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Abstract

The set splittability problem is the following: given a finite collection
of finite sets, does there exist a single set that contains exactly half the
elements from each set in the collection? (If a set has odd size, we allow
the floor or ceiling.) It is natural to study the set splittability problem
in the context of combinatorial discrepancy theory and its applications,
since a collection is splittable if and only if it has discrepancy at most 1.

We introduce a natural generalization of the splittability problem
called the p-splittability problem, where we replace the fraction 1

2
in the

definition with an arbitrary fraction p ∈ (0, 1). We first show that the
p-splittability problem is NP-complete. We then give several criteria for
p-splittability, including a complete characterization of p-splittability for
three or fewer sets (p arbitrary), and for four or fewer sets (p = 1

2
). Finally

we prove the asymptotic prevalence of splittability over unsplittability in
an appropriate sense.
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1 Introduction

Let B = {B1, . . . , Bn} be a collection of finite sets and let 0 ≤ p ≤ 1. We say the
collection B is p-splittable if there exists a set S (called a p-splitter) such that for all
i ≤ n, we have that |S ∩ Bi| = �p|Bi|�, the nearest integer to p|Bi|. In the special
case when p = 1

2
, we will sometimes suppress the p and use the terms B is splittable,

and S is a splitter.
Of course, the nearest integer �x� is not well-defined when x is a half-integer;

throughout the paper we adopt the convention that when x is a half-integer, a state-
ment about �x� is considered true if there is some choice of rounding which makes
it true. Thus if �p|Bi|� is a half-integer, a p-splitter is allowed to satisfy either
|S ∩ Bi| = �p|Bi|� or |S ∩ Bi| = �p|Bi|�.

It is natural to study splittability and its generalizations in the context of com-
binatorial discrepancy theory. Given a collection B as above, the discrepancy of B
is

disc(B) = min
S

max
i≤n

∣∣|Bi ∩ S| − |Bi \ S|
∣∣.

Intuitively, the discrepancy measures to what extent it is possible to simultaneously
and evenly split each set in the collection. In fact disc(B) ≤ 1 if and only if B is (1

2
-)

splittable.
In recent decades there have been many studies of upper bounds on the discrep-

ancy of general and particular collections of sets. In 1981 Beck and Fiala showed that
if every element of

⋃
B is contained in at most t of the sets in B, then disc(B) ≤ 2t−2

[2]. Incremental improvements to this bound can be found in works such as [3, 9, 4].
In 1985, Spencer gave an upper bound for the discrepancy of an arbitrary collection:

disc(B) ≤ 6
√
n

where n is the number of sets [14]. Of course the discrepancy of any given collec-
tion may be much smaller than this bound, and since in most applications least
discrepancy is best, it is natural to study the case when the discrepancy is at most 1.

Set splittability can also be viewed as a combinatorial version of the outcome of
the ham sandwich theorem: given Lebesgue measurable subsets B1, . . . , Bn ⊆ R

n

there exists a hyperplane H such that for all i ≤ n exactly half the measure of Bi

lies to each side of H . If Lebesgue measure is replaced by an atomic measure, then
some of the mass of Bi may lie on H itself. In this case the conclusion must be
modified to say that that at most half the measure of Bi lies to each side of H [8].
Thus a ham sandwich hyperplane does not precisely solve the splittability problem,
nor does set splittability help to find a geometric hyperplane, but the two problems
are conceptually related.

A third way to think of set splittability is as a very strong form of hypergraph
2-colorability. Recall that a hypergraph with hyperedges B1, . . . , Bn is 2-colorable if
there exists a {red, blue}-coloring of its vertices such that no hyperedge is monochro-
matic. With p-splittability we ask not simply that both colors are represented in each
hyperedge, but that the color red always appears a prescribed percentage of the time.
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In the next section we explore the computational complexity of p-splittability. In
the case p = 1

2
it is known that the question of deciding whether a given collection is

splittable is NP-complete. This follows from the fact that it is NP-hard to distinguish
collections of discrepancy 0 from collections of discrepancy Ω(

√
n) [5]. The signifi-

cance of this result is that while there are randomized algorithms to find witnesses
to Spencer’s theorem [1, 12], in general even if a collection has discrepancy o(

√
n)

one cannot expect to efficiently find a witness for this. In another related result, the
problem of deciding whether a given hypergraph is 2-colorable is NP-complete [11].
We will establish the corresponding hardness results in the case of p-splittability for
arbitrary p. That is, we show that for any 0 < p < 1, the p-splittability problem is
NP-complete.

The fact that the p-splittability decision problem is hard means we do not expect
to find a general and useful characterization of p-splittability. However it is possible
to do so for small collections and for other special collections of sets. For an example
involving (very) small collections, we will show that a collection B of at most two
sets is p-splittable for any p. For an example involving special collections, suppose
that B = {B1, . . . , Bn} is a collection of n sets such that every element x lies in
exactly n − 1 sets of B. In this case we will show that B is p-splittable if and only
if the sum �p|B1|� + · · · + �p|Bn|� is divisible by n − 1. (Note here our convention
that half-integers may be rounded either up or down to make the condition hold.)
The calculations used in these two results eventually lead us to a complete algebraic
characterization of p-splittability for collections B of at most three sets.

If one specializes to the important case p = 1
2
, some things become simpler and

more characterizations become tractable. For example, if B = {B1, B2, B3} is a
collection of three sets then B is 1

2
-unsplittable if and only if the sets B1 ∩ B2 ∩Bc

3,
B1 ∩ B2 ∩ Bc

3, B1 ∩ B2 ∩ Bc
3 are each odd in size and collectively cover

⋃B. (We
will call these three sets the Venn regions of multiplicity 2. This fact was previously
observed in [6].)

In this paper we state a complete characterization of the 1
2
-unsplittable collec-

tions of four sets in terms of the sizes of its Venn regions. The characterization is
substantially more complex than for three sets and involves more than ten delineated
cases. To support the characterization we first prove a reduction lemma which im-
plies that if B is unsplittable then it remains unsplittable after reducing the number
of elements of each Venn region modulo 2. We then carry out an exhaustive search
for unsplittable configurations with a small number of elements. We remark that
the exhaustive search was done with the aid of a computer program, and though it
completed successfully we have not formally verified the correctness of the program.

The characterization of the 1
2
-unsplittable configurations of four or fewer sets

easily implies that unsplittability is extremely rare for collections of four or fewer
sets. Although our method of finding unsplittable configurations becomes intractable
for collections of five or more sets, we can show that this rarity phenomenon remains
true. Specifically we show that if n → ∞ and k grows sufficiently fast relative to
n, then the probability that a collection with n sets and k elements is splittable
converges to 1. In particular if n is fixed and k is large enough then most collections
with n sets and k elements are splittable.
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This paper is organized as follows. In Section 2 we prove that the problem of
deciding whether a given collection is p-splittable is NP-complete. In Section 3,
we give criteria for deciding whether some special collections are p-splittable, and
provide a complete characterization of p-splittability for collections of at most three
sets. In Section 4, we give further splittability criteria for the special case p = 1

2
and

use them to give a complete characterization of 1
2
-splittability for collections of at

most four sets. Finally we show that for collections with sufficiently many elements,
splittability is by far more common than unsplittability.

2 The complexity of p-splittability

In this section we establish that the p-splittability problem is NP-complete. Before
proceeding, we set up some notation and clarify how we regard the p-splittability
problem formally as a decision problem, which we denote p-Split.

To begin, if B = {B1, . . . , Bn} is a finite collection of subsets of {1, . . . , m} then
the incidence matrix of B is the n × m matrix M whose (i, j) entry is 1 whenever
j ∈ Bi, and 0 otherwise. We will make significant use of the following notations
surrounding incidence matrices: Mi for the ith row of M ; 1 for a vector of 1’s whose
length is determined by the context; Mi1 for the number of 1’s in the ith row of M ,
and; �pM1� for the vector whose ith component is �pMi1�).

Officially, an instance of p-Split consists of a binary matrix M , which we think
of as the incidence matrix of a collection B. The matrix M lies in p-Split if and only
if there exists a binary vector y such that My = �pM1�. Indeed, since �pMi1� =
�p|Bi|�, we have that a binary vector y satisfies My = �pM1� if and only if {i : yi =
1} witnesses that B is p-splittable.

Theorem 2.1 For any 0 < p < 1, the problem p-Split of determining whether a
general collection is p-splittable is NP-complete.

Note that p-Split lies in NP because given an instance M of p-Split and a
characteristic vector y of an ostensible splitter, one can easily decide in polynomial
time (in the number of entries of M) whether (My)i is equal to �pMi1� for each i.

To establish that p-Split is NP-complete, we will exhibit a polynomial-time
reduction from the decision problem ZOE, which is known to be NP-complete, to
p-Split. Here ZOE stands for zero one equations, and is formalized as follows. An
instance of ZOE consists of a binary matrix A. The matrix A lies in ZOE if and
only if there exists a binary vector x such that Ax = 1. We note that ZOE is similar
to zero-one integer programming [10], and its NP-completeness is established in [7,
Page 253].

In the definition of ZOE, we can assume without loss of generality that the matrix
A has no zero rows, since otherwise Ax = 1 is guaranteed to have no solution. We
can further assume that at least one row of A has at least two 1’s, since otherwise
Ax = 1 is guaranteed to have a solution, namely x = 1.

Now in order to establish Theorem 2.1, we will describe a mapping from binary
matrices A to binary matrices M = M(A), with the property that A lies in ZOE
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if and only if M lies in p-Split. In order to guarantee this, the matrix M that we
construct will have the special properties:

(a) A is an upper-left submatrix of M ;

(b) any solution x to Ax = 1 extends to a solution y to My = �pM1�; and
(c) any solution y to My = �pM1� restricts to a solution x to Ax = 1 (or else its

binary complement does; see below).

Having described our general approach, we now proceed with the details.

2.1 Specification of the construction

Let A be a given r × c binary matrix, and let p ∈ (0, 1) be given. As mentioned
above we may assume that for all i we have Ai1 > 0, and that for some i we have
Ai1 > 1. We may further assume that 0 < p ≤ 1

2
(without loss of generality as

argued in Subsection 2.3). We construct a block matrix M of the form:

M =

[
A B C
0 D E

]
.

We now describe the blocks of M . Of course A is the given matrix, and 0 is a
matrix of 0’s of the appropriate dimensions. Before defining the rest of the blocks,
we let s = maxiAi1, and let T be the set of indices of the (s − 1)-many columns
following the columns of A. Next we let q = 1−p

p
, and let F be the indices of the

max {�qs� − s+ 1, �q� + 1}-many columns to the right of the columns indexed by T .
(The significance of these values will become more apparent in the example in the
next subsection.)

We define B to be an r× |T | matrix whose ith row contains (Ai1− 1)-many 1’s,
followed by all 0’s. We define C to be an r × |F | matrix whose ith row contains
(�qAi1� − Ai1+ 1)-many 1’s, followed by all 0’s.

The blocks D and E each are built from smaller blocks. For i ≤ |T |, let Di be
the

(|F |
�q�
)×|T | matrix whose ith column consists of 1’s, and all other columns consist

of 0’s. And let E0 denote a
(|F |
�q�
) × |F | matrix whose rows consist of the indicator

functions of the subsets of {1, . . . , |F |} of size �q�. Then we let

D =

⎡
⎢⎣
D1
...

D|T |

⎤
⎥⎦ , and E =

⎡
⎢⎣
E0
...
E0

⎤
⎥⎦ .

Here there are |T |-many copies of E0 in E.
It is easy to see that the dimensions of the matrixM are polynomial in the dimen-

sions of the matrix A. (Recall here that p is a fixed parameter of the construction.)
Hence the construction is polynomial time (in r · c).
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2.2 Example of the construction

Before proving that the construction satisfies our requirements, let us give an exam-
ple. Suppose that p = 1

3
and we are given the ZOE system Ax = 1 given by[

1 1 0 0
1 1 1 0

]
x =

[
1
1

]
.

Then we have A11 = 2, A21 = 3, s = maxi Ai1 = 3, and q = 1−p
p

= 2. Thus T

consists of the s − 1 = 2 columns {5, 6}, and F consists of the �qs� − s + 1 = 4
columns {7, 8, 9, 10}.

The block B is thus a 2 × 2 matrix with A11 − 1 = 1-many 1’s in the first row
and A21 − 1 = 2-many 1’s in the second row. The block C is a 2 × 4 matrix with
�qA11� −A11+ 1 = 3-many 1’s in the first row and �qA21� −A21+ 1 = 4-many 1’s
in the second row.

Next, the blocks D1 and D2 are each
(|F |
�q�
) × |T | which comes to 6 × 2. Block

D1 is a column of 1’s followed by a column of 0’s, and block D2 is a column of 0’s
followed by a column of 1’s.

Finally, the block E0 is
(|F |
�q�
) × |F | which comes to 6 × 4. The 6 rows of E0

correspond to the 6 subsets of {1, . . . , |F |} = {1, . . . , 4} of size �q� = 2. The full
matrix M and the corresponding system My = �pM1� are displayed in Figure 1.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
3
1
1
1
1
1
1
1
1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 1: The system My = �pM1� constructed in our example.

Having given the example construction, we briefly preview how the proof will
play out in this case. The matrix M is the incidence matrix for the collection
{B1, . . . , B14} of subsets of {1, 2, . . . , 10}, where the characteristic vector of Bi is the
ith row of M . The collection is splittable if and only if the system My = �pM1� has
a binary solution. In our example the values on the right-hand side are pM11 = 2,
pM21 = 3, and pMi1 = 1 for i > 2.
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Note that if Ax = 1, then x extends to a solution of My = �pM1� by setting
the components with indices in T to be 1 and the components with indices in F to
be 0. Conversely, if My = �pM1� then the components of y with indices in T are
forced to be 1 and the components of y with indices in F are forced to be 0. Indeed,
this can be seen by inspecting the D and E blocks of M , and is proved formally in
the next subsection. Finally since the rows of the B block have exactly one less 1
than the rows of A, and since this number is also one less than the corresponding
component on the right-hand side, such a y must restrict to a solution to Ax = 1.

2.3 Proof of the main theorem

We now establish that the construction described above is indeed a reduction from
ZOE to p-Split. We will assume throughout that 0 < p ≤ 1

2
, since a collection is

p-splittable if and only if it is (1− p)-splittable (simply take the complement of the
witnessing splitter). To begin, we present a simple rounding calculation that will be
used below.

Lemma 2.2 Let 0 < p ≤ 1
2
and q = 1−p

p
as before. Then for any m ∈ N we have

�p(m+ �qm�)� = m.

Proof: Let ε = �qm� − qm. Then

�p(m+ �qm�)� = �p(m+ qm+ ε)�
= �pm+m(1 − p) + pε�
= �m+ pε�
= m+ �pε� .

Since 0 ≤ ε < 1 and p ≤ 1
2
, we have pε < 1

2
, which gives that the last quantity equals

m as desired. �

Next we calculate the values on the right-hand side of the system My = �pM1�.
Lemma 2.3 Let 0 < p ≤ 1

2
, let A be an r × c matrix, and let M be constructed as

above. Then �pMi1� = Ai1 for all i ≤ r, and �pMi1� = 1 for all i > r.

Proof: First consider i ≤ r. Then

�pMi1� = �p(Ai1+Bi1 + Ci1)�
=
⌊
p
(
Ai1+ (Ai1− 1) +

( �qAi1� − Ai1+ 1
))⌉

= �p(Ai1+ �qAi1�)� .
By Lemma 2.2, the latter quantity is simply Ai1, as claimed.

Next consider i > r. Here we have

�pMi1� = �p(Di1+ Ei1)� = �p(1 + �q�)� .
Again using Lemma 2.2, the latter quantity is 1, as desired. �
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To commence with the body of the proof, we first show that if Ax = 1 has a
solution, then the system (My)i = �pMi1� has a solution. Given a solution x to
Ax = 1, we extend x to a vector y by appending |T |-many 1’s followed by |F |-many
0’s. Then for i ≤ r we have

Miy = Aix+Bi1+ Ci0 = 1 + (Ai1− 1) = Ai1.

By Lemma 2.3, this is equal to �pMi1�, as desired. On the other hand, for i > r we
have

Miy = Di1+ Ei0 = Di1 = 1.

(Here Di, Ei denote the ith row of D,E, not the ith block.) Again by Lemma 2.3,
this is equal to �pMi1�, as desired.

For the converse, we show that if My = �pM1� has a solution then Ax = 1 has
a solution. We make a series of claims about the structure of the solution y that will
enable us to create from it a solution x to Ax = 1.

Claim 2.4 It is not the case that there are j ∈ T and k ∈ F such that both yj = 1
and yk = 1.

Proof of claim. Suppose towards a contradiction that j ∈ T , k ∈ F and yj = yk = 1.
Recalling the definitions of D and E, we can find a row index i > r such that Mi

has a 1 in its jth and kth columns. It follows that Miy ≥ 2, which contradicts the
calculation from Lemma 2.3 that Miy = �pMi1� = 1. �

Claim 2.5 If 0 < p < 1
2
, then for all indices i ∈ T , yi = 1 and for all indices j ∈ F ,

yj = 0.

Proof of claim. Suppose towards a contradiction that there is a j ∈ F such yj = 1.
By the previous claim, for all i ∈ T we have yi = 0. If there is just one such j ∈ F
with yj = 1, then by construction of E0 we can find a row � > r such that the jth
entry of M� is 0. This implies that M�y = 0, contradicting that M�y = �pM�1� = 1.

On the other hand if there are two distinct j, j′ ∈ F with yj = yj′ = 1, then since
p < 1

2
implies q > 1, we can find a row � > r such that the jth and j′th entries of

M� are both 1. This implies that M�y ≥ 2, again contradicting that M�y = 1.
Thus we have shown that yj = 0 for all j ∈ F . It follows from the construction

of D that yi = 1 for all i ∈ T . �
To continue the proof, assume first that p < 1

2
. Then by Claim 2.5, for all i ∈ T

we have yi = 1 and for all j ∈ F we have yj = 0. Letting x denote the restriction
of y to its first c entries, for any i ≤ r we have (My)i = (Ax)i + (A1)i − 1. By
Lemma 2.3 we also know that (My)i = (A1)i. It follows that Ax = 1.

Next consider the case when p = 1
2
. Then q = 1 so both D and E have exactly

one 1 per row. It follows from Claim 2.4 that we either have

(I). yi = 1 for all i ∈ T and yj = 0 for all j ∈ F , or

(II). yi = 0 for all i ∈ T and yj = 1 for all j ∈ F .
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If (I) holds, we can do as we did when p < 1
2
, so we are done. Otherwise, if (II)

holds, let y′ = 1− y. Then

Miy
′ = Mi(1− y) = Mi1− �Mi1p� .

We know that Ai1 has the opposite parity of Ai1 − 1 = Bi1, and that Ci1 = 1
when p = 1

2
. Therefore, Mi1 is even, so Mi1 − �Mi1p� = �Mi1p�, meaning that

My′ = �pM1�.
Thus, y′ also corresponds to a valid splitter of B, and since y′i = 1 for all i ∈ T

we must also have that its first c entries pick out exactly one 1 per row of A by the
same argument as the case p < 1

2
. Therefore, taking x to be restriction of y′ to its

first c entries, we once again have that Ax = 1.
This concludes the proof that the construction from A of M is polynomial time

(in r · c) reduction from ZOE to p-Split.

3 p-Splittability criteria and characterizations

The result of the previous section implies that it is hard (assuming NP �= P ) to
find a general characterization of p-splittability. Nevertheless, in this section we
provide several p-splittability criteria for special types of collections. Furthermore
we completely characterize p-splittability for collections of at most three sets.

Before we begin our study, it is useful to introduce the following notation. For a
collection B = {B1, . . . , Bn} and an element x, the multiplicity of x is the number
mx of sets Bi such that x ∈ Bi. Given a subcollection {Bi1 , . . . , Bik} ⊆ B, we define
the associated Venn region of B to be the set of elements x that lie in precisely the
sets Bi1, . . . , Bik and in no other Bj . Venn regions corresond pictorially to regions
of the Venn diagram formed by the sets B1, . . . Bn (we shall illustrate this later in
Figure 2). If R is a Venn region associated to a subcollection of cardinality m, then
all elements of R have multiplicity m, so we also say that R has multiplicity m.

In the following result, we will say that a sequence {ti} is a target sequence for B
if 0 ≤ ti ≤ |Bi| for 1 ≤ i ≤ n. The target sequence ti is achievable if there is a set S
such that |S ∩ Bi| = ti for all i.

Lemma 3.1 Let B = {B1, . . . , Bn} be a collection of sets and assume that for every
x ∈ ⋃B the multiplicity mx is divisible by m. If the target sequence {ti} is achievable,
then

∑
ti is divisible by m.

Proof: Let S be a set witnessing that {ti} is achievable. Then∑
1≤i≤n

ti =
∑

1≤i≤n

|S ∩Bi| =
∑
x∈S

mx.

By hypothesis, mx is divisible by m for all x, so the right-hand side is also divisible
by m. �
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Since B is p-splittable if and only if the target sequence ti = �p|Bi|� is achievable,
the contrapositive of Lemma 3.1 provides a useful condition for showing that certain
collections are not p-splittable. The converse of Lemma 3.1 is false in general: for
a counterexample, take B = {{1, 2, 3}, {1, 4, 6}, {2, 5, 6}, {3, 4, 5}}. The multiplicity
of every element of

⋃B is 2, which divides the sum of the elements of the target
sequence {3, 3, 3, 1}; however, any set that contains all three elements of three of the
sets in B contains all elements of

⋃B, so {3, 3, 3, 1} is not achievable. Despite this,
the converse of Lemma 3.1 does hold in the following very special case.

Lemma 3.2 Let B = {B1, . . . , Bn} be a collection such that for all x ∈ ⋃B, mx =
n− 1. If

∑ �p|Bi|� is divisible by n− 1, then B is p-splittable.

Proof: Let bi = |⋃B − Bi| be the size of the (unique) Venn region of multiplicity
n − 1 which is not contained in Bi. Further let ti = �p|Bi|� be the target sequence.
We wish to find values b̄i such that 0 ≤ b̄i ≤ bi and

∑
j �=i b̄j = ti for each i. Indeed,

then we would be able to form a p-splitter by selecting b̄i elements from each region⋃B −Bi, and combining these elements into one set.

To find the b̄i, the coefficient matrix of the system
∑

j �=i b̄j = ti is square and in-
vertible, and an elementary calculation using Gaussian elimination yields the unique
solution:

b̄i =
1

n− 1

(
−(n− 2)ti +

∑
j �=i

tj

)
. (1)

Note that b̄i is always an integer, because the above expression is equal to

1

n− 1

(
−(n− 1)ti +

∑
j

tj

)
= −ti +

1

n− 1

∑
j

tj

and
∑

tj is divisible by n− 1 by hypothesis. Hence it remains only to establish that
0 ≤ b̄i ≤ bi.

For this, note that ti = �p|Bi|� =
⌊∑

j �=i pbj

⌉
= εi +

∑
j �=i pbj where |εi| ≤ 1

2
.

Substituting this expression in for every ti in Equation (1), we note that pbi occurs
n − 1 times in the parentheses while all other pbj occur n − 2 times negatively and
n− 2 times positively. Thus, the pbj cancel, leaving us just with pbi and error terms
as follows:

b̄i = pbi +
1

n− 1

(
−(n− 2)εi +

∑
j �=i

εj

)
. (2)

There are 2n−3 many ε terms in the parentheses, so we can conclude that b̄i = pbi+E
where |E| < 1. Since 0 ≤ pbi ≤ bi and all of 0, bi, b̄i are integers, it follows that
0 ≤ b̄i ≤ bi too. �

We are now ready to begin our classification of p-splittability for collections of
size ≤ 3. We begin with the simple case of just two sets, because it helps motivate
some of the steps for the three-set case below.



P. BERNSTEIN ET AL. /AUSTRALAS. J. COMBIN. 75 (2) (2019), 190–209 200

B1 B2a1 a2b
B1 B2

B3

a1 a2

a3

b1

b3

b2
c

Figure 2: At left: sizes of the Venn regions of a two-element collection {B1, B2}.
At right: sizes of the Venn regions of a three-element collection {B1, B2, B3}.

Theorem 3.3 Every collection of two sets is p-splittable for every 0 ≤ p ≤ 1.

Proof: Let B = {B1, B2} be a given two-set collection. Replacing p with 1 − p if
necessary, suppose that p ≤ 1

2
. Fix the following notation for the sizes of the regions

of B: a1 = |B1 ∩ Bc
2|, a2 = |Bc

1 ∩ B2|, and b = |B1 ∩ B2| (see Figure 2). Next let
t1 = �p(a1 + b)� and t2 = �p(a2 + b)� denote the target cardinalities for S ∩ B1 and
S ∩ B2 for a p-splitter S. To show B is p-splittable it suffices to find integers āi, b̄
such that (i) 0 ≤ āi ≤ ai, (ii) 0 ≤ b̄ ≤ b, and (iii) āi + b̄ = ti.

For this let b̄ = �pb� and āi = ti − b̄ so that (ii) and (iii) are clearly satisfied. Of
course the definitions of both ti and b̄ may be ambiguous; in such cases we ensure
that (�) if ai = 0 then we choose āi = 0 too. (This is always possible by choosing
the same rounding for both b̄ and ti.)

To see that (i) is satisfied, write ε = b̄ − pb for the rounding error in computing b̄
and εi = ti − p(ai + b) for the rounding error in computing ti. Then the definitions
of b̄ and āi easily imply that

āi = pai + (εi − ε).

Since |εi| ≤ 1
2
and |ε| ≤ 1

2
we know that |εi − ε| ≤ 1. Assuming ai > 0 the above

equation gives −1 < āi < ai + 1, and since āi and ai are integers, (i) is satisfied. On
the other hand if ai = 0 then by assumption (�) we have āi = 0 too, so (i) is clearly
satisfied. �

To state our results for three sets, we extend the notation from the previous
proof. For a three-set collection B = {B1, B2, B3} we let ai denote the number of
multiplicity 1 elements of Bi, let bi denote the number of multiplicity 2 elements not
in Bi, and let c denote the number of multiplicity 3 elements (see Figure 2). As
in the previous proof we let ti = �p|Bi|� be the targets and εi = ti − p|Bi| be the
rounding error. Finally we set the values ρi = −εi +

∑
j �=i εj .

Lemma 3.4 Assume that p ≤ 1
2
, and let B = {B1, B2, B3} be given. Also assume

there are no multiplicity 1 elements, that is, all ai = 0. Then B is not p-splittable if
and only if

∑
ti is odd and at least one of the conditions holds:
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(a) c = 0; or

(b) pc < 1
2
and some pbi +

1
2
(pc− 1 + ρi) < 0.

Proof: First observe that B is p-splittable if and only if one can find values b̄i and c̄
such that 0 ≤ b̄i ≤ b, 0 ≤ c̄ ≤ c, and c̄+

∑
j �=i b̄i = ti. Indeed, such values of b̄i and c̄

correspond to the number of elements of the corresponding Venn regions needed to
make a p-splitter.

Assuming one has chosen a value for c̄, we can again use Gaussian elimination to
find that the system of equations c̄+

∑
j �=i b̄i = ti has the unique solution:

b̄i =
1

2

(
−ti +

∑
j �=i

tj − c̄

)
. (3)

At this point we can observe that in order to achieve integer values of b̄i, one must
choose the value c̄ to have the same parity as

∑
tj. Next we substitute tj = pc +

p
∑

k �=j bk + εj to rewrite the above equation as

b̄i = pbi +
1

2
(pc− c̄+ ρi) . (4)

Now assume that
∑

ti is odd and that (a) or (b) holds. If (a) holds, then Lemma 3.1
demonstrates that B is unsplittable. Thus assume that (b) holds. Since

∑
ti is

odd, we cannot choose c̄ to be of even parity and in particular cannot choose c̄ = 0.
Condition (b) together with Equation (4) implies that any positive value of c̄ results
in b̄i < 0. Thus B is once again unsplittable.

For the converse we will need to show that if either
∑

ti is even or both (a) and (b)
are false, then B is splittable.

Claim 3.5 The choice c̄ = �pc� always ensures that 0 ≤ b̄i ≤ bi.

Proof of claim. Note first that this choice implies |pc − c̄| ≤ 1
2
. Moreover we

can always assume |ρi| < 3
2
, since otherwise all |εj | = 1

2
and we would be able to

change the rounding of the targets ti (even while preserving the parity of
∑

ti). Thus
Equation (4) implies that b̄i = pbi + E where E < 1, and we can therefore argue as
in the proof of Lemma 3.2 to complete the claim. �
Of course we cannot necessarily choose c̄ = �pc�, since this may not have the same
parity as

∑
tj . Thus we need the following.

Claim 3.6 One of the two choices c̄− := �pc� − 1 or c̄+ := �pc� + 1 ensures that
0 ≤ b̄i ≤ bi.
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Proof of claim. The two choices result in values pc− c̄− and pc− c̄+. These values
differ by 2 and have absolute value ≤ 3

2
. Meanwhile the ρi lie in some interval of

length ≤ 2 which is contained in (−3
2
, 3
2
). It is straightforward to conclude that either

all |pc− c̄− + ρi| < 2 or all |pc− c̄+ + ρi| < 2. Thus one of two choices c̄ = c̄− or c̄+
gives values b̄i = pbi + E ′ where E ′ < 1, and we are again done as in the previous
claim. �
Now assume that

∑
ti is even. If �pc� is even then by Claim 3.5 we have that c̄ = �pc�

leads to a solution. And if �pc� is odd then we always have 0 ≤ �pc� ± 1 ≤ c (here
we are using p ≤ 1

2
). Thus by Claim 3.6 one of the choices c̄ = �pc� ± 1 leads to a

solution as well.

Finally assume both (a) and (b) are false. Since (a) is false and p ≤ 1
2
we have that

�pc� + 1 ≤ c. On the other hand since (b) is false we either have (i) pc ≥ 1
2
, or else

(ii) pc < 1
2
and all pbi+

1
2
(pc−1+ρi) ≥ 0. In case (i) we have 0 ≤ �pc�±1 ≤ c, which

we have previously shown implies B is splittable. In case (ii) we have �pc� + 1 = 1
and moreover that the choice c̄ = 1 leads to a valid solution for all b̄i. This concludes
the proof. �

We remark that in the previous lemma, if any of the p|Bi| is a half-integer, then
B is p-splittable. Indeed, in this case we can select the set target ti to make

∑
ti

even. We also note that if case (b) of the lemma holds, then it is not difficult to see
there is a unique i such that 2pbi + pc− 1+ ρi < 0, and moreover that ρi < −1, that
εi > 0, and that the other two εj < 0.

In the next result we consider the case when a collection B of three sets has
elements of multiplicity 1.

Lemma 3.7 Assume that p ≤ 1
2
, and let B = {B1, B2, B3} be a given collection with

ai, bi, c as in Figure 2. Then provided at least one of the ai is sufficiently large, B is
p-splittable.

Proof: First let B(0) be the collection obtained from B by removing all elements of
multiplicity 1. For the rest of the proof, let bi, c, ti, ρi be as in the previous lemma,
for the collection B(0).

Suppose first that B(0) is p-splittable. Then B is splittable too; in fact we can show
that any splittable collection remains splittable after adding elements of multiplic-
ity 1. To see this, it suffices to show it when we add just one element a of multiplicity 1
to some set Bi. Now if adding a raises the value of ti by 1, then we include a in the
splitter; otherwise we would exclude a from the splitter.

Next suppose that B(0) is p-unsplittable. Then by Equation (3) we can “split” the

collection B(0) by setting c̄ = 0 and b̄i =
1
2

(
−ti +

∑
j �=i tj

)
. However these choices

of b̄i will be half-integers, and need not satisfy 0 ≤ b̄i ≤ bi.

Claim 3.8 For all i we have −1
2
≤ b̄i ≤ bi+

1
2
. Moreover there is at most one i such

that b̄i = −1
2
or b̄i = bi +

1
2
.
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Proof of claim. The first statement follows directly from Equation (4), together
with c̄ = 0 and pc < 1

2
.

For the second statement, our definition of b̄i implies that the only possible contrary
case is when two of the b̄i have errors at opposite extremes, say b̄2 = −1

2
and b̄3 =

b3 +
1
2
. We now show this implies that b3 = 0. Indeed, Equation (4) for b̄2 says

−1
2
= pb2 +

1
2
(pc+ ρ2) and this implies ρ2 < −1. Since all ρi lie within an interval of

length 2, it follows that ρ3 < 1. Then Equation (4) for b̄3 says b3+
1
2
= pb3+

1
2
(pc+ρ3).

Now p ≤ 1
2
, pc < 1

2
, and ρ3 < 1 all together imply b3 = 0.

Using b3 = 0, we obtain in particular that t3 ≥ t2. On the other hand Equation (3)
for b̄2 says −1 = t1 − t2 + t3, and this implies t2 > t3. This is a contradiction, and
completes the proof of the claim. �
Now we can finish the proof as follows. Let B(1) be the collection obtained from B by
removing just the elements of B2 and B3 of multiplicity 1. That is, B(1) is obtained
by zeroing out a2 and a3. We will show that if a1 is sufficiently large, then B(1) is
splittable.

For this, we will use the notation t
(1)
1 for the target value of B1 as it would be defined

for B(1) (or equivalently for B). Thus in particular t
(1)
1 ≥ t1. In the next paragraph

we will only have need of small values of a1, so that we need only consider the cases
t
(1)
1 = t1 and t

(1)
1 = t1 + 1.

Claim 3.8 implies that at least one of the two triples {b̄1 − 1
2
, b̄2 + 1

2
, b̄3 + 1

2
} or

{b̄1 + 1
2
, b̄2 − 1

2
, b̄3 − 1

2
} lies within the desired bounds [0, b1], [0, b2], [0, b3]. In the first

case if a1 is large enough that t
(1)
1 = t1 + 1 then the triple yields a valid splitting.

In the second case if a1 = 1 and t
(1)
1 = t1 then the triple extends to a valid splitting

by selecting the single element of a1. And if a1 ≥ 2 and t
(1)
1 = t1 + 1 then the triple

extends to a valid splitting by selecting two elements from a1.

Thus we have shown in each case that there exists a value of a1 that results in B(1)

being splittable. By the argument from the second paragraph, any larger value of a1
will also result in B(1) being splittable. Again using the argument from the second
paragraph, this always implies B is splittable. �

The above lemma may seem natural, since intuitively the presence of elements
of multiplicity 1 makes it easier to find a splitter. However the analogous result is
false for collections of four or more sets. Indeed if {B1, B2, B3} is an unsplittable
collection, then we can create unsplittable collections {B1, B2, B3, B4} where the
Venn region of multiplicity 1 given by Bc

1 ∩Bc
2 ∩ Bc

3 ∩ B4 is as large as we like.

4 1
2-splittability criteria and characterizations

In the previous section, we examined p-splittability criteria for arbitrary p. In this
section we specialize to the important case p = 1

2
. After providing another very

general lemma, we use it to give a complete characterization of splittability for col-
lections of at most four sets, under the assumption that an exhaustive search by
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computer is implemented correctly. Throughout this section, the term splittability
will always refer to 1

2
-splittability.

The following result, while quite simple, is useful for converting our understanding
of collections with few elements into more general theorems.

Lemma 4.1 (Reduction Lemma) Let B be a given collection, and let B′ be a
collection obtained from B by adding an even number of elements to any of its Venn
regions. Then if B is splittable, so is B′.

Proof: If S is a splitter for B, then we can construct a splitter S ′ for B′ as follows.
Begin by putting all the elements of S into S ′. Then for each Venn region R of B
and corresponding Venn region R′ of B′, put half of the elements of R′ \ R into S ′.
It is easy to see that S ′ is a splitter for B′. �

Before stating our characterization of splittability for configurations with four
sets, we review the known characterization of splittability for configurations with
three or fewer sets (see [6]).

Proposition 4.2 Any collection of one or two sets is splittable. A collection of three
sets is unsplittable if and only if both:

(a) every Venn region of multiplicity 2 contains an odd number of elements; and

(b) all other Venn regions are empty.

The proposition can easily be extracted from the results of the previous section.
It is also possible to give a simple and direct proof, as was done in [6].

Next we will state our characterization of splittability for collections of four sets.
In order to do so we will need to work with four-set Venn diagrams, shown as four-
lobed “hearts” with each lobe representing one set. The diagram below shows four
of the diagrams; one with each of the four sets shaded.

In Figure 3 we provide a catalog of diagrams depicting eleven types of unsplittable
configurations with four or fewer sets. We use the following abbreviations: the
symbol o denotes an odd number of elements, e denotes an even number of elements,
1 denotes one element, 0/1 denotes zero or one element, x denotes any number of
elements, and a blank denotes zero elements. Note that two separate instances of a
symbol do not necessarily denote the same quantity.

Some additional remarks about the types are in order. First, each of the types
has analogous instances in which the sets B1, . . . , B4 are permuted.
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b2

c1
c2 x
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Figure 3: Eleven types of unsplittable four-set configurations.

Next, in Type 0 we additionally require that a1 + a2, b1 + b2, and c1 + c2 are all
odd numbers. Type 0 represents the case when some subcollection of three sets is
unsplittable. The instance depicted in the figure shows just the case when the first
three sets are unsplittable. There is some overlap between Type 0 and degenerate
instances of other types; for example an instance of Type 5 with all e’s being 0 is
also in Type 0.

Proposition 4.3 If B is a collection of any of the Types 0–10, then B is unsplittable.

Proof:[Sketch of proof] If B is of Type 0 then B is unsplittable by Proposition 4.2.
If B is of Type 4 or 5 then B is unsplittable by Lemma 3.1, since in each case every
element has even multiplicity but the target sum is odd.

If B is of any of the remaining types, then the proof boils down to elementary linear
algebra. As an example, let us suppose that B is of Type 1. Let oi denote the number
of elements of

⋂
j �=iBj ∩ Bc

i , so that oi is an odd number. Let ti =
1
2
(1 +

∑
j �=i oi)

be the target quantity for S ∩ Bi. Then finding a splitter S for B is equivalent to
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solving the integer system:

⎡
⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎣
a1
a2
a3
a4
b

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎣
t1
t2
t3
t4

⎤
⎥⎥⎦

subject to the constraints that 0 ≤ ai ≤ oi, and 0 ≤ b ≤ 1. Solving this system for
a1 in terms of the right-hand sides and b, we obtain the equation:

a1 =
1

3
(t1 + t2 + t3 − 2t4 − b)

=
1

3

(
o1+o2+o3+1

2
+

o1+o3+o4+1

2
+

o1+o2+o4+1

2
− 2

o2+o3+o4+1

2
− b

)

=
1

2
o1 +

1

6
(1− b).

If b = 0 then this implies a1 = 1
6
(3o1 + 1). This is a contradiction since o1 odd

implies that 3o1 + 1 �≡ 0 (mod 6). On the other hand if b = 1 then a1 =
1
2
o1, which

is impossible because o1 is odd. �

We believe that the types shown in Figure 3 completely capture the unsplittable
collections of four or fewer sets. The following statement officially has the status of
a conjecture, as our justification relies on the use of a computer program for which
we have not verified the correctness of the algorithm, implementation, or runtime in
a formal way.

Statement 4.4 If B is a four-set, unsplittable collection, then B falls into one of
the Types 0–10.

We provide a justification that mixes the Reduction Lemma and an exhaustive
search. To begin, first note that our program has tested the splittability of every
collection of four sets such that every Venn region has size ≤ 3. The code is available
in an online repository; see [13]. The program completed successfully on a computing
cluster equivalent to several dozen modern laptops in about one day.

Now suppose that B is a collection of four sets which is not of any of the Types 0–
10. We wish to show that B is splittable. Let B(2) be a collection obtained from B
emptying each Venn region R that is even in B, and leaving just 1 element in each
Venn region R that is odd in B. In other words, B(2) is obtained by taking each Venn
region “modulo 2”.

If B(2) is also not of any of the eleven types, then since its regions all have size
≤ 3 our program has checked that B(2) is splittable. By the Reduction Lemma
(Lemma 4.1), B is also splittable, and we are done in this case.

On the other hand, suppose that B(2) is of one of the eleven types, say type T .
Then since B is not of type T , there must exist a Venn region R such that type T
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prescribes that R has at most 1 element, and such that the size of R in B(2) is strictly
less than the size of R in B. (In the notation of the figure, region R must be labeled
empty, 0/1, or 1.) Now let B′ be the configuration obtained from B(2) by adding 2
elements to R. Thus B′ is not among the Types 0–10. And since the regions of B′

still have size ≤ 3, our program has checked that B′ is splittable. It again follows
from Lemma 4.1 that B is splittable

This concludes the justification of Statement 4.4 modulo the correctness of our
computer program.

4.1 The prevalence of splittability

In this subsection we address several questions about how commonly splittable and
unsplittable collections occur. Our results for small collections of sets indicate that
unsplittability is very rare. It is natural to ask whether this remains true for collec-
tions with a larger number of sets.

To begin, if one looks at the types of four-set unsplittable collections in Figure 3,
one might surmise that unsplittable configurations should have many Venn regions
with few or zero elements. We next establish that if a collection has certain Venn
regions with sufficiently many elements, then the collection must in fact be splittable.

Theorem 4.5 Let D be an integer bound on the discrepancy of collections of n sets.
Suppose that B is a collection of n sets such that each Venn region of multiplicity 1
contains at least D − 1 elements. Then B is splittable.

Proof: Let B = {B1, . . . , Bn} be such a collection, and let Ri denote the Venn region
of multiplicity 1 contained in Bi. Then in B, each region Ri has at least D − 1
elements, so we may let B(0) = {B(0)

1 , . . . , B
(0)
n } be the collection obtained from B by

deleting D − 1 elements from each of the Venn regions Ri.

Since disc(B(0)) ≤ D, we can find a set S(0) such that for all i we have

−D ≤ |B(0)
i ∩ S(0)| − |B(0)

i \ S(0)| ≤ D.

Now for each i we restore the D − 1 deleted elements of the Venn region Ri. As
we do so, we build a set S by beginning with S(0), then placing some of the D − 1
restored elements into S and the rest into Sc. It is easy to do so in such a way that
for each i,

−1 ≤ |Bi ∩ S| − |Bi \ S| ≤ 1

and as a result S splits B. �

Of course in the above result, D can be taken to be the ceiling of Spencer’s bound
6
√
n discussed in the introduction.
Now let f(n, k) denote the fraction of all n-set collections on k elements which are

splittable. The next result implies that if we fix n and let k get large, then f(n, k)
converges to 1. In fact, the same holds even if we let n, k → ∞ with k growing fast
enough with respect to n.
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Theorem 4.6 Suppose that k = k(n) lies in ω(2nn), that is, k grows asymptotically
strictly faster than 2nn. Then f(n, k) → 1 as n → ∞.

Proof: Referring to Theorem 4.5 above, let D = D(n) = 6
√
n. Our strategy is to

show that if k is as large as in our hypothesis, then it is unlikely that any of the
multiplicity 1 regions will contain fewer than D elements. Thus by Theorem 4.5 it
is likely that a given configuration will be splittable.

For this note that if a single element is randomly assigned to be included in or in
excluded from each of n sets, then the probability that the element will lie in any
given Venn region is q = 1

2n
. Next assign k elements randomly and independently

to the sets, and let the random variable X denote the number elements of a fixed
Venn region of multiplicity 1. By the basic properties of the binomial distribution,
the expected value of X is μ = kq = k

2n
and the standard deviation of X is σ =√

kq(1− q) =
√

k 1
2n
(1− 1

2n
).

We now wish to bound from above Pr[X < D]. Letting t = μ−D
σ

, we have that
Pr[X < D] ≤ Pr[|X − μ| ≥ tσ]. Chebyshev’s inequality now gives

Pr[X < D] ≤ 1

t2
.

Substituting the expressions for t, μ, σ, D, and simplifying we obtain

Pr[X < D] ≤
k
2n
(1− 1

2n
)

( k
2n

− 6
√
n)2

≤ 2n

k − 12
√
n
.

Our hypothesis about the growth of k implies that the latter quantity is o(1/n).
Finally the probability that any of the n regions of multiplicity 1 has fewer than D
elements is bounded by nPr[X < D] and is thus o(1), or in other words, converges
to 0. �

We remark that if we instead fix k ≥ 3 and let n become large, then f(n, k)
converges to 0. This is simply because there exists a configuration with three elements
that is unsplittable, namely B0 = {{1, 2}, {1, 3}, {2, 3}}. Thus as the number of sets
n increases, it becomes very likely that the restriction of the collection to the points
1, 2, 3 will contain B0, and therefore that the collection will be unsplittable.
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