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Abstract
We use the subgraph replacement method to investigate new properties
of the tilings of regions on the square lattice with diagonals drawn in. In
particular, we show that the centrally symmetric tilings of a generaliza-
tion of the Aztec diamond are always enumerated by a simple product
formula. This result generalizes the previous work of Ciucu (1997) and
Yang (1992) about symmetric tilings of the Aztec diamond. We also use
our method to prove a closed form product formula for the number of
centrally symmetric tilings of a quasi-hexagon.

1 Introduction

The hybrid domino-lozenge tilings were first studied by Propp in the 1990s (see [27]
and the list of references therein). In 1996, Douglas [9] proved a conjecture posed by
Propp about the number of tilings of an analog of the Aztec diamond on the square
lattice with every second diagonal1 drawn in (see Figure 1.1 for several first regions
of Douglas and Figure 1.2(a) for a sample tiling). In particular, Douglas showed that
the region of order n has exactly 22n(n+1) tilings.

Recently, the author [21,22] generalized Douglas’ theorem and the Aztec diamond
theorem of Elkies, Kuperberg, Larsen and Propp [10,11] by enumerating tilings of a
family of 4-sided regions on the square lattice with arbitrary diagonals drawn in (see
Figure 1.3 for an example of the region). We call this region a Douglas region2 (the
detailed definition of the region will be given in the next section). In particular, we
showed that the tiling number of a Douglas region is always given by a power of 2
(see Theorem 4 in [21]). This implies Douglas’ theorem when the distances between
any two consecutive drawn-in diagonals are 2

√
2, and the Aztec diamond theorem

when there is no drawn-in diagonal.

∗ T.L. was supported in part by Simons Foundation Collaboration Grant (# 585923).
1From now on, we use the word “diagonal” to mean “southwest-to-northeast diagonal”
2The region was called a generalized Douglas region in [21, 22].
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n = 2
n = 3

n = 1

Figure 1.1: Several initial regions in Douglas’ Theorem [9]: the regions of order
n = 1, n = 2 and n = 3. The figure was first introduced in [17].

(b)(a)

Figure 1.2: (a) A tiling of the left region in Figure 1.1 and (b) the corresponding
perfect matching of its dual graph.
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Figure 1.3: The Douglas region D7(4, 2, 5, 4). The figure was first introduced in [21].

Propp [27] also investigated a ‘natural hybrid’ between the Aztec diamond and
a lozenge hexagon on the square lattice with every third diagonal drawn in, called a
quasi-hexagon and defined in detail in Section 2. Finding an explicit tiling formula
for a quasi-hexagon was a long-standing open problem in the field (see Problem
16 on Propp’s well-known list of 32 open problems in enumeration of tilings [27]).
The author [17] solved this problem by using the subgraph replacement method.
In general, there is no simple product formula for the number of tilings of a quasi-
hexagon. However, in the symmetric case, we have a simple product formula, which
is a certain product of a power of 2 and an instance of MacMahon’s tiling formula
(2.11) for a semi-regular hexagon on the triangular lattice [14]. The author [19] also
enumerated tilings of an 8-vertex counterpart of the quasi-hexagons, called quasi-
octagons.

Inspired by the work of Yang [32] and Ciucu [2] about the symmetric tilings of
the Aztec diamond, we consider the centrally symmetric tilings (i.e. the tilings which
are invariant under 180◦ rotations) of a Douglas region. We actually investigate a
more general case when certain portions of the region have been removed along a
symmetry axis as in Figure 2.2 (the black parts indicate the removed portions). We
call these removed portions holes. We show that the number of centrally symmetric
tilings of such a Douglas region with holes is always given by a closed form product
formula (see Theorem 2.1 in Section 2). See Figure 2.2 for Douglas regions with holes
and Figure 2.3(a) for a centrally symmetric tiling of a Douglas region with holes.

The study of symmetric (lozenge) tilings of a hexagon on the triangular lattice
dates back to the late 1890s when MacMahon conjectured the q-enumeration of the
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symmetric plane partitions [15]. About one hundred years later, all 10 symmetry
classes of plane partitions were collected in Stanley’s classical paper [30]. Each of
these symmetry classes can be translated into a certain class of symmetric lozenge
tilings of a hexagon. As one of the 10 symmetry classes, the self-complementary
plane partitions correspond to the centrally symmetric tilings of a hexagon. Stan-
ley [30] showed that the number of self-complementary plane partitions, and hence
the number of centrally symmetric tilings of a hexagon, is always given by a simple
product formula. Viewing a quasi-hexagon as a generalization of a lozenge hexagon,
we now investigate centrally symmetric tilings of quasi-hexagons. In particular, we
use the subgraph replacement method to show that the number of centrally symmet-
ric tilings of a quasi-hexagon is also given by a simple product formula (see Theorem
2.2 in Section 2).

The rest of this paper is organized as follows. We give detailed definitions of
the Douglas regions and the quasi-hexagons, and the statements of our main results
(Theorems 2.1 and 2.2) in Section 2. Section 3 is devoted to several fundamental
results in the subgraph replacement method that will be employed in our proofs.
In Section 4, we enumerate the perfect matchings of an Aztec rectangle graph with
holes, that itself can be considered as a generalization of the related work of Yang [32]
and Ciucu [2] in the case of the Aztec diamonds. We will use this enumeration in
our proof of Theorem 2.1 in Section 5. Finally, in Section 6, we present the proof of
Theorem 2.2.

2 Statement of the main results

A lattice divides the plane into disjoint fundamental regions, called cells. A (lattice)
region is a finite connected union of cells. A tile is the union of any two cells sharing
an edge. A tiling of a region R is a covering of R by tiles, such that there are no
gaps or overlaps. The number of tilings of the region R is denoted by M(R).

Let � be a fixed drawn-in diagonal on the square lattice. Assume that k more
diagonals have been drawn in above � with the distances between two consecutive
ones from the top d1

√
2
2
, d2

√
2
2
,. . . ,dk

√
2
2
, and k′ more diagonals have been drawn in

below � with the distances between two consecutive ones from the bottom d′1
√
2
2
,

d′2
√
2
2
,. . . ,d′k′

√
2
2

(see Figure 2.1). Next, we color black and white the dissection ob-
tained from the above set-up of drawn-in diagonals on the square lattice, so that two
cells sharing an edge have different colors.

We define the quasi-hexagon Ha(d1, d2, . . . , dk; d
′
1, d

′
2, . . . , d

′
k′) as follows. Pick a

lattice point A on the the top drawn-in diagonal. Starting from A, we go south
or east in each step so that the black cell stays on the left. The resulting lattice
path from A intersects the diagonal � at a lattice point B. From B, we go south
or east so that the white cell stays on the left in each step. Our lattice path stops
when reaching the bottom drawn-in diagonal at a lattice point C. The described
lattice path passing A, B and C is the southwestern boundary of the region. Next,
we pick a lattice point F on the top drawn-in diagonal such that F is a

√
2 units

to the right of A. The northeastern boundary is obtained from the southwestern
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Figure 2.1: The quasi-hexagon H6(4, 4, 3; 5, 5). The figure first appeared in [17].

one by reflecting about the perpendicular bisector of the segment AF . Assume that
the northeastern boundary intersects � and the bottom drawn-in diagonal at E and
D, respectively. We complete the boundary of the region by connecting C and D,
and F and A along the corresponding drawn-in diagonals. The six lattice points
A,B,C,D,E, and F are called the vertices of the region, and the diagonal � is called
the (southwest-to-northeast) axis of the region.

The cells in a quasi-hexagon are unit squares or triangles. The triangular cells
only appear along the drawn-in diagonals. A row of cells consists of all the triangular
cells of a given color with bases resting on a fixed lattice diagonal, or consists of all
the square cells3 (of a given color) passed through by a fixed lattice diagonal.

Define the Douglas region Da(d1, . . . , dk) to be the region obtained from the por-
tion of the regionHa(d1, . . . , dk; d

′
1, . . . , d

′
k′) above the axis � by replacing the triangles

running along the top and the bottom by squares of the same color (see Figure 1.3).
The Douglas region was first investigated in [17], and also in [21] and [22], as a com-
mon generalization of Douglas’ original regions [9] and the Aztec diamonds [10, 11].

Remark 1. As mentioned in [17] (Theorem 2.1(a) and Theorem 2.3(a)), if the trian-
gles running along the bottom of a quasi-hexagon or a Douglas region are black, then

3From now on, we use the words “triangle(s)” and “square(s)” to mean “triangular cell(s)” and
“square cell(s)”, respectively.
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the region has no tilings. Therefore, from now on, we assume that the bottom trian-
gles are white. This is equivalent to the fact that the last step of the southwestern
boundary is an east step.

For any finite set of integers A = {a1, a2, . . . , an}, n ≥ 0, we define four functions

E(a1, a2, . . . , an) =
2n

2

0!2!4! . . . (2n− 2)!

∏
1≤i<j≤n

(aj − ai)
∏

1≤i<j≤n

(ai + aj − 1), (2.1)

O(a1, a2, . . . , an) =
2n

2

1!3!5! . . . (2n− 1)!

∏
1≤i<j≤n

(aj − ai)
∏

1≤i≤j≤n

(ai + aj − 1), (2.2)

E(a1, a2, . . . , an) =
2n

2 ∏n
i=1 ai

0!2!4! . . . (2n− 2)!

∏
1≤i<j≤n

(aj − ai)
∏

1≤i≤j≤n

(ai + aj), (2.3)

and

O(a1, a2, . . . , an) =
2n

2 ∏n
i=1 ai

1!3!5! . . . (2n− 1)!

∏
1≤i<j≤n

(aj − ai)
∏

1≤i<j≤n

(ai + aj), (2.4)

where the empty products are equal to 1 by convention. The functions E and O
were introduced by Jockusch and Propp in [12] as the number of the so-called anti-
symmetric monotone triangles, and the functions E and O were introduced by the
author in [20] as the tiling numbers of a family of regions called quartered Aztec
rectangles.

Consider a Douglas region D := Da(d) = Da(d1, d2, . . . , dk) that admits the
southwest-to-northeast symmetry axis α. It is easy to see that we must have (1)
di = dk−i+1, (2) k is odd, and (3) α is not a drawn-in diagonal (i.e., all the cells
running along α are squares). We label the squares passed by α as follows. If the
symmetry center of D stays inside one of these squares, we call this square the central
cell, and label it by 0. Next, we label the two squares closest to the center by 1,
we label the two squares that are second closest to the center by 2, and so on (see
Figure 2.2). A cell of D is said to be regular if it is either a black square or a black
triangle pointing away from α. We define the height h(D) of D to be the number
of rows of regular cells above α or passed by α. By the symmetry, h(D) is also the
number of rows of regular cells below α or passed by α. The number of regular cells
which is on or above α is denoted by C(D), and we usually call it the number of
upper regular cells. The number w(D) of squares passed through by α is called the
width of D. We call a row of an odd number of black triangles pointing toward α
and above α a singular row. The number of singular rows τ(D) is called the defect of
D. For example the left region in Figure 2.2 has respectively the height, the number
of upper regular cells, the width, and the defect 5, 63, 12, 0; the region on the right
of the figure has these parameters 5, 41, 7, 1, respectively.

We remove all squares having labels in a subset S of {0, 1, 2, . . . , �w(D)
2

�} along α.
Denote by the resulting region by Da(d;S) (see Figure 2.2 for examples; the black
squares indicate the ones that have been removed).
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Figure 2.2: The Douglas regions with holes: D12(4, 4, 4, 4, 4; {3}) (left) and
D8(4, 5, 4, 5, 4; {2}) (right).
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Figure 2.3: (a) A centrally symmetric tiling of the region D8(4, 5, 4, 5, 4; {2}) in
Figure 2.2 (right). (b) A centrally symmetric perfect matching of the dual graph of
D8(4, 5, 4, 5, 4; {2}) (rotated 45◦).
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We notice that if Da(d;S) admits a tiling, then the number of squares removed
equals |w(D) − 2h(D)| if α passes white squares, and equals |w(D) − 2h(D) + 1|,
otherwise. Moreover, in the latter case, the central cell must be removed. The
number of centrally symmetric tilings of the region Da(d;S) is given by the following
theorem. In this paper, we use the notation M∗(R) for the number of centrally
symmetric tilings of R.

Theorem 2.1. Consider a positive integer a and a sequence of positive integers
d = (di)

k
i=1 so that the Douglas region D := Da(d) admits a southwest-to-northeast

symmetry axis α and has width w = w(D), height h = h(D), defect τ = τ(D), and
number of upper regular cells C = C(D). We remove all squares running along α with
labels in S ⊂ {0, 1, 2, . . . , �w

2
�} so that |S| = |w − 2h| if α passes white squares, and

|S| = |w − 2h + 1|, otherwise. Assume that the complement of S is {i1, i2, . . . , ik},
for 1 ≤ i1 < i2 < · · · < ik ≤ �w(D)

2
�. We define O = OD := {ij : j is odd} and

E = ED := {ij : j is even}.
(a) Assume that α passes white squares and w ≥ 2h. Then

M∗(Da(d;S)) = 2C−(w−1)h−τ E(O) O(E) (2.5)

if w is even;
M∗(Da(d;S)) = 2C−(w−1)h−τ−1E(O)O(E) (2.6)

if h and w are odd;

M∗(Da(d;S)) = 2C−(w−1)h−τE(O)O(E) (2.7)

if h is even and w is odd.

(b) Assume that α passes black squares and 2h− 1 ≥ w ≥ h. Then

M∗(Da(d;S)) = 2C−wh−τ+w−1
2

(h− 2)!
E(S ∪ E)O(S ∪ O) (2.8)

if h is even and w is odd;

M∗(Da(d;S)) = 2C−wh−τ+w−1
2

(h− 1)!
E(S ∪ E)O(S ∪ O) (2.9)

if h and w are odd;

M∗(Da(d;S)) = 2C−(w+1)h−τ+w
2 E(S ∪ E) O(S ∪ O) (2.10)

if w is even.

We notice that if α passes white squares and w < 2h, then the region Da(d;S)
has no tiling (since the numbers of black cells and and white cells are not equal).
Similarly, if α passes black squares and w > h, then the region Da(d;S) has no tiling
by the same reason. The condition w ≥ h ensures that the number of removed cells,
i.e. |S|, must be less than or equal the total number of cells on α.
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We consider next the centrally symmetric tilings of a symmetric quasi-hexagon

Ha(d;d) := Ha(d1, d2, . . . , dk; d1, d2, . . . , dk).

Define the function

P (a, b, c) :=
a∏

i=1

b∏
j=1

c∏
k=1

i+ j + k − 1

i+ j + k − 2
. (2.11)

This is exactly the number of plane partitions fitting in an a× b× c box [14].
A regular cell of a quasi-hexagon H is either a square or a triangle pointing away

from the axis �. We notice that regular cells in a quasi-hexagon may be black or
white (as opposed to being only black in the case of Douglas regions). Denote by
h1(H) and h2(H) the number of rows of black regular cells above � and the number
rows of white regular cells below �, respectively. We call h1(H) and h2(H) the upper
and lower heights of H. Denote by C1(H) and C2(H) the number of black regular
cells above � and the number of white regular cells below �, respectively. In the case
when the quasi-hexagon H admits a southwest-to-northeast symmetry axis, we have
h1(H) = h2(H) and C1(H) = C2(H). The width w(H) of H is the number of cells
running along each side of �. We still call a row of an odd number of black triangles
pointing toward � and above � a singular row of H. The number of singular rows
τ(H) is also called the defect of H.

The number of centrally symmetric tilings of a quasi-hexagon is given by the
following theorem.

Theorem 2.2. Let a be a positive integer and d = (d1, d2, . . . , dk) be a sequence
of positive integers, such that the symmetric quasi-hexagon H := Ha(d;d) has the
heights h = h1(H) = h2(H) less than or equal to the width w. Assume that C = C1(H)
is the number of black regular cells above � (and also the number of white regular cells
below � by the symmetry), and that τ is the defect of H.

(a) If h and w are even, then

M∗(Ha(d;d)) = 2C−
h(2w−h+1)

2
−τP

(
h

2
,
h

2
,
w − h

2

)2

. (2.12)

(b) If h is even and w is odd, then

M∗(Ha(d;d)) = 2C−
h(2w−h+1)

2
−τP

(
h

2
,
h

2
,
w − h− 1

2

)
P

(
h

2
,
h

2
,
w − h+ 1

2

)
. (2.13)

(c) If h is odd and w is even, then

M∗(Ha(d;d)) = 2C−
h(2w−h+1)

2
−τP

(
h− 1

2
,
h+ 1

2
,
w − h

2

)2

. (2.14)

Note that if the width of the quasi-hexagon Ha(d;d) is less than the heights
h1 = h2, then it has no tiling (see Theorem 2.1 in [17]; it is easy to see that the
width w is equal to the value a+m− n mentioned in this theorem).

It is worth noticing that Theorem 2.2 above generalizes Ciucu’s Theorem 7.1 in [6].
The latter theorem in turn is a special case of Stanley’s well-known enumeration of
self-complementary plane partitions [30, Eq. (3a)–(3c)].
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Figure 3.1: Vertex splitting.

3 Preliminaries

This section shares several preliminary results and definitions with the prequels [17,
19] of the paper. The first result not reported in [17, 19] is Ciucu’s Lemma 3.4.

A perfect matching of a graph G is a collection of edges such that each vertex of
G is adjacent to exactly one edge in the collection. The tilings of a region R can be
naturally identified with the perfect matchings of its dual graph (i.e., the graph whose
vertices are the cells of R, and whose edges connect two cells precisely when they
share an edge). See Figures 1.2 and 2.3 for the correspondence between tilings and
perfect matchings. In the view of this, we denote the number of perfect matchings of
a graph G by M(G). More generally, if the edges of G carry weights, M(G) denotes
the sum of the weights of all perfect matchings of G, where the weight of a perfect
matching is the product of the weights of its constituent edges.

A forced edge of a graph G is an edge that is contained in every perfect matching
of G. Let G be a weighted graph with weight function wt on its edges, and G′ is
obtained from G by removing forced edges e1, . . . , ek, as well as the vertices incident
to these edges4. Then one clearly has

M(G) = M(G′)
k∏

i=1

wt(ei). (3.1)

We present next three basic preliminary results stated below.

Lemma 3.1 (Vertex-Splitting Lemma; Lemma 2.2 in [5] ). Let G be a graph, v be a
vertex of it, and denote the set of neighbors of v by N(v). For an arbitrary disjoint
union N(v) = H ∪K, let G′ be the graph obtained from G \ v by including three new
vertices v′, v′′ and x so that N(v′) = H∪{x}, N(v′′) = K∪{x}, and N(x) = {v′, v′′}
(see Figure 3.1). Then M(G) = M(G′).

Lemma 3.2 (Star Lemma; Lemma 3.2 in [17] ). Let G be a weighted graph, and let
v be a vertex of G. Let G′ be the graph obtained from G by multiplying the weights
of all edges that are adjacent to v by a positive constant t. Then M(G′) = tM(G).

Part (a) of the following result is a generalization due to Propp of the “urban
renewal” trick first observed by Kuperberg. Parts (b) and (c) are due to Ciucu (see
Lemma 2.6 in [5]).

4For the sake of simplicity, from now on, whenever we remove some forced edges, we remove also
the vertices incident to them.
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Figure 3.2: Urban renewal.
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Figure 3.3: Two variants of the urban renewal.

Lemma 3.3 (Spider Lemma). (a) Let G be a weighted graph containing the subgraph
K shown on the left in Figure 3.2 (the labels indicate weights, unlabeled edges have
weight 1). Suppose in addition that the four inner black vertices in the subgraph K,
different from A,B,C,D, have no neighbors outside K. Let G′ be the graph obtained
from G by replacing K by the graph K shown on right in Figure 3.3, where the dashed
lines indicate new edges, weighted as shown. Then M(G) = (xz + yt)M(G′).

(b) Consider the above local replacement operation when K and K are graphs
shown in Figure 3.3(a) with the indicated weights (in particular, K ′ has a new vertex
D, that is incident only to A and C). Then M(G) = 2M(G′).

(c) The statement of part (b) is also true when K and K are the graphs indicated
in Figure 3.3(b). (In this case G′ has two new vertices C and D, that are adjacent
only to one another and to B and A, respectively).

We quote the following useful result of Ciucu [3].

Lemma 3.4 (Lemma 4.2 in [3] ). Let G be a weighted graph having a 7-vertex induced
subgraph H consisting of two 4-cycles that share a vertex. Let a, b1, b2, b3 and a, c1,
c2, c3 be the vertices of the 4-cycles (listed in cyclic order) and suppose b3 and c3 are
only the vertices of H with the neighbors outside H (see Figure 3.4). Assume that
the product of weights of opposite edges in each 4-cycle of H is a constant d, that is

wt(b1, b2)wt(a,b3)=wt(b2, b3)wt(a, b1)=wt(c1, c2)wt(a, c3)=wt(c2, c3)wt(a, c1)=d.
(3.2)

Here we use the notation wt(a, b) for the weight of the edge connecting the two vertices
a and b. Let G′ be the subgraph of G obtained by deleting b1, b2, c1 and c2, weighted
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Figure 3.4: Illustrating Lemma 3.4.
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Figure 3.5: (a) A graph G with a horizontal symmetric axis; (b) the resulting graph
after the cutting procedure.

by restriction. Then

M(G) = 2wt(b1, b2)wt(c1, c2)M(G′).

Next, we present a powerful tool in enumeration of perfect matchings of reflec-
tively symmetric graphs. This was first introduced by Ciucu [2].

Let G be a weighted planar bipartite graph that is symmetric about a horizontal
line �. Assume that the set of vertices lying on � is a cut set of G (i.e., the removal
of these vertices disconnects G). One readily sees that the number of vertices of G
on � must be even if G has perfect matchings, let η(G) be half of this number. Let
a1, b1, a2, b2, . . . , aη(G), bη(G) be the vertices lying on �, as they occur from left to right.
Color vertices of G by black or white so that any two adjacent vertices have opposite
colors. Without loss of generality, we assume that a1 is always colored white. Delete
all edges above � at all white ai’s and black bj ’s, and delete all edges below � at all
black ai’s and white bj ’s. Reduce the weight of each edge lying on � by half; leave all
other weights unchanged. Since the set of vertices of G on � is a cut set, the graph
obtained from the above cutting procedure has two disconnected parts, one above �
and one below �, denoted by G+ and G−, respectively (see Figure 3.5).
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(d)

(a) (b)

(c)

Figure 3.6: Four types of Aztec rectangle graphs.

Theorem 3.5 (Ciucu’s Factorization Theorem [2]). Let G be a bipartite weighted
symmetric graph separated by its symmetry axis. Then

M(G) = 2η(G) M(G+)M(G−). (3.3)

Consider a (2m+ 1)× (2n+ 1) rectangular chessboard and suppose the corners
are black. The Aztec rectangle graph ARm,n is the graph whose vertices are the white
unit squares and whose edges connect precisely those pairs of white unit squares that
are diagonally adjacent (see Figure 3.6(a) for AR3,5). The odd Aztec rectangle graph
ORm,n is the graph whose vertices are the black unit squares whose edges connect
precisely those pairs of black unit squares that are diagonally adjacent (see Figure
3.6(b) for OR3,5). If one removes all the bottommost vertices in ARm,n, the resulting
graph is denoted by ARm− 1

2
,n, and called a baseless Aztec rectangle (see Figure 3.6(c)

for AR5/2,5). We also consider the graph ARm,n− 1
2
that is obtained from the Aztec

rectangle ARm,n by removing all its leftmost vertices (see Figure 3.6(d) for AR3,9/2).
It is worth noticing that when n = m, the Aztec rectangle graph ARm,n be-

comes the Aztec diamond graph ADn. Elkies, Kuperberg, Larsen and Propp [10,11]
showed that the number of perfect matchings of ADn is exactly 2n(n+1)/2. The Aztec
rectangle graph ARm,n does not have perfect matchings in general, however, when
certain vertices have been removed from one of its sides, the perfect matchings are
enumerated by a simple product formula (see e.g. Proposition 2.1 in [7]).

Next, we consider several variations of the Aztec rectangles5 as follows.
Label the vertices on the left side of the Aztec rectangle ARm,n from bottom

up by 1, 2, 3, . . . , m. Denote by ARo
m,n and ARe

m,n the graphs obtained from ARm,n

by removing all odd-labeled and all even-labeled vertices, respectively (see Figures
5.4(b) and (d) for ARo

6,5 and ARo
5,5, and Figures 5.3(b) and (d) for ARe

5,5 and ARe
6,5).

We call ARo
m,n and ARe

m,n the odd- and even-trimmed versions of ARm,n, respectively.
Applying a similar process, we obtain the odd- and even-trimmed versions of the

graphs ORm,n, ARm− 1
2
,n, and ARm,n− 1

2
. Figures 5.1(b) and (d) illustrate the graph

5From now on we use the word “Aztec rectangle(s)” to mean “Aztec rectangle graph(s)”.



TRI LAI /AUSTRALAS. J. COMBIN. 74 (2) (2019), 253–287 266

ORo
6,5 and ORo

5,5; while the graphs ORe
5,5 and ORe

6,5 are shown in Figures 4.2(b) and
(d). See Figures 5.6(b) and (d) for ARo

5,9/2 and ARo
6,9/2, and Figures 5.5(b) and (d)

for ARe
6,9/2 and ARe

5,9/2. Finally, examples of ARo
m,n and ARe

m,n are illustrated in

Figures 5.9(b) and (d) and in Figures 5.10(b) and (d), respectively.
Similar to the case of the Aztec rectangles, the above trimmed Aztec rectangles

do not have perfect matchings in general, and we are interested in the case in which
some bottom vertices of them have been removed.

Label the bottom vertices of ARe
m,n, AR

o
m,n, ORe

m,n, and ORo
m,n by 1, 2, . . . , n

from left to right. For 0 ≤ k ≤ n and 1 ≤ a1 < a2 < · · · < ak ≤ n, de-
fine ARe

m,n(a1, a2, . . . , ak) (respectively, ARo
m,n(a1, a2, . . . , ak)) to be the graph ob-

tained from ARe
m,n (respectively, ARo

m,n) by removing all bottom vertices, except for
the ones at the positions a1, a2, . . . , ak. Define ORe

m,n(a1, a2, . . . , ak) (respectively,
ORo

m,n(a1, a2, . . . , ak)) to be the graph obtained from ORe
m,n (respectively, ORo

m,n)
by removing the bottom vertices at the positions a1, a2, . . . , ak.

Similarly, we label the bottom vertices of ARe
m,n+ 1

2

and ARe
m− 1

2
,n
by 0, 1, 2, . . . , n

from left to right; and we also label the bottom vertices of ARo
m,n+ 1

2

, and ARo
m− 1

2
,n

by 1, 2, . . . , n. For 0 ≤ k ≤ n and 1 ≤ a1 < a2 < · · · < ak ≤ n, define
ARe

m,n+ 1
2

(a1, a2, . . . , ak) (respectively, ARo
m,n+ 1

2

(a1, a2, . . . , ak)) to be the graph ob-

tained from ARe
m,n+ 1

2

(respectively, ARo
m,n+ 1

2

) by removing all bottom vertices, ex-

cept for the ones at the positions a1, a2, . . . , ak. The graph ARe
m− 1

2
,n
(a1, a2, . . . , ak)

(respectively, ARo
m− 1

2
,n
(a1, a2, . . . , ak)) is the graph obtained from ARe

m− 1
2
,n
(respec-

tively, ARo
m− 1

2
,n
) by removing the bottom vertices at the positions 0 and a1, a2, . . . , ak

(respectively, at the positions a1, a2, . . . , ak).
The author showed that perfect matchings of a trimmed Aztec rectangle are al-

ways enumerated by a simple product formula (see Theorems 1.2 and 1.3 in [20];
strictly speaking, our graphs here are the dual graphs of the regions in these theo-
rems).

Theorem 3.6. For any 1 ≤ k < n and 1 ≤ a1 < a2 < · · · < ak ≤ n

M(ARe
2k−1,n(a1, a2, . . . , ak)) = M(ARe

2k,n(a1, a2, . . . , ak)) = E(a1, a2, . . . , ak), (3.4)

M(ARo
2k,n(a1, a2, . . . , ak)) = M(ARo

2k+1,n(a1, a2, . . . , ak)) = O(a1, a2, . . . , ak), (3.5)

M(ORe
2k,n(a1, a2, . . . , ak)) = M(ORe

2k+1,n(a1, a2, . . . , ak)) = 2−k O(a1, a2, . . . , ak),

(3.6)

M(ORo
2k−1,n(a1, a2, . . . , ak)) = M(ORo

2k,n(a1, a2, . . . , ak)) = 2−k E(a1, a2, . . . , ak),

(3.7)

M(ARo
2k,n− 1

2
(a1, a2, . . . , ak)) = M(ARo

2k+1,n− 1
2
(a1, a2, . . . , ak)) = 2kO(a1, a2, . . . , ak),

(3.8)
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M(ARe
2k−1,n− 1

2
(a1, a2, . . . , ak)) = M(ARe

2k,n− 1
2
(a1, a2, . . . , ak)) = 2−kE(a1, a2, . . . , ak),

(3.9)

M(ARo
2k− 1

2
,n
(a1, a2, . . . , ak)) = M(ARo

2k+ 1
2
,n
(a1, a2, . . . , ak)) = O(a1, a2, . . . , ak),

(3.10)

and

M(ARe
2k+ 1

2
,n
(a1, a2, . . . , ak))=M(ARe

2k+3/2,n(a1, a2, . . . , ak))=
1

(2k)!
E(a1, a2, . . . , ak).

(3.11)

4 Centrally symmetric matchings of an Aztec rectangle with
holes

In his Ph.D. thesis [32], Bo-Yin Yang proved a conjecture posed by Jockush on the
number of centrally symmetric tilings of the Aztec diamond region. Ciucu reproved
the result in [2] by using his own factorization thorem (Theorem 3.5) and a tiling
enumeration of Jockush and Propp [12]. It is worth noticing that the author gave a
new proof for Jockush–Propp’s enumeration in [18], and also generalized it in [20].
In this section, we enumerate centrally symmetric perfect matchings of an Aztec
rectangle with several vertices removed along the symmetry axis (we also call these
removed vertices holes). Our result implies Ciucu and Yang’s previous work as a
special case when the set of removed vertices is empty (and the Aztec rectangle
becomes an Aztec diamond graph).

Consider an Aztec rectangle ARm,n with the horizontal symmetry axis � and the
vertical symmetry axis �′. We label the vertices of ARa,b on � as follows. If the
symmetry center of the graph is a vertex on �, then we label it by 0. Label two
vertices that are closest to the center by 1, label the second closest vertices by 2, and
so on. We remove several vertices so that the resulting graph still admits the vertical
symmetry axis �′. Denote by S the label set of removed vertices, which are not the
center, and denote by ARm,n(S) the resulting graph. Assume that {i1, i2, . . . , ik} is
the label set of the vertices of ARm,n(S) on �. It is easy to see that if a bipartite
graph has perfect matchings, then it must have the same number of vertices in the
two vertex classes. This implies that, in any cases, |S| = |m − n|. Moreover, for
even m, the graph ARm,n(S) has perfect matchings only if m ≤ n; for odd m, the
graph ARm,n(S) has perfect matchings only if m ≥ n. In the latter case we also
have n ≥ m/2, since the number of removed vertices m − n must be less than or
equal to the number of vertices in �. In particular, Ciucu showed that if m is even
and m ≤ n, then the number of perfect matchings of ARm,n(S) is given by a simple
product formula (see Theorem 4.1 in [2]).

We are interested in the centrally symmetric perfect matchings of ARm,n(S),
i.e. the perfect matchings which are invariant under the 180◦ rotation around the
symmetry center of the graph. Denote by M∗(G) the number of centrally perfect
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matchings of a graph G. We separate the label set {i1, i2, . . . , ik} of the vertices of
ARm,n(S) on � into two subsets: O := {ij : j is odd} and E := {ij : j is even}.

The number of centrally symmetric perfect matchings of an Aztec rectangle graph
with ‘holes’ ARm,n(S) is given by simple products in the following theorem.

Theorem 4.1. (a) For any n > m and S = {s1, s2, . . . , sn−m}
M∗(AR2m,2n(S)) = 2m E(O) O(E) (4.1)

(b) For any m > n > m/2 and S = {s1, s2, . . . , sm−n}
M∗(AR2m−1,2n−1(S)) = 2n−m E(S ∪ E) O(S ∪ O) (4.2)

(c) For any m > n > m/2 and S = {s1, s2, . . . , sm−n−1}

M∗(AR2m−1,2n(S)) =
{

2n

(m−2)!
E(S ∪ E)O(S ∪ O) if m is even;

2n

(m−1)!
E(S ∪ E)O(S ∪ O) if m is odd;

(4.3)

(d) For any n > m and S = {s1, s2, . . . , sn−m−1}

M∗(AR2m,2n−1(S)) =
{
2m−1E(O)O(E) if m is odd;

2mE(O)O(E) if m is even.
(4.4)

Proof of Theorem 4.1. We only prove in detail part (a), as the other parts can be ob-
tained in a completely analogous manner. We will use Ciucu’s Factorization Theorem
(Theorem 3.5) to show that the number of centrally symmetric perfect matchings of
our graph is given by a certain product of the numbers of perfect matchings of two
graphs in Theorem 3.6.

Consider the Aztec rectangle with holes G = AR2m,2n(S) with the horizontal and
vertical symmetry axes � and �′ (see Figure 4.1(a) for AR8,14(2, 5, 6)). In this case,
we have n ≥ m and |S| = n−m. Consider the subgraph H of G that is induced by
vertices lying on �′ or staying on the right of �′. Label the vertices of G on �′ which
are staying above the horizontal axis � by v1, v2, v3, . . . from bottom to top; and label
the vertices of G on �′ which are below � by u1, u2, u3, . . . from top to bottom.

It is easy to see that each centrally symmetric perfect matching μ of G is de-
termined uniquely by its sub-matching μ′ restricted to the edge set of H , i.e.,
μ′ := μ ∩ E(H). On the other hand, by the symmetry of μ, exactly one of two
vertices ui and vi is covered by μ′. Therefore, the sub-matching μ′ corresponds to a
perfect matching of the graph H̃ obtained from H by identifying ui and vi, for any
i = 1, 2, 3, . . . . This implies that the centrally symmetric perfect matchings of G are
in bijection with the perfect matchings of H̃.

Moreover, we can put the vertices in H̃ which are obtained by identifying ui and
vi on the horizontal axis �, so that H̃ has � as its horizontal symmetry axis (see
Figure 4.1(b)). By Ciucu’s Factorization Theorem (Theorem 3.5), we have

M(H̃) = 2mM(H̃+)M(H̃−), (4.5)
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(c)

(b)(a)

(d)

Figure 4.1: Illustrating the proof of Theorem 4.1.

(d)(a) (b) (c)

Figure 4.2: Illustrating the transformation in (5.1) of Lemma 5.1.
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(d)(a) (b) (c)

Figure 5.1: Illustrating the transformation in (5.2) of Lemma 5.1.

where H̃ has exactly 2m vertices on � (see the cutting procedure in Figures 4.1(c)
and (d)).

For even m, we have H̃+ is isomorphic to ARe
m,n(O) and H̃− is isomorphic to

ARo
m,n(E) (see Figure 4.1(d)), while H̃+ is isomorphic to ARo

m,n(E) and H̃− is iso-
morphic to ARe

m,n(O) when m is odd. Therefore, (4.1) follows from Theorem 3.6.
This finishes our proof.

5 Symmetric tilings of Douglas regions

In the first part of this section, we present several new subgraph replacement rules
that will be employed in the proof of Theorem 2.1.

The connected sum G#G′ of two disjoint graphs G and G′ along the ordered sets
of vertices {v1, . . . , vn} ⊂ V (G) and {v′1, . . . , v′n} ⊂ V (G′) is the graph obtained from
G and G′ by identifying vertices vi and v′i, for i = 1, 2, . . . , n.

In the next lemmas (Lemmas 5.1, 5.2, 5.3, and 5.4), we always assume that G is
a graph, and {v1, v2, . . . , vn} is an ordered set of its vertices. Moreover, all connected
sums act on G along {v1, v2, . . . , vn} and on other summands along their bottommost
vertices ordered from left to right.

Lemma 5.1.
M(|ARo

m,n#G) = 2�
m
2
	M(ORe

m,n#G) (5.1)

and
M(|ARe

m,n#G) = 2�
m+1

2
	M(ORo

m,n#G), (5.2)

where |ARo
m,n and |ARe

m,n are the graphs obtained from ARo
m,n and ARe

m,n by ap-
pending n vertical edges to their bottommost vertices, respectively (see Figure 4.2
for examples of the ‘transformation’ in (5.1), and Figure 5.1 for examples of the
transformation in (5.2)).

Proof. We only prove here the transformation in (5.1), based on Figure 5.2, for
m = n = 5, as the transformation in (5.2) can be obtained in the same way.

First, we apply the Vertex-splitting Lemma (Lemma 3.1) to all vertices of

|ARo
m,n#G that are incident to a shaded diamond or a partial diamond as in Figure

5.2(a). We get the graph G1 on Figure 5.2(b). Next, we apply the Spider Lemma
(Lemma 3.3) around mn shaded diamonds and partial diamonds (the dotted edges
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(d)

(b)
(a)

(c)

Figure 5.2: Illustration of the proof of Lemma 5.1.

(d)(a) (b) (c)

Figure 5.3: Illustrating the transformation in (5.4) of Lemma 5.2.

have weight 1
2
), and remove all edges incident to a vertex of degree 1, which are

forced. We obtain a weighted graph G2 obtained from ORe
m,n#G by assigning to

each edge of ORe
m,n a weight 1

2
. Finally, we get back the graph ORe

m,n#G by apply-
ing the Star Lemma (Lemma 3.2) with factor t = 2 at mn− �m

2
� shaded vertices as

in Figure 5.2(c). By Lemmas 3.1, 3.2, and 3.3, we have

M(|ARo
m,n#G) = M(G1) = 2mn M(G2) = 2mn2−(mn−�m

2
	) M(ORe

m,n#G), (5.3)

which implies (5.1).

By applying the transformations in Lemma 5.1 (in reverse), and then the Vertex-
splitting Lemma, one can get the following transformations.

Lemma 5.2.
M(|ORo

m,n#G) = 2−�m+1
2

	M(ARe
m,n#G) (5.4)

and
M(|ORe

m,n#G) = 2−�m
2
	M(ARo

m,n#G), (5.5)
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(d)(a) (b) (c)

Figure 5.4: Illustrating the transformation in (5.5) of Lemma 5.2.

(d)(a) (b) (c)

Figure 5.5: Illustrating the transformation in (5.6) of Lemma 5.3.

where |ORo
m,n and |ORe

m,n are the graphs obtained from ORo
m,n and ORe

m,n by ap-
pending n vertical edges to their bottommost vertices, respectively (Figure 5.3 shows
the transformation in (5.4), and Figure 5.4 illustrates the transformation in (5.5)).

By using Ciucu’s Lemma 3.4 together with Lemmas 3.1–3.3, one gets the following
lemma.

Lemma 5.3.
M(|ARo

m− 1
2
,n
#G) = 2−�m

2
	M(ARo

m,n+ 1
2
#G) (5.6)

and
M(|ARe

m− 1
2
,n−1

#G) = 2−�m+1
2

	M(ARe
m,n− 1

2
#G), (5.7)

where |ARo
m− 1

2
,n
is the graph obtained from ARo

m− 1
2
,n
by appending n vertical edges to

its bottommost vertices; and where |ARe
m− 1

2
,n−1

is the graph obtained from ARe
m− 1

2
,n−1

(d)(a) (b) (c)

Figure 5.6: Illustrating the transformation in (5.7) of Lemma 5.3. The red bold edges
at the lower-left corners of the graphs (a) and (c) are weighted by 1

2
.
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(c)

(b)
(a)

(d)

Figure 5.7: Illustrating the proof of (5.6) in Lemma 5.3.

by appending n vertical edges to its bottommost vertices, the leftmost vertical edge is
weighted by 1

2
(the transformation in (5.6) is shown in Figure 5.5, and the transfor-

mation in (5.7) is illustrated in Figure 5.6).

Proof. We only need to prove (5.6) for even m, and the case of odd m follows from
the even case by removing the southeast-to-northwest forced edges on the top of

|ARo
m− 1

2
,n
and ARo

m,n+ 1
2

.

Our proof is illustrated in Figure 5.7, for m = 4 and n = 4.
First, apply the Vertex-splitting Lemma to the vertices in |ARo

m− 1
2
,n
#G that are

incident to a shaded diamond or a partial diamond (see Figures 5.7(a) and (b)). Sec-
ond, apply suitable replacement in the Spider Lemma around mn shaded diamonds
and partial diamonds. Third, apply Lemma 3.4 to remove m

2
7-vertex subgraphs con-

sisting of two shaded 4-cycles (see Figure 5.7(c); the dotted edges are weighted by
1
2
). Finally, apply the Star Lemma with factor t = 2 to all m(n+ 1) shaded vertices

as in Figure 5.7(c). The resulting graph is exactly ARo
m,n+ 1

2

#G. Keeping track the

weight factors in the above transformations, we obtain the following equality

M(|ARo
m− 1

2
,n
#G) = 2m(n+1)2−

m
2 2−m(n+1)M(ARo

m,n+ 1
2
#G), (5.8)

which implies (5.6).
Next, we show the proof of (5.7) for odd m, the case of even m follows from the

odd case by removing southeast-to-northwest forced edges on the top of |ARe
m− 1

2
,n−1

and ARe
m,n− 1

2

. Our proof is shown in Figure 5.8, for m = 5 and n = 4. We apply

the Vertex-splitting Lemma to the vertices in |ARe
m− 1

2
,n
#G incident to a shaded

diamond or partial diamond as in Figures 5.8(a) and (b). Then apply the Spider
Lemma to m(n + 1) − 1 shaded diamonds and partial diamonds. Next, we apply
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(c)

(b)

(a)

(d)

Figure 5.8: Illustrating the proof of (5.7) in Lemma 5.3.

(d)(a) (b) (c)

Figure 5.9: Illustrating the transformation in (5.10) of Lemma 5.4

(d)(a) (b) (c)

Figure 5.10: Illustrating the transformation in (5.11) of Lemma 5.4. Red edge has
weight 1

2
.
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Lemma 3.4 to remove m−1
2

subgraphs consisting of two shaded 4-cycles (see Figure
5.8(c); the dotted edges have weight 1

2
), and apply the Vertex-splitting Lemma (in

reverse) to eliminate the two solid edges in the resulting graph. Finally, apply the
Star Lemma (for the factor t = 2) to all m(n + 1) shaded vertices. This way, we
obtain the graph ARe

m,n− 1
2

#G on the right-hand side of (5.7). In summary, we get

the following equality:

M(|ARe
m− 1

2
,n
#G) = 2m(n+1)−12−

m−1
2 2−m(n+1) M(ARe

m,n+ 1
2
#G), (5.9)

which yields (5.7).

Similar to Lemma 5.3, we have the following lemma. The proof of the next lemma
is essentially the same as that of Lemma 5.3, and will be omitted.

Lemma 5.4.
M(|ARo

m,n+ 1
2
#G) = 2�

m
2
	M(ARo

m− 1
2
,n
#G), (5.10)

and
M(|ARe

m,n− 1
2
#G) = 2�

m+1
2

	−1M(ARe
m− 1

2
,n−1

#G), (5.11)

where |ARo
m,n+ 1

2

is the graph obtained from ARo
m,n+ 1

2

by appending n vertical edges

to its bottommost vertices; and where |ARe
m,n− 1

2

is the graph obtained from ARe
m,n− 1

2

by appending n vertical edges to its bottommost vertices, the leftmost vertical edge is
weighted 1

2
(the transformation in (5.10) is shown in Figure 5.9, and the transfor-

mation in (5.11) is illustrated in Figure 5.10).

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We only show in detail the proof for the case when α passes
white squares and w is even, as the other cases can be obtained in the same manner.

We recall that α is not a drawn-in diagonal, and that k is odd in this case.
Let Q be any graph with the vertical and horizontal symmetry axes �′ and �.

We define the orbit graph Ob(Q) of Q similarly to the proof of Theorem 4.1. In
particular, we consider the subgraph H of Q that is induced by the vertices lying on
the vertical axis �′ or staying on the right of �′. The orbit graph Ob(Q) of Q is the
graph obtained by identifying two vertices of H on �′ that have the same distance to
the symmetry center O, so that the new vertices in Ob(Q) are on the � (i.e. Ob(Q)
also has the horizontal symmetry axis �). There is always a bijection between the the
centrally symmetric perfect matchings of Q and the perfect matchings of its orbit
graph Ob(Q), i.e.

M∗(Q) = M(Ob(Q)).

Consider the dual graph G of the region Da(d;S) (rotated 45◦). Its orbit graph
Ob(G) is illustrated in Figure 5.11. The Factorization Theorem tells us that

M(Ob(G)) = 2η(Ob(G)) M(Ob(G)+)M(Ob(G)−), (5.12)
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(b)(a)

(c)

Figure 5.11: The dual graph of the holey Douglas region D12(4, 4, 4, 4, 4; {3}) and its
orbit graph.
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_

+

(b)

Ob(G)

Ob(G)

(a)

Figure 5.12: Separating the orbit graph of D12(4, 4, 4, 4, 4; {3}) into two component
graphs.

where η(Ob(G)) is half of the number of vertices of Ob(G) on its horizontal symmetry
axis, and where the two component graphs Ob(G)+ and Ob(G)− are illustrated in
Figure 5.12.

By Theorem 3.6, we only need to show that

M∗(Da(d;S)) = M(Ob(G))) = 2C−wh−τ M∗(AR2h,w(S)). (5.13)

The k−1 drawn-in diagonals divide the region Da(d;S) into k parts, called layers.
We prove (5.13) by induction on the number of layers k of D = Da(d1, d2, . . . , dk;S)
(recall that k is odd by the symmetry of the Douglas region).

If k = 1, then the dual graph of Da(d;S) is exactly AR2h,w(S), and (5.13) is a
trivial identity. Assuming that (5.13) is true for all Douglas regions with holes that
have less than k layers, k ≥ 3, we need to show that (5.13) also holds for any region
with k layers D = Da(d1, d2, . . . , dk;S).

There are four cases to distinguish, based on the parities of d1 and a.

Case 1. d1 and a are even.

Define a new Douglas region with holes D′ by

D′ := Da−1(d1 + d2 − 1, d3, d4, . . . , dk−2, dk−1 + dk − 1;S) for k ≥ 5,

and
D′ := Da−1(d1 + d2 + d3 − 2;S) for k = 3.

Denote by G′ the dual graph of D′. We note that D′ always has (k − 2) layers.
The application of the Factorization Theorem to the orbit graph of G′ implies

M(Ob(G′)) = 2η(Ob(G′)) M(Ob(G′)+)M(Ob(G′)−), (5.14)
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where η(Ob(G′)) is half number of the vertices of Ob(G′) on the symmetry axis (see
Figures 5.13(e) and (f)).

Assume that d1/2 = 2q. Applying transformation (5.2) in Lemma 5.1 to the top
part of Ob(G)+, that corresponds to the first layer of the region D, we get the lower
component graph Ob(G′)− of the orbit graph Ob(G′) of G′, and obtain

M(Ob(G)+) = 2q M(Ob(G′)−). (5.15)

This process is illustrated in Figures 5.13(a) and (b).
Similarly, we apply transformation in (5.1) in Lemma 5.1 to the bottom part of

Ob(G)−, that corresponds to the bottom layer of D, and get the upper component
graph Ob(G′)+ of of the orbit graph Ob(G′) of G′. This implies that

M(Ob(G)−) = 2q M(Ob(G′)+). (5.16)

This process is shown in Figures 5.13(c) and (d).
Multiplying the two equalities above, we get

M(Ob(G)+)M(Ob(G)−) = 22q M(Ob(G′)+)M(Ob(G′)−). (5.17)

Equalities (5.12), (5.14), and (5.17) now yield

M(Ob(G)) = 22q+η(Ob(G))−η(Ob(G′)) M(Ob(G′)). (5.18)

Since we are assuming that α passes white squares, the number of squares removed
from α is w − 2h. It means that the number vertices of G on � is 2h. Moreover, it
is easy to see that the number of vertices of G running along the vertical symmetry
axis �′ is also 2h. Thus, η(Ob(G)) = h. Similarly, η(Ob(G′)) = h′, where h′ is the
height of D′.

One readily sees that D and D′ have the same height, so η(Ob(G)) = η(Ob(G′))
in this case. It means that (5.18) can be simplified to

M(Ob(G)) = 22q M(Ob(G′)). (5.19)

Similarly, if d1/2 = 2q + 1, then we can transform the graph Ob(G)+ into the
graph Ob(G′)− by applying transformation (5.2) in Lemma 5.1 to the top part of
Ob(G)+. This gives us

M(Ob(G)+) = 2q M(Ob(G′)−). (5.20)

Next, applying transformation (5.1) in Lemma 5.1 to the bottom part of Ob(G)−,
we get the graph Ob(G′)+ and

M(Ob(G)−) = 2q+1M(Ob(G′)+). (5.21)

Therefore, similar to (5.19), we have the following connection between the numbers
of perfect matchings Ob(G) and Ob(G′):

M(Ob(G)) = 22q+1M(Ob(G′)). (5.22)
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Figure 5.13: Transforming the orbit graph of D = D12(4, 4, 4, 4, 4; {3}) into the orbit
graph of D′ = D12(7, 4, 7; {3}).
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We can combine (5.19) and (5.22) into a single identity:

M(Ob(G)) = 2d1/2M(Ob(G′)). (5.23)

Assume that α′ is the axis of D′. Denote by w′, C′, τ ′ the width, the number of
black regular cells above α′, and the defect of D′, respectively. One readily sees that
w = w′, τ = τ ′, and

C − C′ =
d1
2
(a+ 1)− d1

2
a =

d1
2
.

By induction hypothesis for the region D′, we have

M(Ob(G)) = 2C
′−w′h′−τ ′ M∗(AR2h′,w′(S)) (5.24)

= 2C−d1/2−wh−τ M∗(AR2h,w(S)), (5.25)

and (5.13) follows from (5.23).

Case 2. d1 and a odd.

Define a new Douglas region with holes D′′ as

D′′ := Da+1(d1 + d2 + 1, d3, d4, . . . , dk−2, dk−1 + dk + 1;S) for k ≥ 5,

and
D′′ := Da+1(d1 + d2 + d3 + 2;S) for k = 3.

Denote by G′′ its dual graph. We also note that D′′ always has (k − 2) layers.
Similar to Case 1, we now apply the transformations in Lemma 5.2 to the top

part of Ob(G)+ or the bottom part of Ob(G)−. If (d1 + 1)/2 = 2q, then we get

M(Ob(G)) = 2−2q+η(Ob(G))−η(Ob(G′′)) M(Ob(G′′)), (5.26)

and if (d1 + 1)/2 = 2q + 1, then

M(Ob(G)) = 2−2q−1+η(Ob(G))−η(Ob(G′′)) M(Ob(G′′)), (5.27)

where η(Ob(G′′)) is half of the number of vertices of G′′ on its horizontal symmetry
axis.

Moreover, D and D′′ also have the same height, so η(Ob(G)) = η(Ob(G′′)). Thus,
we always have in this case

M(Ob(G)) = 2−(d1+1)/2 M(Ob(G′′)). (5.28)

Denote by w′′, h′′, C′′, τ ′′ the width, the height, the number of black regular cells
in the upper part, and the defect of D′′, respectively. We also have h = h′′, w = w′′,
τ = τ ′′. Moreover,

C − C′′ =
d1 + 1

2
(a+ 1)− d1 + 1

2
(a+ 2) = −d1 + 1

2
.

Thus (5.13) follows from (5.28) and the induction hypothesis for D′′.



TRI LAI /AUSTRALAS. J. COMBIN. 74 (2) (2019), 253–287 281

Case 3. d1 is odd and a is even.

We use the same transforming process as in Case 2 by using suitable transforma-
tions in Lemma 5.3 to the top part of Ob(G)+ or the bottom part of Ob(G)−. This
gives us

M(Ob(G)) = 2−(d1+1)/2 M(Ob(G′′)), (5.29)

where G′′ is the dual graph of the region D′′ defined as in Case 2. Similarly to Case
2, we have (5.13).

Case 4. d1 is even and a is odd.

Apply the same procedure as that in Case 1 by using suitable transformations in
Lemma 5.4 to the top part of Ob(G)+ or the bottom part of Ob(G)−.

If d1/2 = 2q, then

M(Ob(G)) = 22q−1+η(Ob(G))−η(Ob(G′)) M(Ob(G′)); (5.30)

and if d1/2 = 2q + 1, then

M(Ob(G)) = 22q+η(Ob(G))−η(Ob(G′)) M(Ob(G′)), (5.31)

where G′ is the dual graph of the region D′ defined as in Case 1. It means that we
always have

M(Ob(G)) = 2d1/2−1M(Ob(G′)). (5.32)

Similar to Case 1, we have w′ = w, h = h′, and C − C′ = d1/2. However, in this
case τ ′ = τ − 1, since we have a singular row staying right below the first layer of D,
but it does not appear in D′. Thus, by the induction hypothesis for D′ and (5.32),
we have

M(Ob(G)) = 2d1/2−12C
′−h′w′−τ ′ M∗(AR2h′,w′(S)) (5.33)

= 2d1/2−12C−d1/2−hw−(τ−1)M∗(AR2h,w(S)). (5.34)

Then (5.13) follows. This finishes our proof.

6 Symmetric tilings of quasi-hexagons

In this section, we use our transformations in Lemmas 5.1–5.4 to prove Theorem 2.2.

Proof of Theorem 2.2. There are two cases to distinguish based on the color of the
up-pointing triangles running along the axis of Ha(d;d). We consider first the case
when these triangles are black.

We consider the dual graph G of the region H = Ha(d;d) (rotated 45◦) with
the horizontal and vertical axes � and �′. Similar to the proof of Theorem 2.1,
the number of centrally symmetric tilings of H is equal to the number of centrally
symmetric perfect matchings of its dual graph G. The latter number in turn equals
the number of perfect matchings of the orbit graph Ob(G) of G.

The region H has k layers above the axis, called the upper layers. Next, we prove
by induction on the number of upper layers of H that
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Claim 6.1.
M(Ob(G)) = 2C−hw−τ M(Ob(G)), (6.1)

where G is the dual graph of the region H := Hw−1(2h− 1; 2h− 1).

Proof. If k = 1, then (6.1) is a trivial identity, since H = H. Assume that (6.1)
holds for any symmetric quasi-hexagon with less than k (k ≥ 2) upper layers, we
need to show that the equality holds also for any symmetric quasi-hexagon H =
Ha(d1, . . . , dk; d1, . . . , dk).

We use similar arguments to that in the proof of Theorem 2.1. In particular, we
transform the orbit graph of Ha(d;d) into the orbit of a symmetric quasi-hexagon
that has less layers by using the suitable transformations in Lemmas 5.1–5.4.

We only show in detail the proof for the case when a and d1 are even, as the other
cases can be obtained similarly.

Similar to the Theorem 7.1 in [2], we notice that we cannot apply Ciucu’s Fac-
torization Theorem directly here, since the vertices of the orbit graph Ob(G) on �,
{a1, b1, a2, b2, . . . , aη(Ob(G)), bη(Ob(G))}, do not form a cut set. However, the Lemma
2.1 in [2] still applies, and it means that all 2η(G) graphs, that are obtained from
Ob(G) by cutting edges from above or below each of ai’s, have the same number
of perfect matchings. We now consider a cutting procedure at the vertices ai’s as
follows. First, we color these vertices of Ob(G) inductively from left to right: color
a1 by white, then color the next vertex the same color as its left one if there is not an
edge connecting them, otherwise we use the opposite color (see Figure 6.1(b)). As-
sume that Q∗ is the graph obtained from Ob(G) by cutting above all white ai’s and
below all black ai’s. We will show in the next paragraph that all perfect matchings
of Q∗ have the white bj ’s matched upward, and black bj ’s matched downward.

Indeed, we consider the collection G of 2η(G) graphs obtained from Q∗ by cutting
at all edges incident to bj ’s from above or below. The matching set of Q∗ is in
bijection to disjoint union of matching sets of the members in G. Recall that if
a bipartite graph admits a perfect matching, then its vertex classes must have the
same size. All members Q of G are bipartite graphs, and it easy to check that its
two vertex classes have the same size only if Q is obtained from cutting below all
white bj ’s and above all black bj ’s.

Now, denote by Si(G) the graph obtained from the orbit graph Ob(G) of G by
cutting above all white ai’s and black bj ’s, and below all black ai’s and white bj ’s
(illustrated in in Figure 6.1(c)). Moreover, Si(G) can be deformed into a weighted
subgraph of G as in Figure 6.1(c). Then we get

M(Ob(G)) = 2η(G) M(Si(G)). (6.2)

Applying the transformations in Lemma 5.1 to the top and bottom parts of Si(G),
that correspond to the top and bottom layers of H, we get the graph isomorphic to
Si(G′), where G′ is the dual graph of the quasi-hexagon H′ defined by

H′ := Ha−1(d1 + d2 − 1, d3, . . . , dk; d1 + d2 − 1, d3, . . . , dk),
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(d)

(a) (b)

(c)

Figure 6.1: Obtaining the graph Si(G) from G. The dotted edges indicate the ones
cut off. The bold edges have weight 1

2
.

(a) (b) (c)

Figure 6.2: Transforming Si(G) into Si(G).
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and where Si(G′) is the graph obtained from the orbit graph Ob(G′) of G′ by the
same cutting procedure as in the case of G. We obtain

M(Ob(G)) = 2η(G)Si(G)

= 2η(G)2d1/2Si(G′)

= 2d1/22η(G
′)Si(G′)

= 2d1/2M(Ob(G′)). (6.3)

By (6.3), the induction hypothesis, and explicit calculation of the statistics of the
region H′, we obtain

M(Ob(G)) = 2d1/22C
′−h′w′−τ ′ M(Ob(G)) (6.4)

= 2d1/22C−d1/2−hw−τ M(Ob(G)), (6.5)

where C′, h′, w′, τ ′ refer to H′ corresponding to their unprimed counterparts in H.
Then (6.1) follows, and this finishes the proof of our claim.

Consider the dual graph G′′ of the symmetric quasi-hexagon region

H′′ := Hw−h(1
h; 1h),

where all d1, d2, . . . , dk are 1, and where k = h. H′′ is exactly the semi-regular
hexagon of side-lengths h, w − h, h, h, w − h, h on the triangular lattice. Applying
the claim above to the orbit graph Ob(G′′) of G′′, we have

M(Ob(G′′)) = 2−h(h−1)/2M(Ob(G)). (6.6)

Thus, by (6.1) and (6.6), we obtain

M(Ob(G)) = 2C−h(2w−h+1)/2−τ M(Ob(G′′)). (6.7)

The number of perfect matchings of Ob(G′′) is given by Ciucu’s Theorem 7.1 in [6],
and our theorem follows in the case when the triangles right above the axis � are
black .

Next, we consider the case where the triangles right above � are white. Similarly,
we can prove by induction on the number of upper layers k that

M(Ob(G)) = 2C−h(w+1)−τ M(Ob(G)) (6.8)

= 2C−h(w+1)−τ2η(G)M(Si(G)), (6.9)

where G is the dual graph of the region H := Hw(2h; 2h), and Si(G) is the graph

obtained from the orbit graph Ob(G) of G by applying the cutting procedure in the
previous case.

Next, we apply the Vertex-splitting Lemma to all vertices at the bottom of

the upper part of Si(G) (see Figure 6.2(b)), and use the suitable transformations

in Lemmas 5.1–5.4 to transform Si(G) into Si(G), where G is the dual graph of
Hw−1(2h− 1; 2h− 1) as defined in the previous case (see Figure 6.2 (c)). Then this
case follows from the case treated above. This finishes the proof of our theorem.
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7 Concluding remarks

This paper and its prequels [17,19] have shown the power of the subgraph replacement
method in the enumeration of tilings. The method helps us transform complicated
graphs into simple graphs whose matching numbers are known.

One of the main ingredients of the method is the Spider Lemma (Lemma 3.3).
The local transformation in this lemma, that is known as the ‘urban renewal ’ or
‘domino shuffling ’, was first found by Greg Kuperberg. James Propp generalized
it [28] and used the generalization to prove Stanley’s formula for weighted tilings of
the Aztec diamond [29]. Douglas later used a variant of the urban renewal to obtain
his theorem in [9].

It is worth noticing that Ciucu developed a useful linear algebraic version of
this transformation to obtain tiling formulas for a number of Aztec-diamond-like
regions [4]. See also [16] for a sequel of Ciucu’s paper written by the author.

We refer the reader to e.g. [3,8,13,23–26,33] for more applications of the subgraph
replacement method.
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