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Abstract

A threshold graph is any graph which can be constructed from the empty
graph by repeatedly adding a new vertex that is either adjacent to every
vertex or to no vertices. The Eulerian number <Z> counts the number
of permutations of size n with exactly k ascents. Implicitly, Beissinger
and Peled proved that the number of labeled threshold graphs on n > 2

vertices is
n—1 n— 1 i
—k 2%.
So-n( "))

k=1
Their proof used generating functions. We give a direct combinatorial
proof of this result.

1 Introduction

This paper deals with threshold graphs, which can be defined recursively as follows.
The empty graph is the unique threshold graph on 0 vertices. An n-vertex graph G
is a threshold graph if and only if it can be obtained by taking a threshold graph
G' on n — 1 vertices and adding a new vertex which is either isolated or adjacent to
every other vertex of G'.

Threshold graphs were first studied by Chvatal, and Hammer [3] in relation to
linear programming, and since then they have been extensively studied. One such
reason for this is that threshold graphs can be characterized in several different ways.
For example, G is a threshold graph if and only if it contains no induced subgraph
isomorphic to 2Ky, Py, or Cy [6]. Variations such as random threshold graphs [4] and
oriented threshold graphs [2] have been studied in recent years. We refer the reader
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Figure 1: G = T(24135, + + — — —)

to the book “Threshold Graphs and Related Topics” [6] for more information and
characterizations of threshold graphs.

It is easy to prove that the number of unlabeled threshold graphs on n vertices
is exactly 27!, Let t, denote the number of labeled threshold graphs on n vertices.
Beissinger and Peled found the exponential generating function of ¢, to be e"(1 —
x)/(2—¢€") [1]. Using this they were able to derive an asymptotic formula for ¢,,, and
implicitly they found an exact formula for ¢, in terms of the Eulerian numbers <Z>,
which we shall now define.

Let §,, denote the set of permutations of size n, where we treat our permutations
as words written in one line notation. Given m € §,, we say that position ¢ with
1 <i<n-—1isan ascent of 7 if m; < m;;1. Let Asc(m) denote the set of ascents of a
permutation 7 and let asc(m) = |Asc(m)|. Define the Eulerian number (}) to be the
number of permutations 7 € S, with asc(w) = k. With this, a formula for ¢,, can be
stated as follows.

Theorem 1 ([1]). Forn > 2, the number of labeled threshold graphs on n vertices is

n_l(n - k:)<Z B i>2’f

k=1

This result can be derived from (16) of Beissinger and Peled [1] through some
algebraic manipulation, though it is not immediately obvious that this is the case.
Here we give a more direct and combinatorial proof of Theorem 1.

2 Proof of Theorem 1

We will say that a pair (7, w) is a threshold pair (of size n) if 7 € S, and if w is
a word in {+1,—1}". Given a threshold pair (7,w), let T'(w, w) denote the labeled
threshold graph obtained as follows. Let GGy be the graph with a single vertex ;.
Given G;_; with 2 < ¢ < n, define GG; by introducing a new vertex to G;_; labeled
m; that is either connected to every vertex of G, ; if w; = +1, and otherwise m;
is an isolated vertex. We then let T'(m,w) = G,. As an example, Figure 1 shows

G = T'(24135, + + — — —), where for ease of notation we have omitted the 1’s in w.
We will use G as a working example throughout this paper.
There are several ways to write G, for example, G = T(42351,— + — — —). We

wish to standardize our choice of a threshold pair. To this end, we will say that a
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threshold pair (7, w) of size n > 2 is in standard form if w; = wy and if w; = w; 4
implies m; < ;41 forall 1 < i < n. For example, (42351, —+———) is not in standard
form but (24135,+ + — — —) is. Our first goal will be to prove the following.

Lemma 2. Let G be a labeled threshold graph on n > 2 vertices. Then there exists
a unique threshold pair (m,w) in standard form such that G =T (7, w).

To prove this, we require two more lemmas.

Lemma 3. Let (7, w) and (o,u) be threshold pairs of sizen > 2 and let Gy := T (w, w)
and Go := T(o,u). Then G1 = Gy as labeled graphs if and only if the following two
conditions hold.

(a) wy = uyg for all k > 2.

(b) For every 1 < i <, if j = m;, " and k = o, ', then either 1 € {j, k} and
Wp = Wiax{jk} for all 1 < € < max{j,k}, or for every { with min{j,k} < ¢ <
max{7j, k} we have w, = w; = wy.

Proof. We first show that these conditions are necessary. We claim that condition
(a) is necessary to have G isomorphic to Ga, which certainly implies that (a) is
necessary for (G; and GGy to be equal as labeled graphs. This claim is true when
n = 2. Assume the claim has been proven up to some n > 3. If w, # u,, then
exactly one of G; and G5 will have an isolated vertex, so they cannot be isomorphic.
Otherwise let G| be G after deleting vertex m, and G be G5 after deleting o,,. Note
that in both cases we either delete an isolated vertex or a vertex adjacent to every
other vertex since w,, = u,,. Thus G; = G if and only if G} = G,. The result follows
by applying the inductive hypothesis to G} and G since the words generating these
graphs are the words w and u after deleting their last letters. Thus (a) is necessary.

We next show that (b) is necessary. Assume for contradiction that G; = G5 and
that (b) does not hold for some i. By the above claim, we can assume that (a) holds.
Let j = m; " and k = o;'. If j = k then (b) holds, a contradiction. Thus we can
assume that j # k, and without loss of generality we can assume j < k. Let d, be
the degree of vertex i in G, for r = 1,2. First consider the case j = 1 and wy = +1.
In this case dy = [{€ :wp, = +1, £ > 1} and dy =k — 1+ [{{ : w, = +1, { > k},
where we used that u, = w, for all £ > 1 by (a). Thus d; < dy unless w, = +1
for all 1 < ¢ < k. Because G; = Go, this must be the case, so (b) holds for i, a
contradiction. Essentially the same proof works if j = 1 and wy = —1.

Now assume j > 1 and w; = +1,s0dy = 7 — 1+ |{{ : w, = +1, £ > j}|. If
wp = —1 then dy = [{¢ : w, = +1, { > k}| < d; since j —1 > 1 by assumption.
In this case we cannot have G; = G5, so we can assume wy = +1. This implies
dy =k —14+|{¢: w, = +1, £ > k}|. This will be strictly larger than d; unless
wy = +1 for all j < ¢ < k. Thus (b) holds for i, a contradiction. Essentially the
same proof works if j > 1 and w; = +1. We conclude that (b) is necessary.

To show that these conditions are sufficient, let (7,w) and (o,u) be threshold

pairs satisfying (a) and (b). Fix some i and let j = 7; " and k = o;'. We can
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assume without loss of generality that j < k. First consider the case 7 = 1 and
wy = +1. Then the neighborhood of i in Gy is {m,' : ¢ > j, w, = +1}, and the
neighborhood of i in Gy is {7, ' : ¢ < k} U {m, ' : £ > k, w, = +1}, where again we
used that u, = wy for all £ > 1. By (b), w, = +1 for all 1 < ¢ < k, so these two sets
are equal. The same result holds if 7 = 1 and w;, = —1.

Assume j > 1 and w; = +1. We have uy = wy = w; = +1 by (a) and (b). Thus
the neighborhood of i in Gy is {m,! : £ < j}U{m, ' : £ > j, w, = +1}, and the
neighborhood of i in Gy is {m,' : ¢ < k} U {m, ' : £ >k, w, = +1}. By (b) we have
wy = +1 for all j < £ < k, so these sets are equal. The same result holds if j > 1
and w; = —1. We conclude that the neighborhoods of every vertex is the same in

both G; and (G, and hence G = Gbs. I

Lemma 4. If G is a threshold graph on n > 2 wvertices, then there exists a threshold
pair (m,w) such that G =T (7, w).

Proof. This certainly holds when n = 2, so assume it holds up to some n > 3.
Because G is a threshold graph, there exists a labeled threshold graph H on n — 1
vertices such that G is isomorphic to H together with the additional vertex n which
is either isolated or adjacent to every other vertex of G'. Denote this labeled graph
that G is isomorphic to by K.

By our inductive hypothesis, H = T(xn’,w’) for some threshold pair (7', w’).
Define 7 by 7, = m, for K < n and 7, = n. Define w by w, = wj, for k < n
with w, = —1 if K contains an isolated vertex and w, = +1 otherwise. Then
K =T (m,w). By construction there exists a graph isomorphism o : V(K) — V(G).
Thus T'(o o m,w) is isomorphic to G with the identity map serving as the graph
isomorphism. In other words, G = T'(0 o 7w, w). O

Proof of Lemma 2. We first show that such a pair exists. Let (7, w’) be a threshold
pair with G = T'(7’, w'), which exists by Lemma 4. Define w by wy = wj, for k > 1
and w; = wy. Note that T'(7',w) = G by Lemma 3. Next define 7 by repeatedly
flipping adjacent letters of 7’ that are out of order. More precisely, let 7(© = 7/,
Inductively assume we have defined 7). If (7(9), w) is in standard form, take 7 = 7).
Otherwise there exists some index ¢ such that ij ) > W§i)1 and w; = w;41. Define
70+ by 7T§j+1) = 7rl-(_]21, ﬂgﬂl) = ij), and with W,ijﬂ) = W,ij) for all other k. Note
that this process eventually terminates (this can be seen, for example, by noting that
the number of inversions decreases at each step), and that T'(7U+) w) = T(7) w)
for all j by Lemma 3. As T(7®, w) = T(7',w) = G, we conclude that T'(7,w) = G,
and hence such a pair exists.

To show that this pair is unique, assume that (o,u) is also a threshold pair in
standard form with G = T'(o,u). By Lemma 3 we must have u;, = wy for all
k > 1. Further, u; = us = wy = w; since the pairs are in standard form. We
next partition w into maximal segments that are all 1. To this end, let p, = 1.
Inductively given p,_;, define p, to be the smallest integer p such that w, # w,, ,,
and let p, = n + 1 if no such integer exists. Define P. = {m; : p, < i < p,41} and

Sr = {Ui tpr < i< pr+1}~
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We claim that P, = S, for all . Indeed, assume that there exists some 7 € P,
and i € S, with, say, r < 7/. Let j = 7; ' and k = 0;'. By Lemma 3 we have
wy = wj for all 7 < ¢ < k. In particular this holds for ¢ = p,;; since j < p,41 <k,
which is a contradiction since w, = w; by assumption of m; € F,. We conclude
that P, = S, for all r. Because (m,w) is in standard form, we also must have
Ty < Tppg1 < -+ < T, for all , and the same inequalities hold with 7 replaced
by o. We conclude that m; = o; for all p, < ¢ < p,y; for all r, and hence 7 = o,

proving the result. O

We now define our sets for the desired bijection. Let T, denote the set of labeled
threshold graphs on n vertices. Let S for n > 2 be the set of permutations of

length n with m; < my. That is, these are the set of permutations which begin with
an ascent. Define P, ;= {(m, A) : m € S}, A C Asc(n)}.

Proposition 5. There exists a bijection from T, to P,.

Proof. Let G be a labeled threshold graph and (7¢,w®) the unique threshold pair
guaranteed by Lemma 2. Define Ay, = {i : wf = wl,, 2 < i < n—1}. Let
Ag = AL U {1} if wy = +1 and let Ag = A}, if w; = —1. Define ¢(G) = (7%, Ag).
For example, if G is as in Figure 1, we have (7% wY) = (24135, + + — — —), and
hence ¢(G) = (24135, {1, 3,4}). We claim that the map ¢ gives the desired bijection.

We first show that ¢ is a map from T, to P,. Indeed, because (7% w%) is in
standard form, we have w{ = w§ and hence 7 < 7§, so 7¢ € 8. By similar
reasoning we find that Ag C Asc(7), proving the claim.

Let (m, A) be an element of P,,. We define the word w as follows. Let w; = wy =
+1if 1 € A and set w; = wy = —1 otherwise. Given wy, let wy; = wy if k€ A
and otherwise let wy,1 = —wy. We claim that G = T'(7, w) is the unique threshold
graph with ¢(G) = (, A).

First observe that A C Asc(w) implies the pair (7, w) is in standard form. Thus
o(G) = (7, Ag), and it is not difficult to verify that Ag = A by construction, so
o(G) = (m, A). Assume that H is also such that ¢(H) = (m, A), so in particular
7 = 7. We claim that w} = wy for all k. Indeed, because Ay = A, we must
ave wil = wy, as this completely determines whether 1 is in Ay or not, and also
wi = wh = w; = w, since both pairs are in standard form. Inductively assume that
wil = wy, for some 2 < k <n—1. If k € A, then we must have w,; = wfl = w;, =
w41, and otherwise we have w,fﬂ = —w,f = —wp = Wiy1. We conclude the result
by induction. Thus (7, w#) = (7, w) = (7%, w), and we conclude that H = G by
Lemma 2. Thus each element of P, is mapped to by a unique element of 7, and the
result follows. U

=

All that remains is to enumerate P,. To this end, we say that a permutation 7
has a descent in position @ if m; > 7;1.

Lemma 6. For all n and d withn > 1 and 0 < d < n—1, let S;Cd be the set of
permutations of size n which begin with an ascent and which have exactly d descents.
If P(n,d) := |S;;d|, then P(n,d) = (d + 1)<";1>.
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We note that this result is proven in [7], but for completeness we include the
full proof here. For this proof, we recall the following recurrence for the Eulerian
numbers, which is valid for all n > 1 and d > 0 after adopting the convention <2> =0
for d > 0, <8> =1, and <_"1> =0 [5]:

<’;>:(d+1)<”;1>+(n—d)<3:i>. (1)

Proof. The result is true for d = 0, so assume d > 1. For any fixed d the result is
true for n =1, so assume n > 2. To help us prove the result, we define S ; to be the
set of permutations which begin with a descent and which have exactly d descents.
Define M(n,d) =[S, ,|. By construction we have

P(n,d) + M(n,d) = <Z> (2)

Define the map ¢ : ST, — S,_1 by sending 7 € S, to the word obtained by
removing the letter n from . We wish to determine the image of ¢. Let 7 be a
permutation in Sid, and let ¢ denote the position of n in w. Note that ¢ # 1 since
7 begins with an ascent. If i = n or m;_; > m; 41 with ¢ > 2, then ¢(7) will continue
to have d descents and begin with an ascent, so ¢(7) € SJ_M. If i =2 and m; > 3,
then ¢(7) € S,y 4 If w1 < miqq, then ¢(m) € S 4 5.

It remains to show how many times each element of the image is mapped to by
o. If me S:_Ld, then n can be inserted into 7 in d + 1 ways to obtain an element of
S:[,d (it can be placed at the end of 7 or in between any m; > m;41). If 7 € S:[_Ld_l,
then n can be inserted in 7 in n — d ways to obtain an element of S:[’ 4 (it can be
placed in between any m; < m;4q). If 7 € S, ;, then n must be inserted in between
m > 79 in order to have the word begin with an ascent. With this and the inductive
hypothesis, we conclude that

P(n,d) = (d+1)P(n—1,d)+ (n— d)P(n—1,d— 1) + M(n — 1,d)

:(d+1)2<n;2>+(n—d)d<3:f>+M(n—1,d). (3)

By using (2), the inductive hypothesis, and (1); we find

n—1

M(n—l,d):< . >—P(n—1,d)
:<n;1>_(d+1)<n;2>
:(n—d)<3:f>.

Substituting this into (3) and applying (1) again gives the result. O
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Corollary 7. Letn > 2 and 1 < k < n—1. The number of permutations of S;" with
ezactly k ascents is (n — k){}_1).

Note that there is no need to consider k = 0 as every permutation of S; auto-
matically has at least one ascent.

Proof. This quantity is exactly (n — k:)<nﬁik> by Lemma 6 after replacing d with
n —1—k (as any permutation of size n with k ascents has n — 1 — k descents). It
is well known and easy to prove that <Z}> = <m_”f_m> for m > 0 [5], from which the
result follows. O

Proof of Theorem 1. By Proposition 5 it is enough to prove that P, has this car-
dinality. Given 7 € S, the number of pairs (7, A) € P, is exactly 28 By
Corollary 7 we conclude that

Pl=S -} 1)

k=1

proving the result. O
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