipartite or split graphs [1], which leads to looking
for good upper and lower bounds in general graphs or in graphs with restrictions on
the minimum degree or with forbidden induced subgraphs.

Ore’s [5] classical upper bound on the domination number says that γ(G) ≤ n/2
for graphs G with δ(G) ≥ 1. Restricted to graphs G with δ(G) ≥ 2, McCuaig
and Shepherd [4] showed that γ(G) ≤ 2n/5, with the exception of seven graphs.
In 1996, Reed [6] made another improvement on the upper bound by showing that
γ(G) ≤ 3n/8 for graphs G with δ(G) ≥ 3. This last upper bound has been extended
for graphs of minimum degree at least two with forbidden cycles. Indeed, Harant and
Rautenbach [2] showed the following result, which was improved in 2011 by Henning
et al. [3].

Theorem 1 ([2]). If G is a graph of order n, minimum degree at least 2 that does
not contain cycles of length 4, 5, 7, 10 or 13, then γ(G) ≤ 3n/8.

Theorem 2 ([3]). If G is a (C4, C5)-free connected graph of order n ≥ 14 with
δ(G) ≥ 2, then γ(G) ≤ 3n/8.

In this paper we provide an upper bound on the domination number of graphs
with minimum degree at least two that do not contain certain special cycles.

2 Main result

Before stating our main result, we give some definitions and notation that will be
useful in the sequel. Let G be a connected graph with δ(G) ≥ 2, and let B be the set
of vertices of G with degree at least 3. A path P = v1 . . . vk in G is called a 2-path if
V (P ) ⊆ V (G)−B, that is, deg(v1) = · · · = deg(vk) = 2. The 2-path P is said to be
maximal if each of the endvertices of P has a neighbor in B. Let P be a (q1, qk)-path
in G and let q1, q2, . . . , qk (k ≥ 2) be some (distinguished) vertices belonging to P ,
where qi+1 follows qi in the ordering of vertices of the path P , and let Pi be a subpath
of P between qi and qi+1 but not including them such that |V (Pi)| ≡ 2 (mod 3) and
all vertices on Pi have degree 2, for each i ∈ {1, . . . , k−1}. For the sake of simplicity,
we will write P = q1P1q2P2 . . . qk and call this a special path. Let C be a cycle in G
and let q1, q2, . . . , qk (k ≥ 2) be some (distinguished) vertices belonging to C, where
qi+1 follows qi in the ordering of vertices of the cycle C, and let Pi be a subpath of
C between qi and qi+1 but not including them, such that |V (Pi)| ≡ 2 (mod 3) and
all vertices on Pi have degree 2, for each i ∈ {1, . . . , k}, where Pk connects qk to q1.
Again, for the sake of simplicity, we will write C = q1P1q2P2 . . . qkPkq1 and call this
a special cycle. Note that the order of a special path is 1 (mod 3) while the order
of a special cycle is 0 (mod 3). A cycle C is called a tailed-cycle if all vertices of C
except one have degree 2. If C is a tailed-triangle and x is the unique vertex of C of
degree at least 3, then x is said to be a triangular vertex. It is worth noting that a
graph might have more tailed-triangles than triangular vertices.
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Let Ak be the set of all cycles C of G with length �(C) = 3r+2 where 1 ≤ r ≤ k,
and let Bk be the set of all cycles C of G with length �(C) = 3r+1 where 1 ≤ r ≤ k.

Now we are ready to state and prove the main result.

Theorem 3. Let G be a graph on n vertices with δ(G) ≥ 2 and Ak ∪ B2k+2 = ∅.
Then

γ(G) ≤ k + 2

3k + 5
n.

Furthermore, the bound is sharp for an infinite family of graphs.

Proof. Suppose, to the contrary, that there is a graph G with δ(G) ≥ 2 and
Ak ∪ B2k+2 = ∅ such that γ(G) > k+2

3k+5
n. We will assume that such a graph G

was chosen such that: (i) |V (G)| + |E(G)| = d∗(G) is as small as possible, and (ii)
subject to (i), the sum of the number of tailed-triangles and triangular vertices is as
large as possible. Clearly, G is a connected graph. Moreover, from the assumption
γ(G) > k+2

3k+5
n, we deduce that G is not a cycle (or else, if G is a cycle, then it has

length 0 (mod 3), or has length 1 (mod 3) on at least 6k+10 vertices, or has length
2 (mod 3) on at least 3k + 5 vertices, which leads, according to each situation, to
γ(Cn) ≤ k+2

3k+5
n) and thus |B| ≥ 1. Now, if |B| = 1, then G is a graph obtained

from a disjoint union of cycles by identifying one vertex from each cycle into one
vertex, and clearly in this case γ(G) ≤ n/3 < k+2

3k+5
n, a contradiction. Hence |B| ≥ 2.

If there are two adjacent vertices x, y ∈ B, then, by the choice of G, we must
have γ(G− xy) ≤ k+2

3k+5
n, and since the domination number does not increase by the

removal of any edge, we get a contradiction. Hence B is an independent set of G. On
the other hand, suppose that there is a (maximal) 2-path P = v1 . . . vt between two
vertices x, y ∈ B but not including them, where xv1, yvt ∈ E(G) and t ≡ 0 (mod 3).
By our choice of G, γ(G−V (P )) ≤ k+2

3k+5
(n−t), and, clearly, any γ(G−V (P ))-set can

be extended to a dominating set of G by adding the vertices v3i+2 for 0 ≤ i ≤ t/3−1.
It follows that γ(G) ≤ γ(G− V (P )) + t/3 and thus

γ(G) ≤ k + 2

3k + 5
(n− t) + t/3

<
k + 2

3k + 5
(n− t) +

k + 2

3k + 5
t

=
k + 2

3k + 5
n,

a contradiction. Therefore we can assume that such a path does not exist. For the
remainder, we need to state some claims.

Claim 1. G has no special cycle.
Proof of the claim. Suppose, to the contrary, that C = q1P1q2P2 . . . qtPtq1 (t ≥ 2)
is a special cycle in G. Note that C cannot be a tailed-cycle because t ≥ 2. For
each j ∈ {1, . . . , t}, let Pj = xj

1x
j
2 . . . x

j
sj
. Let G′ be the graph obtained from G, by

first deleting, for each j, either the vertices xj
2, . . . , x

j
sj−1 if sj ≥ 3 or the edge xj

1x
j
2 if

sj = 2, and then adding the edge xj
sj
xj+1
1 for each j. Observe that d∗(G′) ≤ d∗(G).
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If d∗(G′) = d∗(G), then G′ would have more tailed-triangles and triangular vertices
than G, which contradicts the choice of G. Hence we must have d∗(G′) < d∗(G).
It follows that γ(G′) ≤ k+2

3k+5
n(G′) and clearly G′ has a γ(G′)-set S containing the

vertices q1, . . . , qt. Moreover, S can be extended to a dominating set of G of size
|S|+∑t

j=1
sj−2

3
, implying that

γ(G) ≤ k + 2

3k + 5
(n−

t∑

j=1

(sj − 2)) <
k + 2

3k + 5
n,

a contradiction. �
Claim 2. G has no special path.
Proof of the claim. Suppose, to the contrary, that G has a special path, and let
P = q1P1q2P2 . . . qtPtqt+1 (t ≥ 1) be a longest one in G. For each j ∈ {1, . . . , t}, let
Pj = xj

1x
j
2 . . . x

j
sj
. We claim that not both q1 and qt+1 can be contained in tailed-

cycles. Assume, to the contrary, that both q1 and qt+1 are contained in tailed-cycles.
Let C1 = (q1u1 . . . upq1) be a tailed cycle containing q1 and C2 = (qt+1w1 . . . wmqt+1)
be a tailed cycle containing qt+1. If p ≡ 0 (mod 3) and degG(q1) ≥ 4, then let
G′ = G − {u1, . . . , up}. By the choice of G, we have γ(G′) ≤ k+2

3k+5
n(G′) and clearly

any γ(G′)-set can be extended to a dominating set of G by adding the vertices u3i−1

for 1 ≤ i ≤ p/3, yielding γ(G) < k+2
3k+5

n, a contradiction. Hence p 
≡ 0 (mod 3)
or degG(q1) = 3. Likewise we have m 
≡ 0 (mod 3) or degG(qt+1) = 3. Assume
first that t = 1, and let G′ be the graph obtained from G by deleting the vertices
x1
1, x

1
2, . . . , x

1
s1. By the choice of G, we have γ(G′) ≤ k+2

3k+5
n(G′). We shall show that

G′ has a γ(G′)-set that contains q1 and q2. Let S be a γ(G′)-set such that |S∩{q1, q2}|
is as large as possible. If q1, q2 ∈ S, then we are done. Hence assume, without loss
of generality, that q1 
∈ S. This implies that degG(q1) ≥ 4. Our earlier assumption
implies that p 
≡ 0 (mod 3). Since q1 
∈ S, we have |S ∩ {u1, . . . , up}| ≥ �p/3
 + 1
and then (S − {u1, . . . , up}) ∪ {q1, u3i | 1 ≤ i ≤ �p/3
} is a γ(G′)-set containing
q1 which contradicts the choice of S. Thus G′ has a γ(G′)-set S that contains q1
and q2. Obviously, S can be extended to a dominating set of G of size |S| + s1−2

3
,

yielding γ(G) < k+2
3k+5

n, a contradiction. Assume now t ≥ 2, and let G′ be the
graph obtained from G by first deleting the vertices x1

1, x
t
st , as well as, for every

j, either the vertices xj
2, . . . , x

j
sj−1 if sj ≥ 3 or the edge xj

1x
j
2 if sj = 2 and then

adding the edge xj
sj
xj+1
1 for each j. The graph G′ satisfies d∗(G′) < d∗(G) and thus,

by the choice of G, we have γ(G′) ≤ k+2
3k+5

n(G′). Also since G′ has a γ(G′)-set S
containing q1, . . . , qt, and such a set S can be extended to a dominating set of G of
size |S|+∑t

j=1
sj−2

3
, we get γ(G) < k+2

3k+5
n, which is a contradiction. Therefore q1 and

qt+1 cannot both be contained in tailed-cycles. Now, to achieve the proof of Claim 2,
let us assume, without loss of generality, that qt+1 is not contained in a tailed-cycle.
Since deg(qt+1) ≥ 3, let a1, b1 be two neighbors of qt+1 different from xt

st . By the
choice of G and our earlier assumption, a1 and b1 belong to 2-paths Q1 = a1 . . . ap,
Q2 = b1 . . . bq, respectively. Let apa, bqb ∈ E(G), where a, b ∈ B. Note that a1 
= a
and b1 
= b. Since G does not contain (maximal) 2-paths of order ≡ 0 (mod 3),
we have |V (Qi)| 
≡ 0 (mod 3). Also, by the choice of P as being longest we have
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|V (Qi)| 
≡ 2 (mod 3). Hence |V (Qi)| ≡ 1 (mod 3) for each i ∈ {1, 2}.
Consider the following two cases.

Case 1. a 
= b.
Let G′ be the graph obtained from G by first deleting either the vertices a2, . . . , ap
if p ≥ 2 or the edge a1a; either the vertices b2, . . . , bq if q ≥ 2 or the edge b1b; and
then adding the edge a1b1. The graph G′ satisfies d∗(G′) < d∗(G) and thus we have
γ(G′) ≤ k+2

3k+5
n(G′). Moreover, G′ has a γ(G′)-set S containing the vertex qt+1, and

obviously S can be extended to a dominating set of G of size |S|+ p−1
3

+ q−1
3
, yielding

γ(G) < k+2
3k+5

n, which is a contradiction.

Case 2. a = b.
If deg(a) ≥ 4, then using an argument similar to that described in Case 1 leads to
the same contradiction. Hence we assume that deg(a) = 3. Let z1 be the neighbor
of a different from ap, bq. We distinguish two situations.

Subcase 2.1. z1 = q1.i
Let G′ be the graph obtained from G by first deleting for every j, either the vertices
xj
2, . . . , x

j
sj−1 if sj ≥ 3 or the edge xj

1x
j
2 when sj = 2; either the vertices a2, . . . , ap if

p ≥ 2 or the edge a1b when p = 1, and the vertices b1, . . . , bq, and then adding the
edges x1

1b, a1x
t
st and xj

sj
xj+1
1 for each j (for an example, see Figure 1). Clearly, G′

satisfies γ(G′) ≤ k+2
3k+5

n(G′), and has a γ(G′)-set S containing vertices q1, . . . , qt. Now,

since S can be extended to a dominating set of G of size |S|+ p−1
3

+ q−1
3

+
∑t

j=1
sj−2

3
,

we obtain γ(G) < k+2
3k+5

n, a contradiction.

G :
q1 q2 q3 q4

x5
1x1

1 x1
2 x1

3 x1
4 x2

1 x2
2 x2

3 x2
4 x2

5 x3
1 x3

2

a1

b1

a2

b2

a3

b3

a4

b4
b

G′ :
q1 q2 q3 q4

x5
1x1

1 x2
1 x2

5 x3
1 x3

2

a1
b

Figure 1: An example of the graphs G and G′ in Subcase 2.1

Subcase 2.2. z1 
= q1.
Suppose first that q1 is not contained in a tailed-cycle. By symmetry with vertex qt+1

and noting the above situations, we may assume that there are two 2-paths Q′
1 =

a′1a
′
2 . . . a

′
p1

and Q′
2 = b′1b

′
2 . . . b

′
q1

and a vertex a′ such that q1a
′
1, q1b

′
1, a

′a′p1 , a
′b′q1 ∈

E(G) and deg(a′) = 3. Let G′ be the graph obtained from G by first deleting either
the vertices a2, . . . , ap if p ≥ 2 or the edge a1a; either the vertices a

′
2, . . . , a

′
p1

if p1 ≥ 2
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or the edge a′1a
′, and for every j either the vertices xj

2, . . . , x
j
sj−1 if sj ≥ 3 or the

edge xj
1x

j
2 when sj = 2; and then adding the edges a1x

t
st , x

1
1a

′
1, x

j
sj−1x

j+1
1 for each

j. By the choice of G, we have γ(G′) ≤ k+2
3k+5

n(G′) and clearly G′ has a γ(G′)-set S
containing q1, . . . , qt. Moreover, since S can be extended to a dominating set of G
of size |S|+ p−1

3
+ p1−1

3
+
∑t

j=1
sj−2

3
, we deduce that γ(G) < k+2

3k+5
n, a contradiction.

Assume now that q1 is contained in a tailed-cycle C. Let G′ be the graph obtained
from G by first deleting either the vertices a2, . . . , ap if p ≥ 2 or the edge a1a; for
every j, either the vertices xj

2, . . . , x
j
sj−1 if sj ≥ 3 or the edge xj

1x
j
2 when sj = 2, and

then adding the edges a1x
t
st , x

j
sj−1x

j+1
1 for each j. Clearly G′ is the union of the

graph C + q1x
1
1 and a graph G′′ with δ(G′′) ≥ 2. By the induction hypothesis, G′′

satisfies γ(G′′) ≤ k+2
3k+5

n(G′′) and has a γ(G′′)-set S1 containing q2, . . . , qt+1. On the

other hand, clearly γ(C + q1x
1
1) ≤ k+2

3k+5
n(C + q1x

1
1) and C + q1x

1
1 has a γ(C + q1x

1
1)-

set S2 containing q1. Now S1 ∪ S2 can be extended to a dominating set of G of size
|S1 ∪ S2|+ p−1

3
+
∑t

j=1
sj−2

3
, which leads to γ(G) < k+2

3k+5
n, a contradiction. �

Claim 3. G has no cycle C such that |V (C) ∩B| ≥ 2.
Proof of the claim. Suppose, to the contrary, that G has a cycle C such that |V (C)∩
B| ≥ 2. Thus there are vertices q1, . . . , qk ∈ B and 2-paths P1, . . . , Pk such that
C = q1P1q2P2 . . . , qkPkq1. Let Pj = xj

1x
j
2 . . . x

j
sj

for each j. Suppose first that k ≥ 3.
By the argument before Claim 1 and according to Claim 2, G has no 2-path of length
≡ 0, 2 (mod 3) between two vertices of B and thus we have |V (Pi)| ≡ 1 (mod 3).
Let G′ be the graph obtained from G by first deleting either the vertices x1

1, . . . , x
1
s1−1

if s1 ≥ 2 or the edge q1x
1
1 when s1 = 1, and either the vertices x2

2, . . . , x
2
s2 if s2 ≥ 2

or the edge q3x
2
s2

when s2 = 1 and then adding the edges x1
s1
x2
1. The graph G′

satisfies d∗(G′) < d∗(G) and thus we have γ(G′) ≤ k+2
3k+5

n(G′). Furthermore, G′ has
a γ(G′)-set S containing q2 and since S can be extended to a dominating set of G of
size |S|+ s1−1

3
+ s2−1

3
, we obtain γ(G) < k+2

3k+5
n, a contradiction.

Assume now that k = 2. If deg(q2) ≥ 4, then by considering the graph G′

obtained from G by first deleting either the vertices x1
2, . . . , x

1
s1

if s1 ≥ 2 or the edge
q2x

1
1 if s1 = 1, either the vertices x2

1, . . . , x
2
s2−1 if s2 ≥ 2 or the edge q2x

2
s2 if s2 = 1 and

then adding the edges x2
s2
x1
1, we get a contradiction as above. Hence let deg(q2) = 3,

and, by symmetry, we have deg(q1) = 3. Since C = q1P1q2P2q1 is a cycle of length
3r + 1 for some r, we deduce from the assumption B2k+2 = ∅ that r ≥ 2k + 3 and
so n ≥ 3r + 1 ≥ 6k + 10. If there exists another 2-path x3

1x
3
2 . . . x

3
s3

between q1 and
q2, then we have B = {q1, q2} and the set S = {q1, q2} ∪ {x1

3i, x
2
3j , x

3
3t | 1 ≤ i ≤

(s1 − 1)/3, 1 ≤ j ≤ (s2 − 1)/3, 1 ≤ t ≤ (s3 − 1)/3} is a dominating set of G of size
n+1
3

< k+2
3k+5

n, which leads to a contradiction. Hence we can assume that P1 and P2

are the only 2-paths between q1 and q2. Let a1 be the neighbor of q1 different from
x1
1, x

2
s2
and b1 be the neighbor of q2 different from x1

s1
, x2

1. Then a1 belongs to a 2-path
Q1 = a1 . . . ap and b1 belongs to a 2-path Q2 = b1 . . . bq. Let apz, bqz

′ ∈ E(G) where
z, z′ ∈ B. By our earlier assumption p ≡ 1 (mod 3) and q ≡ 1 (mod 3). Now, if
z = z′, then G contains a cycle q1P1q2Q2zQ

−1
1 q1 which contains three vertices of B,

and as above we get a contradiction. Hence, we may assume that z 
= z′. In this case,
let G′ be the graph obtained from G by first deleting either the vertices x1

2, . . . , x
1
s1

if
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s1 ≥ 2 or the edge x1
1q2 if s1 = 1, either the vertices x2

2, . . . , x
2
s2 if s2 ≥ 2 or the edge

q1x
2
1 otherwise, either the vertices a2, . . . , ap if p ≥ 2 or the edge a1z otherwise, either

the vertices b2, . . . , bq if q ≥ 2 or the edge b1z
′ otherwise, and then adding the edges

a1x
1
1, b1x

2
1. The graph G′ has minimum degree at least 2, having in particular two

components which are triangles: one contains the vertex q1 and the other contains
the vertex q2. Moreover, G′ satisfies d∗(G′) < d∗(G), and thus γ(G′) ≤ k+2

3k+5
n(G′).

Since G′ has a γ(G′)-set S containing q1, q2, and such a set S can be extended to a
dominating set of G of size |S|+ s1−1

3
+ s2−1

3
+ p−1

3
+ q−1

3
, we obtain γ(G) < k+2

3k+5
n,

which leads to a contradiction again. �

We deduce from Claim 3 that all cycles of G are tailed-cycles. Let G1 be the
graph obtained from G by deleting the vertices of all cycles apart from the vertices
with degree at least 3. Clearly, G1 is a tree.

Claim 4. G1 is a path.
Proof of the claim. We only need to prove that Δ(G1) ≤ 2. Suppose, to the contrary,
that G1 has a vertex x with degree at least 3. Assume that x1

1, . . . , x
t
1 are the

neighbors of x in G1. Then for each i, vertex xi
1 belongs to a maximal 2-path

xi
1x

i
2 . . . x

i
si

in G. By our earlier assumption, we have si ≡ 1 (mod 3) for each i.
Assume first that x belongs to no cycle in G. In this case, let G′ be the graph
obtained from G by deleting the vertex x and the vertices xi

1, . . . , x
i
si

for each i.
Clearly δ(G′) ≥ 2 and by the choice of G we have γ(G′) < k+2

3k+5
n(G′). Obviously, any

γ(G′)-set can be extended to a dominating set of G of size γ(G′)+1+
∑t

i=1
si−1
3

and
it follows that γ(G) < k+2

3k+5
n, which is a contradiction. Assume now that x belongs

to a cycle C in G. In this case, let G′ be the graph obtained from G by deleting the
vertices xi

1, . . . , x
i
si
for each i. Clearly δ(G′) ≥ 2 and G satisfies γ(G′) < k+2

3k+5
n(G′).

Moreover, there is a γ(G′)-set that contains x, and such a set can be extended to a
dominating set ofG of size γ(G′)+

∑t
i=1

si−1
3

, which leads as before to a contradiction.
�

Thus G1 is a path. It follows that all vertices in B contained in a tailed cycle. Let
x be a vertex of degree 1 in G1, and let xa1 . . . apy be a subpath of G1 such that y ∈ B
and deg(ai) = 2 for each i ∈ {1, . . . , p}. By our earlier assumption p ≡ 1 (mod 3).
Let G′ be the graph obtained from G by deleting the vertices a1, . . . , ap. By the
choice of G, we have γ(G′) ≤ k+2

3k+5
n(G′) and clearly G′ has a γ(G′)-set S containing

x. Now, since S can be extended to a dominating set of G of size |S|+ p−1
3
, we obtain

γ(G) < k+2
3k+5

n, which leads to a contradiction. This proves the bound.

To see the sharpness of the bound, let G be the connected graph obtained from
m ≥ 2 disjoint cycles Cj

3k+5 = (xj
1x

j
2 . . . x

j
3k+5x

j
1), 1 ≤ j ≤ m, by adding the edges

x1
1x

2
1, . . . , x

1
1x

m
1 . Clearly, δ(G) ≥ 2, n(G) = m(3k + 5), Ak ∪ B2k+2 = ∅ and γ(G) =

m(k + 2) = k+2
3k+5

n(G). This completes the proof. �

It is worth mentioning that, for k = 1, Theorem 1 immediately follows from
Theorem 3. Moreover, for k ≥ 2, Theorem 3 provides an improvement on the 3

8
n-

upper bound for graphs without special cycles.
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We conclude this paper with an open problem and a conjecture.

Problem. Characterize all graphs G on n vertices with δ(G) ≥ 2 and with

Ak ∪ B2k+2 = ∅ such that γ(G) =
k + 2

3k + 5
n.

Conjecture. Let k be a nonnegative integer and let G be a multigraph of order
n ≥ 6k + 10 with δ(G) ≥ 2. If G has no induced cycle of lengths 3r + 1, 3r + 2 for

0 ≤ r ≤ k, then γ(G) <
k + 2

3k + 5
n.
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