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Abstract

It is a long-standing question of Stanley whether or not the chromatic
symmetric function (CSF) distinguishes unrooted trees. Previously, the
best computational result proved that it distinguishes all trees with at
most 25 vertices (K. Russell, 2014, http://jlmartin.faculty.ku.edu/
∼jlmartin/CSF/). In this paper, we present a novel probabilistic algo-
rithm which may be used to check more efficiently that the CSF distin-
guishes a set of trees. Applying it, we verify that the CSF distinguishes
all trees with up to 29 vertices.

1 Introduction

Richard Stanley asked in [8] whether the chromatic symmetric function (CSF) distin-
guishes unrooted trees. Since then, it has been proven that the CSF distinguishes all
trees in each of several subclasses ([1], [2], [3]). Tan ([10]) and independently Smith,
Smith, and Tian ([6]) have computationally verified that the CSF distinguishes all
trees on at most 23 vertices, and Russell ([5]) has shown computationally that it
distinguishes all trees on at most 25 vertices.

When expressed with respect to commonly-used bases for the space of symmet-
ric functions, the chromatic symmetric function of an arbitrary tree on n vertices
contains a number of distinct terms equal to the number of partitions of n, growing
super-polynomially with n. Therefore, computing the chromatic symmetric function
directly requires a super-polynomial number of operations, making verification of
Stanley’s conjecture for trees on n vertices computationally difficult as n increases.

We present a probabilistic polynomial time algorithm for determining whether
two trees S and T on n vertices have equal chromatic symmetric functions without
explicitly computing the chromatic symmetric functions XS and XT . If in fact XS �=
XT , with probability at least 1 − 1

2k
this algorithm returns a proof that XS �= XT

in O(kn3) time, where k is a specified accuracy parameter. Using a variant of this
algorithm, we verify computationally that Stanley’s chromatic symmetric function
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distinguishes all trees on at most 29 vertices up to isomorphism. In fact, we do so
by checking that a certain truncation of the chromatic symmetric function is unique
for all trees up to this size. This leads us to pose the following question, which is
stronger than Stanley’s original.

Question. Does the 3-truncated chromatic symmetric function distinguish all un-
rooted trees up to isomorphism?

The organization of this paper is as follows. In Section 2 we briefly state some
standard definitions regarding chromatic symmetric polynomials. In Section 3 we
give present our algorithm along with proofs of its effectiveness. Finally, in Section 4,
we explain how we use our algorithm to verify the uniqueness of the chromatic
symmetric function on trees with up to 29 vertices.

2 Preliminaries

We use the notation for symmetric functions found in [8].

Definition 2.1. The ith power-sum symmetric function is defined by

pi(x1, x2, . . . ) =

∞∑
j=1

xi
j .

For a partition λ = (λ1, . . . , λk) � n, one writes pλ =
∏k

i=1 pλi
.

Definition 2.2. Given a graph G = (V (G), E(G)), a proper coloring of G is defined
to be a mapping κ : V (G) → N such that, for any u, v ∈ V (G), if uv ∈ E(G) then
κ(u) �= κ(v).

Definition 2.3. (Stanley, [8], Definition 2.1) For a graph G, Stanley defined the
chromatic symmetric function of G, denoted XG, in [8] as follows:

XG =
∑
κ

∏
v∈V (G)

xκ(v),

where x1, x2, . . . are commuting indeterminates and the sum is taken over all proper
colorings κ of G.

Additionally, when the graph G is understood, for any proper coloring κ we let
xκ =

∏
v∈V (G) xκ(v).

3 A Probabilistic Algorithm for Distinguishing Chromatic

Symmetric Functions

Definition 3.1. Let G be a graph on n vertices, and let Sv,c be the set of all proper
colorings of G such that the color of vertex v is c. Then, for each vertex v of G and
each color c, we define the function Zv

G(c) by

Zv
G(c) =

∑
κ∈Sv,c

∏
u∈G

xκ(u).
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We will let Y v
G(c) = XG−Zv

G(c) be the sum of all terms xκ =
∏

u∈G xκ(u) in the CSF
XG such that κ(v) �= c.

The next two lemmas follow directly from the definitions.

Lemma 3.1. Let G be a graph on the vertex set {1, 2, . . . , n}, and let v be a vertex
of G. Then, we have

∞∑
c=1

Zv
G(c) = XG.

The function Zv
G(c) simplifies the task of finding the chromatic symmetric function

XG for a graph G by reducing it to cases in which the color of a certain vertex of the
graph is fixed. This is particularly helpful for rooted trees, since we can reconstruct
Zv

G(c) for a rooted tree given the corresponding information about its rooted subtrees.

Lemma 3.2. Let T be a tree rooted at vertex v, and let v1, . . . , vk be the vertices of
T adjacent to v. For each 1 ≤ i ≤ k, let Ti be the connected component of T \ {v}
containing vi. Then

Zv
T (c) = xc

k∏
i=1

(XTi
− Zv

Ti
(c)) = xc

k∏
i=1

Y v
Ti
(c).

Lemma 3.3. Let T be a tree on n vertices rooted at v. Then, there exists a unique
n-tuple of symmetric functions, (F1, . . . , Fn), each in the indeterminates x1, x2, . . . ,
such that, for any c ∈ N,

Zv
T (c) =

n∑
l=1

xl
cFl.

Proof. First, we will prove that such an n-tuple of symmetric functions must exist.
We proceed by induction on n. In the base case of n = 1, we have Zv

T (c) = xc. For the
inductive step, we use the fact that Zv

T (c) = xc

∏k
i=1(XTi

− Zv
Ti
(c)), by Lemma 3.2.

Note that XTi
is a symmetric function and by the inductive hypothesis, Zv

Ti
(c) is

a polynomial in xc with symmetric functions as coefficients. This shows that each
term in the product can be written as a polynomial in xc with symmetric function
coefficients, and taking their product along with xc gives that Z

v
T (c) is indeed of the

desired form.
Uniqueness follows from the fact that the set {xc, x

2
c , . . . , x

n
c } is linearly indepen-

dent with respect to the symmetric functions.

Using Lemma 3.3, we make the following definition.

Definition 3.2. For a tree T on n vertices and a vertex v of T , define the sym-
metric function sequence of T rooted at v to be the unique sequence sfs(T, v) =
(F1, F2, . . . , Fn) of symmetric functions satisfying Zv

T (c) =
∑n

i=1 x
i
cFi.

Combining Lemmas 3.1 and 3.3 yields the following corollary.
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Corollary 3.4. If, for some vertex v of T , sfs(T, v) = (F1, . . . , Fn), then

XT =
n∑

i=1

piFi.

We now present a recursive algorithm for computing the chromatic symmet-
ric function XT of a tree T in the p-basis. In this algorithm, the tree is tra-
versed down from its root and calls itself at each step. Lemma 3.2 and Corol-
lary 3.4 are then used to piece together the symmetric function sequence of T .

Algorithm 3.1 COMPUTE-CSF(n-vertex tree T )

v ← arbitrary vertex of T
(F1, F2, . . . , Fn)← COMPUTE-SFS(T, v)
return p1F1 + p2F2 + · · ·+ pnFn

Algorithm 3.2 COMPUTE-SFS(n-vertex tree T , vertex v)

if T is single vertex then
return (1)

end if
v1, . . . , vk ← vertices adjacent to v in T
for i = 1 to k do

Ti ← connected component of T rooted at vi
end for
F1 ← 1
for i = 2 to n do

Fi ← 0
end for
d← 1 // d is the degree of the polynomial we create
for i = 1 to k do

for j = 1 to d do
Hj ← Fj

end for
G1, . . . , Gm ← COMPUTE-SFS(Ti, vi) // ZTi

(c) = G1xc + · · ·+Gmx
m
c

// XTi
− ZTi

(c) = G̃0 + G̃1xc + · · ·+ G̃mx
m
c

G̃0 ← p1G1 + p2G2 + · · ·+ pmGm // compute the CSF XTi

for j = 1 to m do
G̃j ← −Gj

end for
for j = 1 to m+ d do

Fj ← 0
end for
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// multiply the old polynomial (F1xc+F2x
2
c+· · ·+Fdx

d
c) (stored inH1, . . . , Hd)

by (G̃0+G̃1xc+· · ·+G̃mx
m
c ) to get a new polynomial F1xc+F2x

2
c+· · ·+Fd+mx

d+m
c

for j = 1 to d do
for p = 0 to m do

Fj+p ← Fj+p +HjG̃p

end for
end for
d← d+m

end for
return (F1, F2, . . . , Fn)

Note that a call to COMPUTE-SFS(T, v) will recursively result in calls to
COMPUTE-SFS for the subtree of T rooted at each vertex u, for a total of n func-
tion calls. After each COMPUTE-SFS call on a subtree of m vertices, there are m
symmetric function multiplications and m− 1 additions, followed by (m+ 1)d mul-
tiplications and additions, for a total of at most (m+1)(d+1) of each. Since m ≤ n
and d ≤ n, and there are n COMPUTE-SFS calls, the number of symmetric func-
tion multiplications and additions required for COMPUTE-SFS(T, v) is bounded by
a polynomial in n for a tree T on n vertices.

The drawback to this recursive algorithm is the high computational cost of each
symmetric function multiplication and addition. Since the chromatic symmetric
function XT of T , if represented in the p-basis, can in the worst case contain a
term for each partition of n, the cost of each symmetric function multiplication and
addition grows proportionally to eO(

√
n).

To efficiently determine that the chromatic symmetric functions of a set of trees
are distinct without incurring the super-polynomial cost of explicitly computing the
complete chromatic symmetric function of each tree, we will define a homomorphism
from the set of chromatic symmetric functions to a smaller finite set.

It follows from Theorem 2.5 of [8] that for any chromatic symmetric function
XG, there is some polynomial F ∈ Z[p1, p2, . . . ] such that XG = F (p1, p2, . . . ). An
immediate corollary is that any linear combination X = k1XG1 + · · · + knXGn of
CSFs, for integers k1, . . . , kn, is an element of Z[p1, p2, . . . ].

Definition 3.3. Let X ∈ Z[p1, p2, . . . ]. Then, for each q ∈ N, and each infinite
tuple C = (C1, C2, . . . ) ∈ (Z/qZ)∞, define the C-evaluation modulo q of X to be
the image of F under the evaluation homomorphism πq,C : Z[p1, p2, . . . ] → Z/qZ
satisfying πq,C(F ) = F (C1, C2, . . . ). We denote the C-evaluation modulo q of X by
ϕq,C(X).

In other words, πq,C expands X in the power basis and sets pi = Ci for each
i. Note that for each q ∈ N, C ∈ (Z/qZ)∞, ϕq,C is a homomorphism from the
polynomial ring Z[p1, p2, . . . ] to the ring Z/qZ. Using the C-evaluation modulo q
of the chromatic symmetric function and the fact that ϕq,C is a homomorphism, we
provide an analogous version of Algorithm 3.1 to compute ϕq,C(XT ) for a tree T
without fully computing XT .
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Algorithm 3.3 COMPUTE-EVAL-CSF(n-vertex tree T , q ∈ N, C ∈ (Z/qZ)n)

v ← arbitrary vertex of T
(r1, r2, . . . , rn)← COMPUTE-EVAL-SFS(T, v, q, C)
return C1r1 + C2r2 + · · ·+ Cnrn mod q

Algorithm 3.4 COMPUTE-EVAL-SFS(n-vertex tree T , vertex v, q ∈ N, C ∈
(Z/qZ)n)

if T is single vertex then
return (1)

end if
v1, . . . , vk ← vertices adjacent to v in T
for i = 1 to k do

Ti ← subtree of T rooted at vi
end for
r1 ← 1
for i = 2 to n do

ri ← 0
end for
d← 1 // d is the degree of the polynomial we create
for i = 1 to k do

for j = 1 to d do
tj ← rj

end for
s1, . . . , sm ← COMPUTE-EVAL-SFS(Ti, vi, q, C)
s̃0 ← C1s1 + C2s2 + · · ·+ Cmsm mod q // compute ϕq,C(XTi

)
for j = 1 to m do

s̃j ← −sj
end for
for j = 1 to m+ d do

rj ← 0
end for
for j = 1 to d do

for p = 0 to m do
rj+p ← rj+p + tj s̃p mod q

end for
end for
d← d+m

end for
return (r1, r2, . . . , rn)

Proposition 3.5. For a tree T on n vertices and a modulus q, Algorithm 3.3 ter-
minates in O(n2(log q)2) time.

Proof. First, the additional computation in Algorithm 3.3 after the call to Algo-
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rithm 3.4 includes n multiplications and additions of (log q)-bit integers, which takes
O(n(log q)2) time, so it suffices to show that 3.4 terminates in O(n2(log q)2) time.

Thus, we claim that for each positive integer n and for any tree T on n vertices,
Algorithm 3.4 requires at most 12n2 addition, multiplication, and modulus operations
on elements of Z/qZ.

We proceed by induction. When n = 1, the algorithm immediately terminates
and returns (1), so the base case holds.

We now assume inductively that our claim holds for all trees on at most n − 1
vertices, and prove that it must also hold for trees on n vertices.

Let T be a tree on n vertices, select an arbitrary root vertex v, and let T1, . . . , Tk

be the subtrees of T rooted at the children of v. Let m1, . . . , mk be the numbers of
vertices in T1, . . . , Tk, respectively. Also, let m0 = 1 for simplicity.

For each integer 1 ≤ i ≤ k, let di =
∑i−1

j=0mi. Note that since initially d = 1 and
mi is added to d after iteration i, di is the initial value of d during the iteration of
the outer loop corresponding to subtree Ti.

On iteration i, the initial for loop requires di operations. Then, by our inductive
assumption, the call to COMPUTE-EVAL-SFS requires at most 12m2

i operations.
The following line includes at most mi each of addition, multiplication, and modulus
operation, for a total of 3mi operations. The for loop initializing the ri values to
zero requires di +mi operations. The nested for loops in which rjsp is added to rj+p

require at most 3di(mi + 1) operations, since one addition, one multiplication, and
one modulus operation takes place in the inner loop.

Therefore, the total number of operations performed on iteration i of the loop is at
most di+12m2

i+3mi+di+mi+3di(mi+1) = 12m2
i+3midi+5di+4mi ≤ 12m2

i+12midi.
The number of additional steps performed in the outer loop is at most 5n, in-

cluding n each for finding the vertices adjacent to v, finding the subtrees of T rooted
at these vertices, initializing the ri values, and returning the final sequence, and the
additional constant-time operations.

Taking the sum over all iterations and adding in the operations from the outer
loop, the total number of operations required is at most

5n+

k∑
i=1

12m2
i + 12midi

≤ 5n+

k∑
i=1

12m2
i +

k∑
i=1

12mi +

k∑
i=1

i−1∑
j=1

12mimj

≤ 5n+

k∑
i=1

12m2
i + 12m2m1 +

k−1∑
i=2

12mkmi + 12mkm1 +

k∑
i=1

i−1∑
j=1

12mimj

≤ 5n+

k∑
i=1

12m2
i +

k∑
i=1

k∑
j=i+1

12mimj +

k∑
i=1

i−1∑
j=1

12mimj

≤ 5n+

k∑
i=1

k∑
j=1

12mimj
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≤ 5n+ 12

(
k∑

i=1

mi

)2

= 5n+ 12(n− 1)2

= 5n+ 12n2 − 24n+ 12

≤ 12n2.

Thus, by induction, our claim is proven.
Finally, since all addition, multiplication, and modulus operations are performed

on positive integers at most q, the time per operation is O((log q)2). Therefore, as
there are at most 12n2 operations, the total runtime of Algorithm 3.4 is O(n2(log q)2),
which implies that Algorithm 3.3 terminates in O(n2(log q)2) time, as desired.

As Algorithm 3.3 can be performed using a number of multiplications and ad-
ditions of elements of Z/qZ that is polynomial in n, if q = O(exp(p(n))) for some
polynomial p, then this algorithm will terminate in polynomial time. To show that
XS �= XT it suffices to find such a modulus q and an n-tuple C ∈ (Z/qZ)n such that
ϕq,C(XS) �= ϕq,C(XT ). This leads us presently to our main theorem, after one final
lemma.

Lemma 3.6. Let q be a prime, and let f ∈ (Z/qZ)[x1, x2, . . . , xm] be a polynomial
of degree n that is not identically zero. Then, if C1, C2, . . . , Cm are elements of Z/qZ
chosen uniformly at random, the probability that f(C1, C2, . . . , Cm) ≡ 0 (mod q) is
at most n

q
.

Proof. We proceed by induction on m. The claim is true when m = 1 because Z/qZ
forms a field.

For the inductive step, we assume that our claim holds for polynomials in at most
m− 1 variables, for some m ≥ 2, and we will prove that it also holds for m-variable
polynomials. We group the terms of the polynomial f by powers of xm: for some
polynomials g0, g1, . . . , gn ∈ (Z/qZ)[x1, x2, . . . , xm−1], it follows that

f(x1, x2, . . . , xm) =

a∑
i=0

gi(x1, x2, . . . , xm−1)x
i
m

for some 1 ≤ a < n.
There are two disjoint cases: either all the gi(x1, x2, . . . , xm−1) always evaluate to

zero, or there is some i such that gi(x1, . . . , xm−1) is not always zero. Since the degree
of f is n, the degree of ga is at most n−a, so the probability that ga ≡ 0 (mod q) is at
most n−a

q
. On the other hand, if not all the gi(x1, x2, . . . , xm−1) evaluate to 0, then by

the inductive hypothesis Pr[f(C1, C2, . . . , Cm) ≡ 0 (mod q)] ≤ a
n
. The probability

that f(C1, C2, . . . , Cm) is 0 is at most the probability that every gi(x1, x2, . . . , xm−1)
is always 0 added to the probability that they are not always 0 multiplied by
the probability that f(C1, C2, . . . , Cm) is 0. This gives Pr[f(C1, C2, . . . , Cm) ≡ 0
(mod q)] ≤ n−a

q
+ 1 · a

q
= n

q
.

Thus, by induction, our claim holds for all positive integers m and each value
of n.
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Algorithm 3.5 SHOW-DISTINCT-CSFS(n-vertex tree S, n-vertex tree T , k ∈ N)

q ← n2

primeCount← 0
while primeCount < n do
if q is determined to be prime by trial division then
for i = 1 to �k/ log2(n)� do
for j = 1 to n do
Cj ← random element of Z/qZ

end for
rS ←COMPUTE-EVAL-CSF(S, q, C)
rT ←COMPUTE-EVAL-CSF(T, q, C)
if rS �= rT then
return ‘Proved that XS �= XT .’

end if
end for
primeCount← primeCount+ 1

end if
q ← q + 1

end while
return ‘Could not prove that XS �= XT .’

Theorem 3.7. For trees S and T on n vertices such that XS �= XT and for each
k ∈ N, with probability at least 1 − 2−k Algorithm 3.5 will prove that XS �= XT by
generating a positive integer q and a n-tuple C = (C1, . . . , Cn) ∈ (Z/qZ)n such that
ϕq,C(XS) �= ϕq,C(XT ) in O(n3k) time.

Proof. First, we prove that if XS and XT are distinct, Algorithm 3.5 will obtain a
verification that XS �= XT with probability at least 1− 2−k.

Let fS and fT be polynomials such that fS(p1, . . . , pn) = XS and fT (p1, . . . , pn) =
XT , where p1, . . . , pn are elements of the p-basis for symmetric functions, and let
f = fS − fT . By Theorem 2.5 of [8], XT =

∑
U⊆E(T )(−1)|U |pλ(U), where E(T ) is the

set of edges of T . Since T is a tree on n vertices, |E(T )| = n−1, so |P(E(T ))| = 2n−1.
Therefore, the sum of the absolute values of the coefficients of XT in the p-basis is at
most 2n−1 and the same result holds for XS. Therefore, by the Triangle Inequality,
the sum of the absolute values of the coefficients of XS−XT in the p-basis is at most
2n.

As f(p1, p2, . . . , pn) = XS −XT , this implies that the sum of the absolute values
of the coefficients of f is at most 2n, so each coefficient of f has absolute value
bounded by 2n. As Algorithm 3.5 generates n distinct primes larger than n2, it
takes at most logn2 2n = O( n

logn
) primes till their product is greater than 2n. Then

one of them, say q, cannot divide all the coefficients of f . Hence, for this prime
q, f(x1, x2, . . . , xn) is not identically zero over Z/qZ. The algorithm generates an
n-tuple C of randomly-selected residues modulo Z/qZ and then computes ϕq,C(XS)
and ϕq,C(XT ).
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By Lemma 3.6, since f is a polynomial in n variables, deg f ≤ n, and f is not iden-
tically 0 over Z/qZ for at least one choice of q, the probability that f(C1, C2, . . . , Cn)
≡ 0 (mod q) is at most n

q
< n

n2 = 1
n
. Therefore, with probability at least 1− 1

n
,

f(C1, C2, . . . , Cn) = ϕq,C(XS −XT ) = ϕq,C(XS)− ϕq,C(XT ) �= 0,

in which case the algorithm has shown that ϕq,C(XS) �= ϕq,C(XT ) and hence returns
that XS �= XT .

The algorithm generates k independent n-tuples C, each leading to a proof that
XS �= XT with probability at least 1 − 1

n
, so the probability that it does not return

XS �= XT after k
log2 n

iterations is at most 1

n
k

log2 n
= 1

2k
, so it takes O( k

log2 n
) iterations

to achieve this desired probability. Hence, if XS �= XT , then the algorithm will find a
pair (q, C) for which ϕq,C(XS) �= ϕq,C(XT ), showing that XS �= XT , with probability
at least 1− 2−k.

Next, we will show that Algorithm 3.5 terminates after O(n3k) steps.
It was proven in [4] that x

log x+2
≤ π(x) ≤ x

log x−4
, where π(x) is the number of

primes less than x. Applying these bounds, we claim that for sufficiently large n
there are at least n

logn
primes between n2 and 2n2. Note that

π(2n2)− π(n2) ≥ 2n2

2 logn+ log 2 + 2
− n2

2 logn− 4

≥ 2n2

2 logn+ 4
− n2

2 logn− 4

≥ 2n2(2 logn− 4)− n2(2 logn + 4)

4(log n)2 − 16

≥ 2n2 logn− 12n2

4(logn)2 − 16

≥ n2(log n− 6)

2(logn)2

≥ n2

2(logn)2

>
n

log n

for all n > e7, as desired. Therefore, for sufficiently large n we must test at most n2

integers for primality, each of which is at most 2n2. As trial division can determine
whether or not n is prime in O(

√
n) time, this implies that our algorithm will generate

the desired n
logn

primes in O(n3) time.
For each prime q generated by our algorithm, it first generates n random elements

of Z/qZ, taking O(n log q) = O(n logn) time (since q < 2n2 < n3, log q ≤ 3 logn).
Then, there are 2 calls to COMPUTE-EVAL-CSF on trees on n vertices using the
modulus q. By Proposition 3.5, these calls require O(n2(log q)2) = O(n2(log n)2).
Thus, each iteration of the inner loop requires O(n logn+n2(log n)2) = O(n2(log n)2)
time.
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As there are O( k
logn

) iterations for each of O( n
logn

) primes, the total runtime

from the inner-loop computations (everything excluding the primality testing) is
O(n2(log n)2 · k

logn
· n
logn

) = O(n3k).

Therefore, the total runtime of Algorithm 3.5 is O(n3 + n3k) = O(n3k).

4 Computational Results and an Additional CSF Conjecture

We now apply a variant of Algorithm 3.3 to extend Russell’s computational result
in [5] that the chromatic symmetric function distinguishes all unrooted trees on at
most 25 vertices up to trees on at most 29 vertices.

Let T = (V (T ), E(T )) be a tree on n vertices. As in [8], for each subset S ⊂ E(T )
define λ(S) to be the partition of n where the parts have sizes equal to the numbers
of vertices in the connected components of the graph (V (T ), S).

Definition 4.1. For a tree T and a positive integer k, let Pk(T ) be the set of edge
subsets S partitioning T into connected components each with at most k vertices:

Pk(T ) = {S|S ⊆ E(T ), λ(S) = (a1, . . . , am), a1 ≤ a2 ≤ · · · ≤ am ≤ k} ⊆ P(E(T )).

We then define the k-truncated chromatic symmetric function of T , denoted kXT , as
follows:

kXT =
∑

S∈Pk(T )

(−1)|S|pλ(S)

Note that, by Theorem 2.5 of [8], when k = n we obtain the original chromatic
symmetric function XT : kXT =

∑
S⊆E(T )(−1)|S|pλ(S) = XT .

Remark 4.1. Our approach of considering only some of the possible subsets of edges
of T is similar to that used by Smith, Smith, and Tian in [6]. There, they consider
the terms in the chromatic symmetric function corresponding to subsets S ⊆ E(T )
such that |S| ≤ k, namely all m-cuts of T where m ≤ k. They showed in [6] that
computing the terms in the chromatic symmetric function for all such subsets S
where |S| ≤ 5 suffices to prove that the chromatic symmetric function distinguishes
unrooted trees on at most 24 vertices.

Here, instead of considering subsets S ⊆ E(T ) such that |S| ≤ k for a constant
k, we consider subsets S ⊆ E(T ) such that any subset U ⊆ V (T ) for which uv ∈
E(T ) =⇒ uv ∈ S for all u, v ∈ U satisfies |U | ≤ k. In other words, the subsets we
consider partition T into connected components of size at most k.

Remark 4.2. The 2-truncated chromatic symmetric function of a tree corresponds
to its matching polynomial. The matching polynomial of a tree is equivalent to its
characteristic polynomial and is therefore insufficient to uniquely determine it [7].

We will now use the following fact to achieve our computational result.

Observation 4.3. Let T and T ′ be trees on n vertices. Then for any positive integer
k ≤ n, if XT = XT ′, then kXT = kXT ′. Thus if kXT �= kXT ′ for all pairs of non-
isomorphic trees (T, T ′), then all non-isomorphic trees on n vertices have unique
chromatic symmetric functions.
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Remark 4.4. For q ∈ N and any C ∈ (Z/qZ)n such that Cj = 0 for all j > k,
ϕq,C(kXT ) = ϕq,C(XT ).

Performing Algorithm 3.3 using an n-tuple C for which all but the first k entries
are zero allows us to omit the terms rk+1, . . . , rn in the intermediate step of computing
the C-evaluated symmetric function sequence (Algorithm 3.4). Furthermore, since
for such an n-tuple C each term ri with i ≥ k from a previous recursive call in
Algorithm 3.4 only affects terms rj, where j ≥ i ≥ k, in future calls, these remaining
terms can be omitted in each call to 3.4. By avoiding the computation of these
superfluous terms, we can improve the runtime of Algorithm 3.3 in this special case
from O(n2(log q)2) to O(nk(log q)2).

By Observation 4.3, to show that XT distinguishes all trees on at most n vertices
up to isomorphism, it suffices to show that kXT distinguishes all such trees, for a
constant k.

Setting k = 3, we obtained the following computational result:

Theorem 4.5. The 3-truncated chromatic symmetric function distinguishes all trees
on at most 29 vertices up to isomorphism. Hence, the chromatic symmetric function
distinguishes all non-isomorphic trees on up through 29 vertices.

Using a computer, we generated primes q1, q2, . . . , qm and tuples C1, C2, . . . , Cm

of the form Cj = (xj , yj, zj, 0, 0, . . . ), where xj , yj, zj ∈ (Z/qjZ). Then, using Keeler
Russell’s C++ library (which is provided in [5]) to generate all non-isomorphic trees
on n vertices, we successively computed ϕq1,C1(T ) for each tree T . For the elements of
each equivalence class Sr of trees T such that ϕq1,C1(T ) = r, we computed ϕq2,C2(T )
and generated smaller equivalence classes of trees with each ordered pair of images
under the homomorphisms ϕq1,C1 and ϕq2,C2. We then repeated this process until each
equivalence class contained only a single tree, which occurred after a finite sequence
of homomorphisms ϕq1,C1, . . . , ϕqm,Cm were applied.

The computer program we used to verify that the CSF distinguishes trees on at
most 29 vertices is available at https://github.com/VietaFan/CSFTreeConjecture.

This computational result leads to the following question:

Question. Does the 3-truncated chromatic symmetric function distinguish all un-
rooted trees up to isomorphism?

An affirmative answer to this question would also answer Stanley’s question on
the uniqueness of chromatic symmetric functions for trees.

Remark 4.6. The size of the input data is the source of the barrier to going past
29 vertices. We expect that a computer with more space will be able to cross this
threshold.
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