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Abstract

We show that the reciprocal of a partial sum of the alternating exponen-
tial series, (2m−1∑

n=0

(−1)n
xn

n!

)−1

,

is the exponential generating function for permutations in which every in-
creasing run has length congruent to 0 or 1 modulo 2m. More generally we
study polynomials whose reciprocals are exponential generating functions
for permutations whose run lengths are restricted to certain congruence
classes, and extend these results to noncommutative symmetric functions
that count words with the same restrictions on run lengths.

1 Introduction

Since ( ∞∑
n=0

(−1)n
xn

n!

)−1

=

∞∑
n=0

xn

n!
, (1)

we might ask if anything interesting can be said about the coefficients of reciprocals
of the partial sums of

∑
n(−1)nxn/n!. For partial sums with an odd number of

terms there are negative coefficients, but for partial sums with an even number of
terms the reciprocals have positive coefficients. We will give here a general result on
permutation enumeration that as a special case gives a combinatorial interpretation
to the numbers un defined by(2m−1∑

n=0

(−1)n
xn

n!

)−1

=

∞∑
n=0

un
xn

n!
.
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We will see that un is the number of permutations of [n] = {1, 2, . . . , n} in which
every increasing run has length congruent to 0 or 1 modulo 2m. (The increasing
runs of a permutation are its maximal increasing consecutive subsequences; thus,
the increasing runs of the permutation 132576 are 13, 257, and 6, with lengths 2, 3
and 1.)

For example, when m = 2, we have

∞∑
n=0

un
xn

n!
=

(
1− x+

x2

2!
− x3

3!

)−1

,

and the first few values of un are as follows:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
un 1 1 1 1 2 10 50 210 840 4200 29400 231000 1755600 13213200

More generally, we consider a class of polynomials whose reciprocals, as expo-
nential generating functions, count permutations whose run lengths lie in certain
congruence classes. Our exponential generating function results are derived from
more general results on noncommutative symmetric functions that count words with
the same restrictions on run lengths.

2 Words and permutations with restricted run lengths

A simple class of polynomials with the property under consideration is given by the
following result, which we will prove later.

Proposition 2.1. Let m and r be positive integers. Then the coefficient of xn/n! in(
m−1∑
k=0

(
xkr

(kr)!
− xkr+1

(kr + 1)!

))−1

is the number of permutations of [n] in which every increasing run has length con-
gruent to 0, 1, . . . , or r − 1 modulo mr.

If we take the limit as m → ∞ in Proposition 2.1, we recover the known result
[1, pp. 156–157] that the coefficient of xn/n! in(

1− x+
xr

r!
− xr+1

(r + 1)!
+

x2r

(2r)!
− x2r+1

(2r + 1)!
+ · · ·

)−1

is the number of permutations of [n] in which every increasing run has length at most
r − 1.

Proposition 2.1 is a consequence of a more refined result on noncommutative
symmetric functions. We define the complete noncommutative symmetric function
hn by

hn =
∑

i1≤···≤in

Xi1Xi2 · · ·Xin ,
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where the Xi are noncommuting variables. (The algebra of noncommutative sym-
metric functions is generated by the hn. Noncommutative symmetric functions are
studied extensively in [2] and its successors, though with different notation and a
different, but equivalent, definition.)

A composition is a finite (possibly empty) sequence of positive integers. A com-
position of n is a composition with sum n. For a composition L = (L1, L2, . . . , Lk),
we define the ribbon noncommutative symmetric function rL by

rL =
∑

i1,i2,...,in

Xi1Xi2 · · ·Xin

where the sum is over all i1, . . . , in satisfying

i1 ≤ · · · ≤ iL1︸ ︷︷ ︸
L1

> iL1+1 ≤ · · · ≤ iL1+L2︸ ︷︷ ︸
L2

> · · · > iL1+···+Lk−1+1 ≤ · · · ≤ in︸ ︷︷ ︸
Lk

.

In other words, rL is the sum of all words in the Xi whose weakly increasing run
lengths are L1, L2, . . . , Lk.

The connection between noncommutative symmetric functions and exponential
generating functions is given by a well-known homomorphism Ψ from noncommu-
tative symmetric functions to power series in x: The homomorphism is determined
by Ψ(hn) = xn/n!, but a more enlightening description of Ψ is that if f is a non-
commutative symmetric function then the coefficient of xn/n! in Ψ(f) is the co-
efficient of x1x2 · · ·xn in the result of replacing X1, X2, . . . in f with commuting
variables x1, x2, . . . . It follows that for a composition L = (L1, . . . , Lk) of n, we have
Ψ(rL) = β(L)xn/n!, where β(L) is the number of permutations of [n] whose sequence
of increasing run lengths is L. (See, e.g., [4, Section 4.2].)

We will state our main results for sums of ribbon noncommutative symmetric
functions and the corresponding exponential generating functions.

Our main tool is the “run theorem” as stated by Zhuang [7, Theorem 1], which
allows us to count words with restrictions on the lengths of their increasing runs. The
result was first proved in an equivalent form by Gessel [3, Theorem 5.2]; a closely
related result was proved by Jackson and Aleliunas [5, Theorem 4.1].

Lemma (The run theorem). Suppose that sequences an and wn are related by( ∞∑
n=0

anx
n

)−1

=

∞∑
n=0

wnx
n, (2)

where a0 = w0 = 1. Then ( ∞∑
n=0

anhn

)−1

=
∑
L

wLrL,

where the sum on the right is over all compositions L, and wL = wL1 · · ·wLk
for

L = (L1, . . . , Lk).
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We are interested in the case in which only finitely many of the an are nonzero
and each wn is either 0 or 1. The next proposition results from applying the run
theorem to this case, and then applying the homomorphism Ψ.

Proposition 2.2. Let a(x) = a0 + a1x+ · · ·+ adx
d, where a0 = 1, and suppose that

every power series coefficient of 1/a(x) is 0 or 1. Let S be the set of positive integers
s such that the coefficient of xs in 1/a(x) is 1. Then( d∑

n=0

anhn

)−1

=
∑
L

rL,

where the sum on the right is over all compositions L with every part in S, and the
coefficient of xn/n! in ( d∑

n=0

an
xn

n!

)−1

is the number of permutations of [n] in which every increasing run length is in S.

A simple application of Proposition 2.2 is the following.

Proposition 2.3. Let m and r be positive integers. Then(m−1∑
k=0

(hkr − hkr+1)

)−1

=
∑
L

rL,

where the sum on the right is over compositions L in which every part is congruent
to 0, 1, . . . , or r − 1 modulo mr.

Proof. In Proposition 2.2 we take

a(x)−1 =
1 + x+ x2 + · · ·+ xr−1

1− xmr
=

1− xr

(1− x)(1− xmr)

Then

a(x) = (1− x)
1− xmr

1− xr
= (1− x)(1 + xr + x2r + · · ·+ x(m−1)r)

=
m−1∑
k=0

(
xkr − xkr+1

)
.

The limiting case m → ∞ of Proposition 2.3 was given by Gessel [3, Example 3,
pp. 51–52]. Results closely related to this limiting case were proved by Jackson and
Aleliunas [5, Corollary 7.2] and by Yang and Zeilberger [6].

Proposition 2.1 follows directly from Proposition 2.3 by applying the homomor-
phism Ψ. By the same reasoning, we have a slight generalization.

Proposition 2.4. Let b and r be positive integers. Then(m−1∑
k=0

(
hkrb − h(kr+1)b

))−1

=
∑
L

rL,

where the sum is over compositions L in which every part is congruent to 0, b, . . . ,
or (r − 1)b modulo mrb.
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3 Necessary and sufficient conditions

The results of Section 2 suggest the following problem: Find all finite sequences
a1, a2, . . . , an such that in the ribbon expansion

(1 + a1h1 + · · ·+ anhn)
−1 =

∑
L

wLrL, (3)

each coefficient wL is 0 or 1. By the run theorem, this is equivalent to finding all
polynomials a(x) (with constant term 1) such that every coefficient of a(x)−1 is 0
or 1.

First we give a necessary condition.

Lemma 3.1. Let R(x) be a rational function with bounded integer power series
coefficients. Then R(x) = N(x)/(1 − xm) for some polynomial N(x) and some
positive integer m.

Proof. Let R(x) =
∑∞

n=0 rnx
n. Then the numbers rn satisfy a linear homogeneous

recurrence with constant coefficients, so by the pigeonhole principle and the fact that
the set {r0, r1, r2, . . . } is finite, the sequence r0, r1, . . . must be eventually periodic,
and the result follows.

We can now give a necessary and sufficient condition. Let Φd(x) denote the
dth cyclotomic polynomial. We will need three well-known properties of cyclotomic
polynomials:

(i) The polynomials Φd(x) are irreducible.

(ii) We have the factorization xm − 1 =
∏

d|mΦd(x).

(iii) Every cyclotomic polynomial has leading coefficient 1.

Proposition 3.2. Let a(x) be a nonconstant polynomial. Then every power series
coefficient of a(x)−1 is 0 or 1 if and only if for some integer m we have

a(x) =
1− xm

N(x)

where N(x) is a product of distinct cyclotomic polynomials, N(x) = Φd1(x) · · ·Φds(x),
each di divides m, all coefficients of N(x) are 0 or 1, and the degree of N(x) is less
than m.

Proof. Suppose that a(x) is a nonconstant polynomial such that every power series
coefficient of a(x)−1 is 0 or 1. Then by Lemma 3.1, a(x) = (1− xm)/N(x) for some
polynomial N(x).

Since a(x) is a polynomial, by (i) and (ii), N(x) must be a product of cyclotomic
polynomials ±Φd1(x) · · ·Φds(x) for distinct divisors d1, . . . , ds of m.

Since a(x) is not a constant, N(x) must have degree less than m. Then

a(x)−1 =
N(x)

1− xm
= N(x) + xmN(x) + x2mN(x) + · · · ,
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so since the degree of N(x) is less than m, the coefficients of N(x) are all 0 or 1.
Finally, since N(x) has all nonnegative coefficients, by (iii) we must have the plus
sign in N(x) = ±Φd1(x) · · ·Φds(x).

The proof of the converse is easy, and is omitted.

Proposition 3.2 is not completely satisfactory, since it does not give a simple cri-
terion for determining when a product of cyclotomic polynomials has all coefficients
0 and 1, and there is probably no simple criterion.

The simplest examples not included in Proposition 2.4 are

a(x) = 1− x2 − x3 + x4 + x5 − x7 = (1− x)(1 + x+ x2)(1− x2 + x4),

for which

a(x)−1 =
(1 + x2)(1 + x3)

1− x12
=

1 + x2 + x3 + x5

1− x12

and
a(x) = 1− x2 − x3 + x5 + x6 − x8 = (1− x)(1 + x)(1− x3 + x6)

for which

a(x)−1 =
(1 + x2 + x4)(1 + x3 + x6)

1− x18
=

1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x10

1− x18
.

Many examples of allowable N(x), including all of our examples so far, can be
obtained from products of the polynomials

1 + xk + x2k + · · ·+ x(r−1)k =
1− xrk

1− xk
=
∏
d|rk
d�k

Φd(x).

Any such product will have positive coefficients, but there does not seem to be a
simple criterion for determining when they are all 0 or 1.

Not all products of cyclotomic polynomials with all coefficients 0 or 1 are of this
form. For example, we have

Φ5(x)Φ6(x) = (1 + x+ x2 + x3 + x4)(1− x+ x2) = 1 + x2 + x3 + x4 + x6,

which gives the polynomial

a(x) =
1− x30

1 + x2 + x3 + x4 + x6

= 1− x2 − x3 + 2 x5 + x6 − x7 − 2 x8 − x9 + 2 x10

+ 2 x11 − 2 x13 − 2 x14 + x15 + 2 x16 + x17 − x18 − 2 x19 + x21 + x22 − x24

and

a(x)−1 =
1 + x2 + x3 + x4 + x6

1− x30
.

Combining Proposition 2.2 with Proposition 3.2 gives a more explicit version of
Proposition 2.2.
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Theorem 3.3. Let a(x) = a0 + a1x + · · · + adx
d, where a0 = 1, and suppose that

every power series coefficient of 1/a(x) is 0 or 1. Then there exists a positive integer
m and a finite set T ⊆ {0, 1, . . . , m− 1}, with 0 ∈ T , such that

a(x)−1 =
∑
t∈T ∗

xt,

where T ∗ is the set of nonnegative integers congruent modulo m to an element of T .
Moreover ( d∑

n=0

anhn

)−1

=
∑
L

rL,

where the sum on the right is over all compositions L with every part in T ∗, and the
coefficient of xn/n! in ( d∑

n=0

an
xn

n!

)−1

is the number of permutations of [n] in which every increasing run length is in T ∗.
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