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Abstract

A decycling set of a graph G is a set S of vertices such that G[V − S]
is acyclic. In this paper we prove that every non-complete graph G of
maximum degree r ≥ 3 has a minimum decycling set S such that G[S]
does not contain an (r−2)-regular graph as a subgraph. This generalizes a
result in [P.A. Catlin and H.-J. Lai, Discrete Math. 141(1) (1995), 37–46].
We give several consequences of our main result, including new proofs of
known results.

1 Introduction

In a graph G, a set S of vertices is a decycling set, or feedback vertex set, if and only
if G[V − S] is acylic. Early research on these sets was motivated by applications
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in logic networks and circuit theory, first in digraphs [5, 14] and later in undirected
graphs [9]. More modern applications are given in [10].

For a given graph G, the decycling number of G, denoted by φ(G), is defined to
be the size of a minimum decycling set of G. Clearly, finding a minimum decycling
set of G is equivalent to finding a maximum induced forest. The order of such a
forest is called the forest number of G, and denoted by a(G). Many authors have
derived bounds on φ(G) and a(G), both for general graphs [1] and for special classes
of graphs, including planar graphs [7, 8, 12], cubic graphs [2, 11, 15, 19, 21, 22, 25]
and other regular graphs [18, 20]. For r-regular graphs, Dreyer and Roberts [6]
have shown that the decycling sets coincide with the so-called irreversible (r − 1)-
threshold conversion sets. Given a graph G and a subset S0 of its vertices, an
irreversible k-threshold conversion process on G is an iterative process wherein, for
each t = 1,2, . . . , St is obtained from St−1 by adjoining all vertices that have at least k
neighbours in St−1. We call the set S0 the seed set of the process, and we call it an
irreversible k-threshold conversion set of G if St = V (G) for some t ≥ 0. Figure 1
illustrates a 2-conversion process in a cubic graph. A detailed survey of results on
irreversible k-threshold conversion processes, including results on decycling sets in
regular graphs, can be found in [24]. We use the equivalence between decycling sets
and irreversible (r−1)-threshold conversion sets of r-regular graphs in several proofs.

t = 0 t = 1 t = 2
Figure 1: The evolution of a 2-conversion process in a cubic graph, with vertices
of St shown in black

In this paper we consider structures that can be avoided in minimum decycling
sets of graphs, and in minimum k-conversion sets of regular graphs, generalizing
Theorem A, a result of Catlin and Lai.

Theorem A. [3, Lemma 2] Every graph G ≠Kr+1 with Δ(G) = r ≥ 3 has a minimum
decycling set S such that G[S] does not contain Kr−1 as a subgraph.

Corollary B. [3, Theorem 2] Every graph G ≠K4 with Δ(G) = 3 has an independent
minimum decycling set.

A linear forest is a graph in which every component is a path.

Corollary C. [3, Corollary 1 and Lemma 3] Every graph G ≠K5 with Δ(G) = 4 has
a minimum decycling set S such that G[S] is a linear forest.



M.D. FRANCIS ET AL. /AUSTRALAS. J. COMBIN. 74 (2) (2019), 288–304 290

Our main result, which we prove in Section 4, is the following generalization of
Theorem A.

Theorem 1.1. Every graph G ≠ Kr+1 with Δ(G) = r ≥ 3 has a minimum decycling
set S such that G[S] does not contain an (r − 2)-regular graph as a subgraph.

It is easy to see that every vertex v in a minimum decycling set S of G is adjacent
to at least two vertices of G − S (and thus has degree at most Δ(G) − 2 in G[S]);
otherwise S − {v} would be a smaller decyling set of G. We note that putting r = 3
into Theorem 1.1 gives exactly Corollary B, and using the above observation, the case
r = 4 gives exactly Corollary C. Furthermore, since every graph of maximum degree r
is an induced subgraph of an r-regular graph, we only need to prove Theorem 1.2,
below, which we do in Section 3. Theorem 1.1 then follows by embedding a graph G
with Δ(G) = r in a carefully chosen r-regular graph.

Theorem 1.2. Let r ≥ 3. Every r-regular graph G ≠Kr+1 has a minimum decycling
set S such that G[S] does not contain an (r − 2)-regular graph as a subgraph.

In Section 2 we show that Corollary B does not hold for graphs with maximum
degree exceeding 3, and that Corollary C does not hold for graph with maximum
degree exceeding 4. We consider several re-interpretations of Corollary B in search of
a stronger statement that can be generalized. We show that each re-interpretation
that would lead to a stronger generalization than Theorem 1.1 does not hold for
larger r, establishing that Theorem 1.1 is the strongest possible natural generalization
of Corollaries B and C. The proofs of Theorems 1.1 and 1.2 are given in Sections 4
and 3, respectively. In Section 5 we present some consequences of Theorem 1.1,
including new proofs of known results.

2 Possible generalizations of Corollary B

In general, we cannot guarantee the existence of an independent minimum decycling
set. In Proposition 2.1 we show that for every r ≥ 4, there exists an arbitrarily large
r-regular graph with no independent decycling set of any size. Proposition 2.2 gives
an additional family of counterexamples for the case where r is even.

Proposition 2.1. Let r ≥ 4, and let G be an r-regular graph of order n. Let H be the
r-regular graph obtained by replacing each vertex u of G with a copy Kr(u) of Kr,
joining Kr(u) to Kr(v) if and only if uv is an edge in G. Then every decycling set
of H contains at least (r − 2)n edges.

Proof. For r ≥ 4 the decycling number of Kr is at least r−2 ≥ 2, so any decycling set
of H must contain at least r − 2 vertices from each copy of Kr.

Proposition 2.2. Let L be the line graph of an r-regular graph G, with r ≥ 3. Then L
is a (2r − 2)-regular graph with no independent decycling set.
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Proof. We show that any independent seed set in L fails to convert any non-seed
vertices under a (2r − 3)-conversion process. Let e be an edge of G, corresponding
to vertex v in L. Since e is incident with r − 1 other edges at each of its endpoints,
the closed neighbourhood of v in L consists of two cliques of size r, joined at v (and
nowhere else). Therefore, between any three neighbours of v there is at least one
edge. That is, no independent set of L contains more than two neighbours of v, so v
does not convert at t = 1 from any independent seed set. Since this holds for all v ∈ L,
the result follows.

Since Corollary B does not hold for larger values of r, we seek in this section an
interpretation of that result that generalizes to r ≥ 4. We can rephrase the result of
Corollary B in various ways, two of which are below.

1. Every graph G with Δ(G) = 3 has a minimum decycling set S such that G[S]
has zero edges.

2. Every graph G with Δ(G) = 3 has a minimum decycling set S such that G[S]
has maximum degree zero.

One may imagine that a graph G with Δ(G) ≤ r must have a decycling set S
such that G[S] has at most r−3 edges, or perhaps has maximum degree at most r−
3. However, both of these proposed generalizations, which would also strengthen
Corollary C, are false for r ≥ 4. We define an infinite class Gr of r-regular graphs
below, and demonstrate in Corollary 2.4 that these graphs are counterexamples to
the proposed generalizations.

Let r ≥ 4. Consider s copies of Kr+1 − e, and for i = 0, . . . , s − 1, let xiyi be
the missing edge in the ith copy. Define Gr to be the family of r-regular graphs
constructed from these copies by adding the edges xiyi+1 for all i, where addition is
performed modulo s. Figure 2 gives an example of a graph in this class for r = 4.
Proposition 2.3 implies that for every G ∈ Gr and for every minimum decycling set S
of G, the maximum degree of G[S] is r − 2. It follows immediately from this result
that the generalizations of Corollary B proposed above are false.

Figure 2: An example of a graph in G4, and a minimum decycling set, shown in black
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Proposition 2.3. Let r ≥ 4 and let G ∈ Gr. Then for every minimum decycling set S
of G, one of the copies of Kr+1 − e in G contains r − 1 vertices of S.

Proof. Let G ∈ Gr and let S be a minimum decycling set of G. We argue that some
copy of Kr+1 − e contains r − 1 seed vertices. Let v be a vertex that converts at t = 1.
If v belongs to a copy of Kr+1 − e with fewer than r −1 seed vertices then v = xi or yi
for some i. Assume, without loss of generality, that v = y1. Then x0 ∈ S. Let H be
the 0th copy of Kr+1 − e, and assume every vertex outside H has converted by some
time t. Let w be a first vertex of V (H) − S to convert. Then w has r − 1 converted
neighbours (including seed vertices) at time t. If w = y0 then at least r − 2 of these
converted neighbours are in H , and by definition of w they are all seed vertices. In
that case, H contains r − 2 seed vertices adjacent to w, as well as x0, for a total
of r−1 seed vertices. On the other hand, if w ≠ y0 then all neighbours of w are in H ,
and therefore r − 1 of them are seed vertices.

Corollary 2.4. Let G ∈ Gr and let S be a minimum decycling set of G. Then G[S]
contains Kr−1−e as a subgraph, hence it contains at least r−3 vertices of degree r−2.

For the graphs in the class Gr, every minimum decycling set induces a copy of
Kr−1 − e, and these are the only known non-complete graphs with this property.
Hence, it is natural to pose the following problem.

Problem 2.5. Characterize all r-regular graphs G for which every minimum decy-
cling set of G induces a subgraph which contains Kr−1 − e as a subgraph.

The proof of Proposition 2.3 shows that if G ∈ Gr and S is a minimum decycling
set of G then G[S] contains a copy of Kr−1 − e, but not Kr−1. This shows that,
in terms of subgraphs of Kr−1, Theorem A is best possible. Since the minimum
decycling sets of G ∈ Gr come so close to inducing a copy of Kr−1, it is perhaps
surprising that we can actually do better than this. In our main result, we prove
that every non-complete graph of maximum degree r has a minimum decycling set
that does not induce any (r − 2)-regular subgraphs. Since an edge is a 1-regular
graph while a cycle is a 2-regular sugraph, this is a generalization of Corollaries B
and C; it is the generalization we have been looking for.

3 Proof of Theorem 1.2

In the proof of Corollary B, Catlin and Lai show that for any minimum decycling
set S of G ≠ K4, S can be modified, over a series of steps, to obtain a minimum
decycling set S′ that is also an independent set. In this section will state and prove
a stronger version of Theorem 1.2 that generalizes this stronger version of Corollary
B. First, we develop a tool that we will use to modify decycling sets of an r-regular
graph G.

Suppose that x ∈ S has exactly r − 2 neighbours in S, and let v be one of the two
neighbours of x in V −S. We call the operation (S −{x})∪{v}, denoted by x ↦ v, a
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seed shuffle from x to v. In the case where x belongs to a (r − 2)-regular subgraph
of S, we call x ↦ v a restricted seed shuffle. Lemma 3.1 guarantees that the seed
shuffle operation produces a new decycling set.

y x v

S

y vx

S − {x} ∪ {v}

Figure 3: Illustration of the shuffle x↦ v for r = 3 with seed vertices shown in black

Lemma 3.1. Let G be an r-regular graph, r ≥ 3, with decycling set S, and suppose
that G[S] contains a vertex x of degree r − 2 in G[S]. Let v be a neighbour of x
not in S. Then S′ = S − {x} ∪ {v} is a decycling set of G of the same size as S. In
particular, if S is minimum, then so is S′.

Proof. Since x has exactly two neighbours outside S, it has exactly one neighbour
outside S′. Therefore x does not belong to a cycle in G[V − S′].

We are now ready to state the stronger version of our main result, Theorem 1.2.

Theorem 1.2, Version 2. Let r ≥ 3. If G ≠ Kr+1 is an r-regular graph then, from
any minimum decycling set S ofG, it is possible to obtain, via a sequence of restricted
seed shuffles, a new minimum decycling set with no (r − 2)-regular subgraphs.

For r = 3, the result of Theorem 1.2 is implied by Corollary B, so we will focus
on r ≥ 4. We begin by noting that, for any minimum decycling set S of G, any (r−2)-
regular subgraph of G[S] is a component of G[S], since G[S] has maximum degree at
most r−2. Therefore our goal for the rest of the section is to show that we can obtain
a minimum decycling set S′ such that G[S′] has no (r − 2)-regular components.

For the rest of Section 3, let G ≠ Kr+1 be an r-regular graph, where r ≥ 4, and
let S be a minimum decycling set of G. We prove the main result (Theorem 1.2) in
several steps. We first show in Lemma 3.3 that any minimum decycling set S can
be transformed into a minimum decycling set S′ with at most one (r − 2)-regular
component, C(S′). We then determine a number of conditions that guarantee the
unique remaining (r−2)-regular component C(S′) can be eliminated and we constrain
the structure of G[S′] and G[V − S′] when S′ does not satisfy those conditions.

The proof of Lemma 3.3 relies on the observation that restricted shuffling never
increases the number of (r − 2)-regular components.

Lemma 3.2. If S is a minimum decycling set of G and S′ is obtained from S by
restricted shuffling, then the number of (r − 2)-regular components of G[S′] is less
than or equal to the number of such components of G[S].
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Proof. Suppose S′ is obtained from S by the restricted seed shuffle x ↦ v. Since x ∉
S′, the (r−2)-regular component of G[S] containing x is not a component of G[S′].
On the other hand, any (r − 2)-regular component of G[S′] that is not a component
of G[S] contains v, so there is at most one.

For a graph G with subgraphs H1 and H2, we define the distance (in G) be-
tween H1 and H2 to be

dG(H1,H2) =min{dG(x, y) ∶ x ∈ V (H1) and y ∈ V (H2)}.

We say H1 and H2 are adjacent if they are disjoint and dG(H1,H2) = 1.
Lemma 3.3. Starting from any minimum decycling set S we can, by repeated re-
stricted shuffling, obtain a minimum decycling set S′ such that at most one component
of G[S′] is (r − 2)-regular.

Proof. Among all minimum decycling sets of G that are obtainable from S by a se-
quence of restricted seed shuffles, restrict to those that induce the minimum number c
of (r − 2)-regular components. If c ≤ 1, there is nothing to prove, so assume c > 1;
we will derive a contradiction. From the restricted set of minimum decycling sets
of G, choose S′ such that the smallest number arising as the distance (in G) be-
tween any two (r − 1)-regular components of G[S′] is as small as possible. Call this
distance d ≥ 2, and let C1 and C2 be two (r − 2)-regular components of G[S′] such
that dG(C1,C2) = d. Let x1 and x2 be two vertices of C1 and C2, respectively, such
that dG(x1, x2) = d. If d = 2, the restricted seed shuffle sending x1 to a common
neighbour of x1 and x2 makes x2 into a vertex of degree r in the resulting seed set,
contradicting the minimality of S′. Thus d ≥ 3. Let x1, a, b, . . . , x2 be a shortest path
from x1 to x2. By our choice of S′, the restricted seed shuffle x1 ↦ a decreases the
number of (r − 2)-regular components, or else we end up with two that are closer
than before. Therefore c ≤ 1, as desired.

Given an arbitrary minimum decycling set S, Lemma 3.3 guarantees that it is
possible to transform it into a new minimum decycling set with at most one (r −
2)-regular component. Therefore, for the rest of the section, we may restrict our
attention to the minimum decycling sets S that have exactly one (r − 2)-regular
component. We denote that unique (r − 2)-regular component of S by C(S).
Definition 3.4. For any r-regular graph G, let S(G) be the set of all minimum
decycling sets S of G that induce exactly one (r − 2)-regular component, and such
that no sequence of restricted seed shuffles applied to S yields a minimum decycling
set S′ with no (r − 2)-regular component.

We prove Theorem 1.2 by showing that S(G) is empty for all G ≠Kr+1. Through
a series of lemmas, we establish a number of properties that must be satisfied by any
decycling set in S(G). Then, in the proof of Theorem 1.2, we derive a contradiction
from this collection of properties. The first property we prove about S ∈ S(G) is
that S induces a linear forest; that is, a collection of paths.
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Lemma 3.5. Let S be a minimum decycling set of G with exactly one (r−2)-regular
component, C(S). If the forest G[S] is not a linear forest then we can, by a sequence
of restricted seed shuffles, get a minimum conversion set with no (r − 2)-regular
components. Equivalently, for all S ∈ S(G), G[S] is a linear forest.

Proof. If G[S] is not a collection of paths then there is a vertex y ∈ S with at least
three neighbours in S. Therefore y has at most r−3 neighbours in S. We use induc-
tion on the distance from C(S) to y. If d(C(S), y) = 1 then some vertex x0 ∈ C(S)
is adjacent to y. The minimum decycling set S′ obtained by the restricted seed shuf-
fle x0 ↦ y does not contain C(S), and since y now has at most r−4 seed neighbours,
the component of G[S′] containing y is not (r − 2)-regular. Furthermore, compo-
nents of G[S′] that do not contain y are components of G[S] distinct from C(S), so
they are not (r − 2)-regular either. Therefore S′ does not induce any (r − 2)-regular
components, so S′ /∈ S(G).

For the induction hypothesis, assume the statement is true whenever S is a mini-
mum decycling set of G that has exactly one (r−2)-regular component C(S) and the
distance from C(S) to the nearest vertex of degree at least 3 in G[S] is at most d−1,
with d ≥ 2. Consider a minimum decycling set S for which this distance equals d.
Let x0, x1, . . . , y be a shortest path from C(S) to y, where x0 ∈ C(S). If the seed
set S′ produced by shuffling x0 ↦ x1 does not contain an (r − 2)-regular component,
we’re done. On the other hand, if it does contain an (r−2)-regular component C(S′)
then d(C(S′), y) ≤ d− 1. Therefore by the induction hypothesis, it is possible to ob-
tain a minimum decycling set S′′ from S′ by a sequence of restricted seed shuffles.
Since the shuffle x0 ↦ x1 was itself a restricted seed shuffle, the statement is true
for S as well.

Lemma 3.6. Let G ≠ Kr+1 be an r-regular graph. If S ∈ S(G) then for every
vertex v ∈ C(S), the nonseed neighbours of v are the leaves of a component path

of G[S].

Proof. By Lemma 3.5, G[S] is a linear forest. If some x ∈ C(S) is adjacent to a
vertex y ∈ S having at least two neighbours in S, then the restricted shuffle x ↦
y results in a minimum decycling set S′ that does not induce any (r − 2)-regular
components. Indeed, after the shuffle y is adjacent to at least three non-seed vertices,
so it is not in an (r − 2)-regular component of S′ and therefore S′ does not have any
such components. This implies that S /∈ S(G). Therefore, for all S ∈ S(G), the
neighbours of any vertex x ∈ C(S) are leaves of G[S]. To see that the neighbours
of x are leaves of the same component path of G[S], note that S ∪ {x} contains a
cycle, by the minimality of S.

In light of Lemma 3.6, we may associate with each vertex x ∈ C(S) a component
path of G[S].
Definition 3.7. Let S ∈ S(G). For any vertex x of C(S) we denote by P (x) the
component path of G[S] whose leaves are neighbours of x.



M.D. FRANCIS ET AL. /AUSTRALAS. J. COMBIN. 74 (2) (2019), 288–304 296

In the next lemma we constrain the structure of C(S) for S ∈ S(G).
Lemma 3.8. Let G ≠Kr+1 and let S ∈ S(G). If x and y are distinct vertices of C(S)
such that P (x) = P (y), then x and y are adjacent.

Proof. Let u be a leaf of P (x) = P (y). If x and y are nonadjacent then the shuffle x↦
u makes y into a seed vertex of degree r − 1, contradicting the minimality of S.

Thus, if S ∈ S(G), we have the following picture of the unique (r−2)-regular com-
ponent C(S) of G[S]. Let P 1, P 2, . . . , P k be the distinct component paths of G[S]
occurring as P (x) for some x ∈ C(S). Then by Lemma 3.8, for each i, the set of
vertices {x ∈ C(S) ∶ P (x) = P i} induces a complete subgraph of G[S], say of order
ni < r − 1. Therefore we have a covering of C(S) by disjoint complete graphs Kni

such that all of the vertices x in any one of the Kni
have P (x) = P i.

Lemma 3.9. Let G ≠ Kr+1 be an r-regular graph and let S ∈ S(G). If P is a path
in G[S] such that VP = {x ∈ C(S) ∶ P (x) = P} has at least two elements, then

(a) VP is a clique in S,

(b) P is an edge, and

(c) every x ∈ VP is a cut vertex of C(S).

Proof. The first statement follows immediately from Lemma 3.8.

For the second statement, we show that if P has length at least 2 then there is a
restricted seed shuffle S ↦ S′ /∈ S(G), so S /∈ S(G). Write P = u0u1 . . . u�, and assume
that � ≥ 2. By assumption there exist two (adjacent) vertices x, y ∈ C(S) with P (x) =
P (y) = P . Let S′ be the minimum decycling set obtained from S by performing the
restricted seed shuffle x ↦ u0. By assumption, S′ ∈ S(G), so G[S′] has an (r − 2)-
regular component C(S′), specifically, the component of G[S′] containing u0. Denote
by P ′ the path u1 . . . u�x, which is the path associated with u0 in G[S′]. Since y
and u0 are adjacent, y ∈ C(S′), and since y is adjacent to x, the path associated
with y in G[S′] is also P ′. Therefore y is adjacent to the other endpoint u1 of P ′.
Since � ≥ 2, u0, u1 and u� are all distinct vertices of S, and we now see that y is
adjacent to all of them. This contradicts the assumption that y is in an (r − 2)-
regular component of G[S].

For the third statement, again start with two vertices x, y ∈ C(S) such that
P (x) = P (y) = P = uv and suppose x is not a cut vertex. We derive a contradiction
by showing that, in this case, G = Kr+1. Let S′ be the minimum decycling set of G
obtained by the restricted seed shuffle x ↦ u. By assumption S′ ∈ S(G). Since x is
not a cut vertex of C(S), every vertex of C(S) − {x} belongs to C(S′), because u
is connected to y and y ∈ C(S′) − {x}. In particular, the neighbourhood N of x
in C(S) belongs to C(S′) (including y). Therefore every vertex of N still has r − 2
seed neighbours after the shuffle x ↦ u, so they are all adjacent to u. Thus, for
every z ∈ N ∪ {x}, P (z) = P . Hence, by Lemma 3.8, all of the r − 2 vertices in N are
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also adjacent to each other. We have shown that the r + 1 vertices in N ∪ {x} ∪ {P}
are pairwise adjacent, so G =Kr+1.

For x ∈ C(S), we say x is a sharing vertex if P (x) = P (y) for some y ∈ C(S), y ≠ x,
and in this case we call P (x) a shared path.

Lemma 3.9 (2) and (3) imply that for all S ∈ S(G), all shared paths (if there
are any) are merely edges and all sharing vertices (if there are any) are cut vertices
of C(S). For the proof of Theorem 1.2 we require C(S) to have at least two non-cut
vertices. This is guaranteed by Lemma 3.10.

Lemma 3.10. Let G ≠ Kr+1 and suppose S ∈ S(G). Then C(S) contains at least
two non-cut, non-sharing vertices.

Proof. The leaves of any spanning tree of C(S) are not cut vertices of C(S). By
Lemma 3.9 (3), they are not sharing vertices.

Lemma 3.11. Let S ∈ S(G), let x be a non-cut (hence non-sharing) vertex of C(S)
and let v be a leaf of P (x). Let S′ ∈ S(G) be the minimum decycling set of G obtained
from the restricted seed shuffle x↦ v. Then C(S′) ∩C(S) = ∅.

Proof. Since x is a non-cut vertex of C(S), it is also a non-sharing vertex, by
Lemma 3.9 (3). Suppose for a contradiction that some vertex y ∈ C(S) − {x} is
in C(S′). Then, since x is not a cut vertex, every vertex of C(S) − {x} is in the
component C(S′) (that is, C(S′) = (C(S)−{x})∪{v}). This implies that every neigh-
bour u of x in C(S) is adjacent to v, since they must have degree r−2 in C(S′), and
therefore P (u) = P (x). This makes x a sharing vertex, which is a contradiction.

We have established a large set of properties that must be satisfied by any min-
imum k-conversion set S ∈ S(G). In the proof of Theorem 1.2 we will show that in
fact S(G) is empty by showing that these properties are contradictory.

Theorem 1.2 (again). If G ≠ Kr+1 is an r-regular graph, then S(G) = ∅. That
is, if S0 is any minimum decycling set of G then, by a sequence of restricted seed
shuffles, S0 can be transformed into a minimum decycling set S� of G with no (r−2)-
regular component.

Proof. Assume for a contradiction that S0 ∈ S(G). We define a sequence S0 ↦ S1 ↦
⋯ ↦ S� of minimum decycling sets of G, each of which obtained from the last by a
restricted seed shuffle. By assumption, Si ∈ S(G) for all i.

By Lemma 3.10, there is a non-cut vertex x0 ∈ C(S0) (in fact there are two). Let v1
be a leaf of P (x0) (a non-shared path) and denote by S1 the minimum decycling set
obtained by shuffling x0 ↦ v1.

For 1 ≤ i ≤ � − 1, the set Si+1 is obtained from Si as follows.

Since Si ∈ S(G), G[Si] contains a unique (r − 2)-regular component, C(Si),
namely the component containing the vertex vi. Furthermore, by Lemma 3.10, C(Si)
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has at least two non-cut, non-sharing vertices. If vi is not adjacent to any vertex
of C(Sj) − {xj} for any j < i (that is, if the component C(Si) does not contain
any remaining vertices of a previous (r − 2)-regular component), then let xi ≠ vi
be a non-cut (and hence non-sharing) vertex of C(Si). Let vi+1 be an endpoint of
(the nonshared path) P (xi), and shuffle xi ↦ vi+1 to obtain the minimum decycling
set Si+1.

The process terminates when some v� is adjacent to a vertex of C(Sj) − {xj} for
some j < �. This is illustrated in Figure 4.

By Lemma 3.11, j ≠ � − 1. In fact, by ignoring S0, . . . , Sj−1 and reindexing, we
may assume that j = 0. That is, we may assume that v� is adjacent to some vertex
of C(S0) − {x0}. Since x0 is not a cut vertex of C(S0), every vertex of C(S0) − {x0}
is therefore in the same component of G[S�] as v�. By assumption (since S� ∈ S(G)),
this component is (r − 2)-regular, so we call it C(S�).

LetN denote the (r−2)-element set of neighbours of x0 in C(S0). We claim that v�
is adjacent to every vertex w ∈ N . First, note that the only difference between S0

and S� is that all of the xi’s have been removed from the seed set and all of the vi’s
have been added, and these are all distinct vertices. When x0 was removed from the
seed set, the number of seed-neighbours of every w ∈ N was reduced to r−3. In G[S�],
these vertices all have degree r −2, since they are in (C(S0)−{x0}) ⊆ C(S�), so each
one must be adjacent to exactly one vertex from {v1, . . . , v�}. However, for 1 ≤ i < �, vi
is not adjacent to any vertex of S0 − {x0}, or the algorithm would have terminated
sooner. Thus, v� is adjacent to all r − 2 vertices of N , and therefore, by regularity,
C(S�) = (C(S0) − {x0}) ∪ {v�}.

Our next claim is that v� ≠ x0. Indeed, x0 is adjacent to r − 1 vertices in S�,
namely v1 and the r − 2 vertices of N , so by the minimality of S�, x0 /∈ S�.

Since x0 ≠ v�, x0 /∈ S�. Let y ∈ N . Then performing the shuffle y ↦ x0 followed
by the shuffle v� ↦ y results in a decycling set S′� containing x0, N and v1. This
contradicts the minimality of S�, since ∣S′�∣ = ∣S�∣ but S′� − {x0} is still a decycling
set.

4 Proof of Theorem 1.1

We now deduce Theorem 1.1 from Theorem 1.2 by carefully embedding a graph of
maximum degree r in an r-regular graph.

For a vertex v of a graph G of maximum degree Δ, we define the deficiency of v
to be defΔ(v) = Δ − deg(v). We define the deficiency of G to be

defΔ(G) = ∑
v∈V (G)

defΔ(v).

Clearly, if G has n vertices and m edges, then def(G) = nΔ − 2m.
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v�

v1

x1

v�−1

x�−1

x0
N

C(S1)

C(S�−1)

C(S0)

Figure 4: The outcome of the algorithm from the proof of Theorem 1.2, with vertices
of S� shown in black

Theorem 1.1 (again). Every graph G ≠ Kr+1 with Δ(G) = r ≥ 3 has a mini-
mum decycling set S such that G[S] does not contain an (r − 2)-regular graph as a
subgraph.

Proof. Let d = defr(G). We may assume G is connected, hence 0 ≤ defr(v) ≤ r − 1
for each vertex v. We embed G in an r-regular graph H for which some minimum
decycling set SH satisfies

• H[SH] does not contain an (r − 2)-regular subgraph, and
• S = SH ∩ V (G) is a minimum decycling set of G.

We consider two cases, depending on the parity of r.

Case 1: r is odd. Let F be the graph obtained from Kr+2 by deleting a maxi-
mum matching plus one additional edge incident with the vertex unsaturated by the
matching. Then F has exactly one vertex of degree r − 1, all other vertices being of
degree r. Construct the (unique) r-regular graph H by adding d copies of F to G,
joining each vertex v of G to defr(v) copies of F in the obvious way (thus forming d
bridges). Let SH be any minimum decycling set of H such that H[SH] does not con-
tain an (r − 2)-regular subgraph. Since each cycle of H is contained either entirely
in G or entirely in a copy of F , S = SH ∩V (G) is a minimum decycling set of G and
has the desired property.

Case 2: r is even. Then G has an even number of vertices with odd deficiencies
and d is even. For � ≥ 0, let u1, v1, . . . , u�, v� be the vertices of G with odd deficiency
and let v�+1, . . . , vm be the vertices with even positive deficiency. Then 2 ≤ defr(ui)+
defr(vi) ≤ 2(r−1) for i ≤ �, and 2 ≤ defr(vi) ≤ r−2 for i > �. Let B1, . . . ,Bm be disjoint
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copies of Kr−1,r−1; say Bi has partite sets A1
i and A2

i . For i = 1, . . . , �, let Hi be the
graph obtained from Bi by joining vertices in A1

i (A2
i , respectively) by independent

edges until ∑x∈A1
i
defr(x) = defr(ui) (∑x∈A2

i
defr(x) = defr(vi), respectively). For

i = �+1, . . . ,m, let Hi be a graph obtained by joining (nonadjacent) vertices of Bi by
independent edges until ∑x∈V (Hi) defr(x) = defr(vi). Construct an r-regular graph H
by joining ui to vertices in A1

i , and vi to vertices in A2
i , for i = 1, . . . , �, and vi to Hi,

i = � + 1, . . . ,m, in the obvious way.

Among all minimum decycling sets of H that do not induce an (r − 2)-regular
component, let SH be one that contains as many vertices of H1, . . . ,Hm as possible.
We claim that

SH contains exactly r − 1 vertices of each Hi. (1)

Consider A1
i (say) and note that Hi−A1

i =Hi[A2
i ] consists of isolated vertices and

disjoint copies of K2. The isolated vertices, having r-deficiency 1 in Hi, are adjacent
to vi, while the copies of K2, having r-deficiency 0 in Hi, are not. Hence no cycle of
H −A1

i contains a vertex of Hi. By minimality, therefore, SH contains at most r − 1
vertices of each Hi.

Suppose SH contains fewer than r − 2 vertices of Hi. Then each of A1
i and A2

i

contains at most r − 3 vertices of SH . But then Hi − SH contains a copy of C4 (with
two vertices in each of A1

i and A2
i ), contrary to SH being a decycling set.

Now assume that SH contains exactly r − 2 vertices of Hi. If SH has nonempty
intersection with both of A1

i and A2
i , then each of A1

i and A2
i contains at most r − 3

vertices of SH and we obtain a contradiction as above. Hence assume SH contains
r − 2 vertices in A1

i and let A1
i − SH = {xi}. Then A2

i is independent, otherwise xi

lies on a triangle of Ai − SH . Since H is r-regular, vi is adjacent to all r − 1 vertices
in A2

i , thus forming 4-cycles containing xi, and vi has degree 1 in G. To destroy
these 4-cycles, vi ∈ SH . Since vi has degree 1 in G, any cycle of H containing vi
intersects Hi. Hence (SH − {vi}) ∪ {xi} is a minimum decycling set of H that does
not induce an (r − 2)-regular component but contains more vertices of H1, . . . ,Hm

than SH does, contrary to the choice of SH . Therefore (1) holds.

Let S = SH∩V (G). Then ∣S∣ = ∣SH ∣−m(r−1). Since no vertex of anyHi belongs to
a cycle of G, S is a decycling set of G. Moreover, S is a minimum decycling set of G,
for if not, let B be a decycling set of G such that ∣B∣ < ∣S∣. Then S′ = B∪A1

1∪⋯∪A1
m

is a decycling set of H such that ∣S′∣ = ∣B∣ +m(r − 1) < ∣SH ∣, which is impossible.
Since H[SH] does not contain an (r − 2)-regular component, neither does G[S] and
the proof is complete.

5 Consequences of Theorem 1.1

In this section we present some corollaries of Theorem 1.1, with emphasis on the
corollaries that yield structural results. Additional corollaries that give bounds on
the decycling number are stated in [24].

Catlin and Lai [3] prove that the vertex set of every graph G ≠ K4 of maximum
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degree 3 can be partitioned into two sets that induce a forest and an independent
set, respectively. As a consequence of Theorem 1.1, we obtain a generalization to
graphs of maximum degree r.

Corollary 5.1. Let G ≠Kr+1 be a graph of maximum degree r ≥ 3. Then V (G) can
be partitioned into sets X and X such that G[X] has maximum degree at most r − 2
but does not contain an (r − 2)-regular subgraph, and G[X] is a maximum forest.

In Corollary 5.3 we provide an alternative proof of Brooks’ Theorem, using Corol-
lary 5.1 and the following lemma, from [4]. Recall that a proper vertex colouring of G
is a partition of V (G) into independent sets, and the chromatic number of G, de-
noted by χ(G), is the minimum number of sets in a proper vertex colouring of G.
We write H ⊴ G if H is an induced subgraph of G.

Lemma 5.2. [4] For every graph G, χ(G) ≤ 1 +max{δ(H) ∶ H ⊴ G}.
Corollary 5.3 (Brooks’ Theorem). If r ≥ 3 and G ≠ Kr+1 is a graph of maximum
degree r, then χ(G) ≤ r.

Proof. By Corollary 5.1, V (G) can be partitioned into sets X and X such that G[X]
has maximum degree at most r − 2 but does not have an (r − 2)-regular subgraph,
and G[X] is acyclic. Therefore G[X] can be 2-coloured.

Let H be any induced subgraph of G[X]. Then Δ(H) ≤ r−2 and H is not (r−2)-
regular, hence δ(H) < r − 2. Therefore max{δ(H) ∶ H ⊴ G} ≤ r − 3. By Lemma 5.2,
it follows that χ(G[X]) ≤ r − 2.

Any (r − 2)-colouring of G[X] and any 2-colouring of G[X] now give an r-
colouring of G.

One generalization of proper vertex colourings involves partitioning V (G) into
sets such that each set induces a forest. We call such a partition a forest partition
of G. The minimum number of sets in a forest partition is called the vertex arboricity
of G and denoted by a(G). Vertex arboricity, which is studied in [3] and [13], is a
variation on the arboricity of a graph G, defined as the minimum number of sets
needed to partition the edge set of G such that each set induces a forest. Arboricity
was first studied in the early 1960s by Nash-Williams and Tutte [16, 17, 23].

Corollary 5.4 guarantees the existence of forest partitions with certain properties
in a graph G. We then obtain an existing bound on the vertex arboricity of G,
originally proved by Kronk and Mitchem [13], as a consequence of Corollaries 5.4.
This is stated in Corollary 5.5. Corollary 5.4 is a minor strengthening of [3, Theorems
1 and 2(a)].

Corollary 5.4. Let G ≠ Kr+1 be a graph of maximum degree Δ = r ≥ 3. If r is
odd then G has a forest partition into at most r+1

2 sets of which one set induces a
maximum forest and another is independent, and if r is even then G has a forest
partition into at most r

2 sets of which one set induces a maximum forest and another
induces a linear forest.
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Proof. If Δ = 3 or Δ = 4 the statement follows immediately from Corollary 5.1.
Let r ≥ 5 and assume the statement holds all non-complete graphs of maximum
degree 3 ≤Δ < r. Let G ≠Kr+1 be a graph of maximum degree r. Let V (G) =X ∪X
be a partition of V (G) as described in Corollary 5.1. Then G[X] is a forest and G[X]
has maximum degree D ≤ r−2 which does not contain Kr−1, since it does not contain
any (r − 2)-regular subgraph. By the induction hypothesis, if D is odd then G[X]
has a forest partition into at most D+1

2 ≤ r+1
2 −1 sets, one of which is independent, and

if D is even then G[X] has a forest partition into at most D
2 ≤ r

2 −1 sets, one of which
induces a linear forest. If r is even or D is odd then we are done (noting that an
independent set is a linear forest, for the case where r is even and D is odd). If r is
odd and D is even then D ≤ r−3, so G has a forest partition into at most r−3

2 +1 = r−1
2

sets, one of which induces a linear forest. Then, by further partitioning one of the
forests, we may obtain a forest partition into at most r−3

2 + 2 = r+1
2 sets, one of which

is independent.

We now state the Kronk-Mitchem bound on the vertex arboricity, a(G), which
follows from Corollary 5.4.

Corollary 5.5 (The Kronk-Mitchem Bound). [13] If G is neither a cycle nor an odd

clique then G has vertex arboricity at most ⌈Δ(G)2 ⌉.

Proof. The bound is trivial for Δ(G) < 3, and for non-complete graphs of maximum
degree Δ(G) ≥ 3 it follows immediately from Corollary 5.4. If G =K2n then any three
vertices induce a cycle, so a(G) = n and the result follows since Δ(G) = 2n − 1.

We conclude with an open problem. Recall that in the process of determining an
appropriate generalization of Theorem B for r ≥ 4, we found that a class Gr of graphs
(defined on page 291) provided counterexamples to two restatements of Theorem B
for general r. This led us to Theorem 1.1, but we note that stronger results may hold
for all but a relatively small number of graphs. This prompts the following question.

Problem 5.6. Which stronger results of the form, “Every graph G ∉ K of maxi-
mum degree r has a minimum decycling set S such that G[S] does not contain the
subgraph H,” can be obtained by allowing K to contain more than just Kr+1?
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