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Abstract

In k-bootstrap percolation, we fix p ∈ (0, 1), an integer k, and a plane
graph G. Initially, we infect each face of G independently with probability
p. Infected faces remain infected forever, and if a healthy (uninfected)
face has at least k infected neighbors, then it becomes infected. For fixed
G and p, the percolation threshold is the largest k such that eventually
all faces become infected, with probability at least 1/2. For many infinite
graphs, we show that this threshold is independent of p.

We consider bootstrap percolation in tilings of the plane by regular
polygons. A vertex type in such a tiling is the cyclic order of the faces that
meet a common vertex. First, we determine the percolation threshold for
each of the Archimedean lattices. More generally, let T denote the set of
plane tilings T by regular polygons such that if T contains one instance of
a vertex type, then T contains infinitely many instances of that type. We
show that no tiling in T has threshold 4 or more. Further, the only tilings
in T with threshold 3 are four of the Archimedean lattices. Finally, we
describe a large subclass of T with threshold 2.

1 Introduction

In k-bootstrap percolation, we fix p ∈ (0, 1), an integer k, and a plane graph G.
Initially, we infect each face of G independently with probability p; call the set of
initially infected faces I. Infected faces remain infected forever, and if a healthy
(uninfected) face has at least k infected neighbors, then it becomes infected. We say
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that I percolates if eventually all faces become infected. For short, we call this the k-
bootstrap model . For fixed G and p, the percolation threshold1, or simply threshold , is
the largest k such that in the k-bootstrap model I percolates with probability at least
1/2. For a large class of infinite graphs, we show this threshold is independent of p.

The k-bootstrap model has a long, rich history. Introduced by Chalupa, Leath,
and Reich [11] in 1979 as a way to model magnetic materials, it is an example of a
monotone cellular automata (introduced by von Neumann [18] in 1966). Most of the
work in this field has focused on finding thresholds for growing families of graphs.
For example, if we infect each face of the n × n square grid independently with
some probability p, how large must p be so the infection percolates almost surely,
as n → ∞? The answer to this question, and the first sharp result in the area, was
proved by Holroyd [14]. While Holroyd’s result is striking on its own, it has been
extended greatly: studying the problem in higher dimensions, finding more terms of
the critical probability function, and much more (see, e.g., [1, 2, 3, 9, 10]). These
bootstrap models have been generalized significantly in recent years, with the advent
of graph bootstrap percolation [8].

Outside the realm of grids, bootstrap percolation has been studied on many
different families of graphs. This includes work determining critical probabilities
for random regular graphs [6], the Erdős-Renyi random graph Gn,p [13, 15], the
hypercube [4], infinite trees [5], and others. Largely ignored, however, has been
percolation on infinite lattices (aside from the square lattice [16, 17], discussed below).
We explore this direction here.

The length of a face of a plane graph is its number of sides. A configuration is a
finite plane graph. A configuration H appears in G if there is a map from faces of H
to faces of G that preserves both face length and the number of edges shared by every
pair of faces. When H appears in G, we also say that G contains a copy of H . The
following observation is straightforward, but it is our main tool for proving upper
bounds on percolation thresholds.

Observation 1. Let C be a configuration such that each face of C has at most k
neighboring faces outside C. If G contains infinitely many copies of C, then G has
percolation threshold at most k.

Proof. Suppose we are in the (k + 1)-bootstrap model. Note that if some copy of C
has no initially infected face, then I does not percolate, since no face in that copy
of C ever becomes infected. Since G has infinitely many copies of C (and each face
of G is infected independently), with probability 1 at least one copy of C in G has
no face initially infected. So, in the (k + 1)-bootstrap model, I percolates with
probability 0.

An immediate consequence of Observation 1 is that the (infinite) square lattice
has percolation threshold at most 2, since we can take as our configuration C four

1Note that this is different than the probability thresholds often considered for sequences of finite
graphs.
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square faces that meet at a common vertex. van Enter [17] famously proved a match-
ing lower bound. That is, the percolation threshold of the square lattice is 2. In this
note, we extend this result, using the same approach, to determine the percolation
thresholds for many tilings of the plane by regular polygons. Beyond this, we prove
that, somewhat surprisingly, for a large class of graphs (those whose vertex types
repeat infinitely often) the percolation threshold is at most four, and the only tilings
achieving this are Archemidean lattices. We also determine a large class of tilings
with threshold exactly 2.

2 Archimedean Lattices

A function f : R
2 → R

2 on a tiling is a tiling translation if it has the form f :
(x, y) �→ (x+ a, y + b) for some a, b ∈ R and it maps the center of every d-gon to the
center of a d-gon. These are simply translations of the plane which map our polygons
to congruent polygons. As an example, for any a, b ∈ Z, f : (x, y) �→ (x + a, y + b)
is a tiling translation for the (unit) square lattice, but is not a tiling translation
for the hex lattice when a and b are both nonzero, since the height of a regular
hexagon, with one side axis-aligned, is not a rational multiple of its width. An event
E is called translation-invariant if for every initially infected set I and every tiling
translation f we have f(I) ∈ E if and only if I ∈ E. For example, the event E1 =
{I : I percolates to the entire plane} is translation invariant; if a set I percolates,
it will certainly also percolate when that set is translated to another location in the
plane, since our percolation process is independent of a face’s location in the plane.
At the other extreme, as an example of a non-translation-invariant event consider
E2 = {I : I infects the origin eventually}. Let I2 = {only the face containing the
origin is infected}. Now I2 ∈ E, but for any nontrivial tiling translation f we
have f(I2) /∈ E2. An event is weakly translation-invariant if there exist infinitely
many distinct tiling translations f such that for each initially infected set I we have
f(I) ∈ E if and only if I ∈ E. Our main tool for proving lower bounds on percolation
thresholds is the following lemma of Kolmogorov about translation invariant events.
This result is quite general, so we state it in a simple form which is enough for our
purposes.

Kolmogorov’s 0–1 Law. Let T be an infinite graph that is locally finite. If E is a
weakly translation-invariant event, then Pr(E) ∈ {0, 1}.

The proof is not hard, but requires enough machinery that we do not reproduce it
here. Nevertheless, this lemma is crucial to our work, so we give a brief description for
the probabilistically-minded reader. Our probability space is constructed as a count-
able product space (whose fundamental events are whether or not individual faces
are infected). As such, any event—in particular, our ‘initial set percolates’ event—
can be approximated arbitrarily well by a cylinder set (all hexagons within some
fixed distance of a specified hexagon). Since we have weak translation-invariance, if
we translate sufficiently far we can find another approximating cylinder set which is
disjoint from the first; thus, events within one cylinder set are independent of those
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within the other. By repeating this process, we find infinitely many disjoint copies of
our approximating cylinder set. Each of these translations of our cylinder is initially
entirely infected with positive probability. Hence, with probability one, at least one
of these approximating events will occur2.

To show that the square lattice has threshold 2, Chalupa, Leath, and Reich [11]
defined an event A with the following three properties: (1) if A occurs, then in the
2-bootstrap model the initially infected set I percolates on the square lattice, (2)
A occurs with positive probability, and (3) A is translation invariant. Properties
(1) and (2) clearly imply that in the 2-bootstrap model on the square lattice, I
percolates with positive probability. Now Kolmogorov’s 0–1 Law shows that this
probability is 1.

An Archimedean Lattice is a vertex transitive (infinite) plane graph in which each
face is a regular polygon. It is well-known that there are 11 such lattices3, includ-
ing the three regular tilings (by the triangle, square, and hexagon). To describe an
Archimedean Lattice, we write (f1. . . . fs), where f1, . . . , fs are the face lengths, in
cyclic order, that meet at each vertex. For instance, the regular tilings by triangle,
square, and hexagon are denoted (3.3.3.3.3.3), (4.4.4.4), and (6.6.6). In Figure 1
we show the other eight Archimedean Lattices, along with configurations that bound
their percolation thresholds, via Observation 1. Clearly, every lattice has percolation
threshold at least 1. For lattices (3.3.3.3.3.3), (3.3.3.3.3.6), (3.3.3.4.4), (3.3.4.3.4),
and (3.4.6.4) we obtain a matching upper bound, using Observation 1 and the con-
figurations in Figure 1. For (3.6.3.6) our upper bound is 2, and for each of (3.12.12),
(4.6.12), (4.8.8), and (6.6.6) it is 3. So, to determine the bootstrap threshold for each
of these five lattices, the interesting work is proving a matching lower bound. We
first present a proof for (4.8.8). Since the proofs of all five lower bounds are similar,
we will just outline the differences for the remaining four lattices.

Theorem 1. For every p ∈ (0, 1), the percolation threshold for the lattice (4.8.8) is 3.

Proof. By applying Observation 1, using the configuration in Figure 1, we get an
upper bound of 3. So we need only to prove a matching lower bound.

We draw (4.8.8) so each 8-gon has its center at a lattice point (and each lattice
point is the center of an 8-gon). We fix p ∈ (0, 1), and initially infect each face
independently with probability p. Call this set of initially infected faces I. We show
that in the 3-bootstrap model I percolates with positive probability. Let Dt denote
the set of faces with centers at (x, y) such that |x| ≤ t and |y| ≤ t. So Dt contains
(2t + 1)2 8-gons and (2t)2 squares.

Suppose that all faces in Dt are infected. We want to prove a lower bound on
the probability that eventually all faces in Dt+1 become infected. Suppose that some
infected face f is adjacent to a face in the top row of 8-gons of Dt. Now the infection
at f will spread to every face in the same row as f that is adjacent to some face in
Dt. This spread happens as follows. First, we infect the two 4-gons that are adjacent

2The details are available, for example, in [7, p. 118ff.].
3At the start of Section 3, we outline a proof of this fact.
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to f and also each have two neighbors in Dt. Now we infect each 8-gon f ′ that is
adjacent to f and also adjacent to a face Dt (since f ′ is also adjacent to an infected
4-gon). By repeating this argument with f ′ in place of f , we see that the infection
spreads along the row above the top row of Dt (to the full width of Dt, which is

(3.12.12) 3 (4.6.12) 3

(4.8.8) 3 (3.6.3.6) 2

(3.4.6.4) 1 (3.3.3.3.6) 1

(3.3.4.3.4) 1 (3.3.3.4.4) 1

Figure 1: The 8 non-regular Archimedean lattices, along with the configurations used to
prove upper bounds on their percolation thresholds.
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2t+ 1). Since each face in the row just above Dt is initially infected with probability
p, the probability that none is infected is (1 − p)2t+1. The same argument applies to
the row beneath the bottom of Dt and to the columns to the left and right of Dt. So
the probability that at least one of these two rows and two columns has no infected
face is at most 4(1 − p)2t+1. If we infect all of both columns and both rows, then we
also infect each square with exactly one neighbor in Dt (these are at the corners).
Finally, we infect each corner 8-gon, since it now has two adjacent infected 8-gons
and one adjacent infected square. Thus, all of Dt+1 becomes infected.

For each s ≥ 0, call Ds+1 \ Ds a ring around D0. We partition the faces of each
ring into top and bottom rows, left and right columns, and four corners. To infect the
whole plane, it is enough to have all faces in Dt infected (for some t) and for each s ≥ t
to have at least one infected face in each of its top and bottom rows and right and left
columns. The probability of having at least one ring without the necessary infected
faces is at most

∑
s≥t 4(1 − p)2s+1 = 4(1 − p)2t+1/(1 − (1 − p)2). For t sufficiently

large, this probability is less than 1. The probability that every 8-gon in Dt is initially
infected is p(2t+1)2 ; if the 8-gons are all infected, then the squares immediately become
infected. Since each face is infected independently, the probability of infecting the
whole plane is at least p(2t+1)2(1− 4(1− p)2t+1)/(1− (1− p)2), which is positive for t
sufficiently large. So, in the 3-bootstrap model, with positive probability, the whole
plane becomes infected. Now we use Kolmogorov’s 0–1 Law to show that, in fact,
the whole plane becomes infected with probability 1. To apply the 0–1 Law, we only
need to note that the event that the initial set I percolates is weakly translation-
invariant.

The proofs of the lower bounds for (3.6.3.6), (4.6.12), and (6.6.6) are similar. The
only noticeable difference is the shapes of the sets analogous to Dt and the details of
how Dt grows to Dt+1 when we have at least one infected face on each side of the ring
Dt+1 \Dt. In each case, the shape of the set Dt is closer to a hexagon than a square,
so the ring Dt+1 \ Dt has six sides, rather than four; this is most obvious for (6.6.6).
In Figure 2 we show examples of how one side of Dt grows to Dt+1 for (3.6.3.6) and
(4.6.12). The faces marked with × are already infected, and the integers denote
the order that new faces become infected. For (4.6.12), the faces labeled 0 become
infected immediately, since each has three infected neighbors.

4 4

3 1 3
4 2 2 4

× × ×××××× × × × ×××××
× × × ××××××× × × ×

× × × × ×××××× × × × × × × ×
× × × ×
× × × ×

× × ×× ×× ×× ×× ×× × × ×× × ×

5
0

1
0

5
0

6 4 2 2 4 6

6 6
3 3

Figure 2: The order in which faces in the next row become infected, when proving that
the lattice (3.6.3.6) has threshold 2 and that the lattice (4.6.12) has threshold 3.
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Figure 3: Inflating 12-gons to hexagons shows that (3.12.12) has threshold at least 3,
since (6.6.6) has threshold 3.

The fact that (3.12.12) has bootstrap threshold at least 3 follows directly from the
fact that (6.6.6) does. We inflate each 12-gon in (3.12.12) to include one third of each
incident triangle. This produces (6.6.6), as shown in Figure 3. When we inflate a
12-gon, it does not become incident to any new face. Since (6.6.6) has threshold 3, we
conclude that in the 3-bootstrap model, with probability 1 every 12-gon in (3.12.12)
becomes infected. And once the three 12-gons incident to a triangle become infected,
so does the triangle. Thus, (3.12.12) has threshold at least 3. Finally, recall that the
lattice (4.4.4.4) has threshold 2. (This was proved by van Enter [17]; it is this proof
which inspired the present paper.)

3 More General Tilings

In a plane tiling by regular polygons, the vertex type for a vertex v is the cyclicly or-
dered list of the lengths of faces that meet at v. Since the interior angle of a regular t-
gon is known (its measure in degrees is 180(t−2)/t), determining the set of all possible
vertex types is a simple exercise in diophantine equations. Up to reflection, we have
21 types. These are 3.3.3.3.3.3, 3.3.3.3.6, 3.3.3.4.4, 3.3.4.3.4, 3.3.6.6, 3.6.3.6, 3.3.4.12,
3.4.3.12, 3.4.4.6, 3.4.6.4, 4.4.4.4, 3.7.42, 3.8.24, 3.9.18, 3.10.15, 3.12.12, 4.5.20, 4.6.12,
4.8.8, 5.5.10, 6.6.6. (Analyzing these 21 possibilities gives a straightforward, albeit
tedious, proof that there are only 11 Archimedean lattices.) Grünbaum and Shep-
hard [12] give nice pictures of the 21 types, as well as many plane tilings by regular
polygons.

Let T denote the set of plane tilings such that if T ∈ T and some vertex type
appears in T , then that type appears in T infinitely often. It is easy to see that T
contains more tilings than just the Archimedean Lattices. A portion of such a tiling
is shown in Figure 5. We prove the following.

Main Theorem. No tiling in T has threshold 4 or more, and the only tilings in T
with threshold 3 are the lattices (3.12.12), (4.6.12), (4.8.8), and (6.6.6).

Proof. Fix T ∈ T . As a warmup, we show that T has threshold at most 4. Suppose
T has a vertex v of type other than 5.5.10 and 6.6.6. Note, by examining the 21 types
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above, that v has an incident 3-face or 4-face. So, by definition, T has infinitely many
3-faces or 4-faces. Now Observation 1 shows that T has threshold at most 4. As we
show in the next paragraph, type 5.5.10 cannot appear in any plane tiling. Finally,
if T has only vertex type 6.6.6, then T is the lattice (6.6.6), which has threshold 3.

The rest of the proof simply refines the idea in the previous paragraph. We first
show that six types cannot appear in T at all. Suppose that T contains a vertex
of type 3.7.42. Since no other type contains 7-gons or 42-gons, the lengths of faces
incident to this 3-gon must alternate between 7 and 42. But this is impossible, since
3 is odd. So T contains no vertex of type 3.7.42. Similar arguments show that T
contains no vertex of any of types 3.8.24, 3.9.18, 3.10.15, 4.5.20, and 5.5.10.

For the remaining types t other than 3.6.3.6, 3.12.12, 4.6.12, 4.8.8, and 6.6.6, we
show that if T contains type t, then T contains a configuration H where each face
of H has at most 2 adjacent faces outside H . Since H appears infinitely often, by
Observation 1 the threshold of T is at most 2, as desired. The details follow.

If T contains two adjacent triangles, then we take these as H . This handles six
types, leaving only 3.4.4.6, 3.4.6.4, 3.4.3.12, and 4.4.4.4. If v has type 4.4.4.4, then
H is its four incident squares. If v has type 3.4.3.12, then H is the two incident
triangles and the incident square. If v has type 3.4.4.6, then a short analysis shows
that T contains one of the configurations on the left in Figure 4. Finally, if v has
type 3.4.6.4, then a (slightly longer) proof shows that T contains the configuration
on the right in Figure 4 (or else contains two triangles linked by one or two squares,
similar to the cases on the left of Figure 4).

Figure 4: Left: The three possibilities for C when T contains a vertex of type 3.4.4.6.
Right: A configuration, C, of 31 faces in which each face has at most two neighbors
outside C.

The remaining types to consider are 3.6.3.6, 3.12.12, 4.6.12, 4.8.8, and 6.6.6. To
see that T must be an Archimedean lattice, note that none of these types agree in
two or more successive face lengths. So it is impossible for T to “switch” from one
type to another.

It is worth noting that we cannot relax the hypothesis in the Main Theorem to
require only that some vertex type appears infinitely often. For example, suppose we
start with the hex lattice and replace finitely many hexagons each with 6 triangles. If
any of the resulting vertices of type 3.3.3.3.3.3 has no incident faces initially infected,
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then the percolation threshold drops from 3 to 1. Hence, the percolation threshold
depends heavily on p, the probability that each face is initially infected.

To conclude, we briefly discuss a family of tilings we call Tstrips. These tilings
are formed by “stacking” infinite horizontal strips of polygons above and below each
other to fill the entire plane. The two types of strips that we use are hex strips ,
consisting of hexagons and triangles, and square strips, consisting just of squares.
Figure 5 shows an example. Since the hex strips can be shifted left or right, this
family contains uncountably many tilings.

Despite the variety in the tilings of Tstrips, they all have the same threshold. The
proof is similar to our proof for the lattice (4.8.8), with a little difficulty added by
the irregularly shaped rings we use now (what were previously Dt+1 \ Dt). Two hex
strips are offset if the centers of their hexagons are not directly above one another.

Theorem 2. Every tiling in Tstrips has percolation threshold 2.

Proof. Let T be a tiling in Tstrips. Again the upper bound follows from Observation 1.
The main step is to show that T contains a configuration C such that each face of
C has at most two adjacent faces outside C. A short analysis yields that T contains
infinitely many copies of one of the following: (a) adjacent triangles, (b) a hexagon
with six adjacent triangles, (c) four squares incident to a common vertex, (d) two
triangles adjacent to a common square, or (e) two triangles linked by two squares
(as in Figure 4).

Now we show that for every p with 0 < p < 1, if k = 2, then our random set I
percolates with positive probability. By combining this with the 0–1 Law, we deduce
that the bootstrap threshold for T is 2.

Figure 5: A tiling in Tstrips, along with a marked face and A4.
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First we must find an analogue of Dt from our proof for the lattice (4.8.8). Con-
sider a face f of T which is not a triangle. We let At denote a collection of faces
that is centered on f and that is shaped somewhere between a square and a hexagon
(depending on the number of offset rows involved). In the strip containing f , At

contains 2t consecutive faces to the left of f (including triangles), and 2t consecutive
faces to the right of f . For the strip above this, At contains the faces directly above,
if the two strips are not offset, and the faces above and slightly towards the center,
if the strips are offset. Similarly for the strip below, At contains the faces directly
below if the two strips are not offset, and the faces below and slightly toward the
center when the faces are offset. We continue this for the t rows above f and the t
rows below f . This means that At always consists of 2t + 1 rows of faces, but the
number of faces in the rows decreases slightly as we move away from the center row
(whenever successive strips are offset).

Now At looks like a square when it has no offset strips, and looks closer to
a hexagon when it has many. Even when At looks like a rectangle, we think of
At+1 \At as having six sides. The top and bottom sides are easy to see; they consist
of faces directly above/below the faces in the top/bottom row of At. The top-left
side consists of faces directly left of an end-face of At and which are in a strip above
f . The bottom-left, top-right, and top-left sides are defined similarly.

The key insight is that, just like for the lattice (4.8.8), if At is infected and
At+1 \ At has even a single infected (non-triangular) face in one of its sides, then
that entire side becomes infected. By repeatedly applying this idea, we see that
the infection spreads along the entire top-left side. Once two adjacent sides are
infected (e.g. top-left and top, or bottom-right and top-right), the corner face lying
between them also has two infected neighbors, so it becomes infected. The important
consequence of all this is the following. If At is completely infected, and at least one
face on each of the six sides of At+1\At is infected, then At+1 also becomes completely
infected.

Now we bound the probability that this happens. Each side has at least t non-
triangular faces4, so the probability that none of the faces on a side are infected is
at most (1 − p)t. Thus, the probability that at least one side of At+1 \ At has no
infected face is no more than 6(1 − p)t.

Now our argument exactly follows that for (4.8.8). The probability that at least

one ring around At does not become infected is at most
∑∞

j=0 6(1 − p)t+j = 6(1−p)t

p
,

and for large enough t we have 6(1−p)t

p
< 1. Now the probability that At is initially

entirely infected and that every ring around At contains an infected face on each of

the six sides is p|At|(1 − 6(1−p)t

p
) > 0. Since this event is translation-invariant in the

horizontal direction, it is weakly translation-invariant. So the 0–1 Law tells us that
I percolates with probability 1.

4 When At contains two successive hex strips that are offset, the row further from f contributes
to At two fewer faces than the row nearer f (including one fewer hex face). Thus, the top and
bottom sides can each have as many as 2t+ 1 adjacent non-triangular faces. But, this only helps
us, since a side with more faces is more likely to have an infected face.
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