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Abstract

For a graph G, let v,.(G), vr(G) and 7,2(G) denote the weak Roman
domination number, the Roman domination number and the 2-rainbow
domination number, respectively. It is well-known that for every graph G,
Y (G) < 42(G) < vr(G). In this paper, we characterize all trees 7" with
Y (T) = v2(T) or v,(T) = yr(T) answering two open problems posed
by Chellali, Haynes and Hedetniemi [Discrete Appl. Math. 178 (2014),
27-32].
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1 Introduction

In this paper, G is a simple graph without isolated vertices, with vertex set V' = V(G)
and edge set £ = E(G). The order |V| of G is denoted by n = n(G). For a vertex
v € V| the open neighborhood of v is the set N(v) = {u € V(G) : wv € E(G)} and
the closed neighborhood of v is the set N[v] = N(v) U {v}. The degree of a vertex
v € V is degq(v) = |N(v)|. A vertex of degree one is called a pendant vertez or a
leaf and its neighbour is called a support vertex. A strong support vertex is a support
vertex adjacent to at least two leaves and an end support verter is a support vertex
having at most one non-leaf neighbor. A pendant path P of a graph G is an induced
path such that one of the endpoints has degree one in G, and its other endpoint is
the only vertex of P adjacent to some vertex in G — P. The distance between two
vertices u and v in a connected graph G is the length of a shortest uv-path in G.
The diameter of G, denoted by diam(G), is the maximum value among minimum
distances between all pairs of vertices of G. For a vertex v in a rooted tree T, let
C(v) and D(v) denote the set of children and descendants of v, respectively and let
Dv] = D(v)U{v}. Also, the depth of v, depth(v), is the largest distance from v to a
vertex in D(v). The mazimal subtree at v is the subtree of T induced by D|v], and
is denoted by T,. We write P, for the path of order n. A double star DS, , is a tree
containing exactly two non-pendant vertices which one is adjacent to p leaves and
the other is adjacent to ¢ leaves. If A C V(G) and f is a mapping from V(G) into
some set of numbers, then f(A) = > _, f(x), and the sum f(V(G)) is called the
weight w(f) of f.

A function f : V(G) — {0,1,2} is a Roman dominating function (RDF) on G
if every vertex u € V(@) for which f(u) = 0 is adjacent to at least one vertex v
for which f(v) = 2. The weight of an RDF is the value f(V(G)) = >_,cy(q) f(w),
and the Roman domination number y(G) is the minimum weight of an RDF on G.
Roman domination was introduced by Cockayne et al. in [9] and was inspired by the
work of ReVelle and Rosing [13], Stewart [14]. It is worth mentioning that since its
introduction in 2004, several new variations of Roman domination were introduced:
weak Roman domination [11], 2-rainbow domination [6], Roman {2}-domination
[8], maximal Roman domination [1], mixed Roman domination [2], double Roman
domination [5] and recently total Roman domination [12]. Two of the previous
variations will be the focus of this paper.

A 2-rainbow dominating function (2rDF) on a graph G is a function f : V(G) —
P({1,2}) if for each vertex v € V(G) such that f(v) = 0, we have Uyen () f(u) =
{1,2}. The weight of a 2rDF [ is defined as w(f) = > cy (g |f(v)], and the 2-
rainbow domination number ,9(G) is the minimum weight of a 2rDF of G.

For a graph G, let f: V(G) — {0, 1,2} be a function. If V; = {v € V|f(v) = ¢}
for i € {0,1,2}, then f can be denoted by f =(Vj, V1, V52). A vertex v with f(v) =0
is said to be undefended with respect to f if it is not adjacent to a vertex w with
f(w) > 0. A function f is called a weak Roman dominating function (WRDF) if each
vertex v with f(v) = 0 is adjacent to a vertex w with f(w) > 0, such that the function
f' defined by f'(v) =1, f'(w) = f(w)—1, and f'(u) = f(u) for all u € V'\ {v, w}, has



J. AMJADI ET AL./AUSTRALAS. J. COMBIN. 74 (1) (2019), 61-73 63

no undefended vertex. The weight of a WRDF is the value f(V)) = >~ cy (g f(u),
and the weak Roman domination number ~,(G) is the minimum weight of a WRDF

of GG.

We note that a relation relating the three parameters defined above is given by
the following chain of inequalities which can be found in [7]. For every graph G,

1(G) < 72(G) < 7r(G). (1)
Moreover, the authors [7] posed the following two problems.

Problem 1. Characterize the trees T satisfying ~,.(T") = v,2(7T).
Problem 2. Characterize the trees T satisfying v,.(T") = yr(T).

In this paper, we address these two problems by giving a constructive charac-
terization of trees T' with ~,(T") = 7,2(T") or 7.(T) = vr(T'). Before presenting our
results, we mention that Alvarado, Dantas and Rautenbach [3] showed that the prob-
lem of deciding whether ~,(G) = vg(G) for a given graph G is NP-hard. In addition,
they gave a characterization of trees 7" with strong equality between +,.(T") and vg(7T),
that is, those trees for which every minimum WRDF is an RDF. In another paper,
the same authors [4] show that it is NP-hard to decide whether ~,2(G) = vg(G)
for a given connected Ky-free graph GG. Clearly, because of the above, a solution of
Problems 1 and 2 will be quite interesting even for the class of trees.

2 Preliminaries

In this section we provide some observations and definitions that will be useful
throughout the paper.

Observation 2.1. Let H be a subgraph of a graph G. If ,.(H) = v.2(H), vr2(G)
Y2(H) + s and v,.(G) > ~,.(H) + s for some non-negative integer s, then v,.(G)
’77’2(G)-

Proof. 1t follows from the assumptions and (1) that

I IA

/YT(G) > /YT(H) ts= /YTQ(H) +s2> '77’2(G) > 'VT(G)a
and thus 7,.(G) = 7,2(G).

Observation 2.2. Let H be a subgraph of a graph G. If 7,(G) = 7,2(G), 7-(G)
Y (H) + s and v,9(G) > v2(H) + s for some non-negative integer s, then ~,(H)

’77’2(H)‘

A O

Proof. By (1) and the assumptions, we have
PYTQ(G> = ’VT(G) S PYT'(H) +s S 7r2(H> + s S 7r2(G>

and the desired result follows. O
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Observation 2.3. Let H be a subgraph of a graph G. If v.(H) = yr(H), 7r(G) <
vr(H) + s and 7,(G) > ~,.(H) + s for some non-negative integer s, then v,.(G) =

Tr(G).
Proof. 1t follows from the assumptions and (1) that

1(G) = w(H) + s = r(H) + 5 2 7r(G) 2 7(G),

and thus v,.(G) = vr(G). O
Observation 2.4. Let H be a subgraph of a graph G. If 7,(G) = vz(G), 1(G) <
v (H) + s and vg(G) > yr(H) + s for some non-negative integer s, then v,.(H) =
Yr(H).
Proof. By (1) and the assumptions, we have

Yr(G) =7 (G) < % (H) + 5 < yr(H) + s < r(G)
and the desired result follows. O

We close this section with some definitions.

Definition 2.5. Let v be a vertex of a graph G. A function f : V(G) — P({1,2}) is
said to be an almost 2-rainbow dominating function (almost 2rDF) with respect to v,
if for every vertex x € V(G) — {v} for which f(z) = 0 we have Uyen() f(u) = {1, 2}.
Let

Yr2(G5v) = min{w(f) | f is an almost 2rDF with respect to v}.

Observe that any 2rDF on G is an almost 2rDF with respect to any vertex of G.
Therefore v,2(G;v) is well-defined and 7,2(G; v) < v,2(G) for each v € V(G). Define
We = {v € V(G)|2(Giv) = 12(G) }.

Definition 2.6. Let v be a vertex of a graph G. A function f: V(G) — {0,1,2} is
said to be an almost weak Roman dominating function (almost WRDF') with respect
to v, if every vertex x € V(G) — {v} for which f(z) = 0 is adjacent to at least one
vertex y € V(@) for which f(y) > 1 such that the function g : V(G) — {0,1,2}
defined by g(z) = 1,9(y) = f(y) — 1 and g(z) = f(z) otherwise has no undefended
vertex. Let

¥ (G;v) = min{w(f) | f is an almost WRDF with respect to v}.

Observe that any WRDF on G is an almost WRDF with respect to any vertex
of G. Therefore ~,(G;v) is well-defined and ~,.(G;v) < v,.(G) for each v € V(G).
Define W2 = {v € V(GQ) | 7(G;v) = 1.(G)}.

Definition 2.7. For a graph G and v € V(G), we say that v has property P
in G if there exists a 7,9(G)-function f such that f(v) # 0. Let W2 = {v |
v has property P in G}.



J. AMJADI ET AL./AUSTRALAS. J. COMBIN. 74 (1) (2019), 61-73 65

Definition 2.8. Let v be a vertex of a graph G. A function f : V(G) — {0, 1,2} is
said to be an almost Roman dominating function (almost RDF) with respect to v,
if every vertex x € V(G) — {v} for which f(z) = 0 is adjacent to at least one vertex

y € V(Q) for which f(y) = 2. Let

Yr(G;v) = min{w(f) | f is an almost RDF with respect to v}.

Observe that any RDF on G is an almost RDF with respect to any vertex of G.
Therefore vg(G;v) is well-defined and vg(G;v) < vg(G) for each v € V(G). Define
Wé = {v € V(G) | 7r(Giv) = 1r(G)}.

Definition 2.9. For a graph G and v € V(G), we say that v has property Q
in G if there exists a yg(G)-function f such that f(v) # 0. Let W2 = {v |
v has property Q in G}.

3 Settlement of Problem 1

In this section we provide a constructive characterization of all trees T with ~,.(T") =
Yr2(T). For this purpose, we define the family 7 of unlabeled trees T" that can be
obtained from a sequence Ty, T3, ..., T,, (m > 1) of trees such that 73 is a path
P;, and, if m > 2, T;, can be obtained recursively from 7; by one of the following
operations.

Operation O;. If x € V(T;) and z is a strong support vertex, then 7;,; is obtained
by adding a new vertex y attached by an edge zy.

Operation Os. If z € W%, then 7T;,, is obtained by adding a path P, attached by
an edge joining x and a leaf of P.

Operation Os. If x € W%Z ﬂW%i, then T}, is obtained by adding a path P; attached
by an edge joining x and the central vertex of Pj.

Operation O,. If x € V(T;) is not a support vertex and is adjacent to a strong
support vertex of T;, then 7;,, is obtained by adding a new vertex y attached by an
edge zy.

Operation O;. If © € V(T;), then T;;, is obtained by adding a star K 3 attached
by an edge joining x and a leaf of K 3.

Lemma 3.1. If 7; is a tree with ,(T;) = v,2(7;) and T}, is a tree obtained from T;
by Operation Oy, then v, (T;41) = Vr2(Tit1).

Proof. Clearly v, (Tiy1) = % (Ti) and vo(Tiy1) = 2(Ti)i, and thus 7, (Tip1) =
’7r2(7_;+1)- D
T‘

Lemma 3.2. If T; is a tree with ~,.(T;) = 72(T;) and T} is a tree obtained from T;
by Operation Oy, then v, (Tiy1) = Vr2(Tit1).



J. AMJADI ET AL./AUSTRALAS. J. COMBIN. 74 (1) (2019), 61-73 66

Proof. Let Operation O, add a path P, = yz and join z to y. Since z € W%, let f
be a 7,2(T;)-function such that f(x) # (). Then f can be extended to a 2rDF of T,
by assigning @) to y and {1} (or {2}) to z, implying that v,2(T;11) < ¥2(T;)+1. Now
let g be a v,.(T;41)-function. If g(y) = 2, then clearly g(z) = 0 and thus the function
h: V(T;) — {0,1,2} defined by h(z) = 1 and h(u) = g(u) otherwise, is a WRDF
of T;. Hence v,.(T;) < w(h) < v (Ti41) — 1. If g(y) € {0,1}, then ecither g(z) > 0
or can be defended by one of its neighbors in 7}, and thus the restriction of g to T;
yields a WRDF of T;. Hence v,.(T;1+1) > 7-(T;) + 1. By Observation 2.1, we obtain

’Yr(TiJrl) = ’er(TiH)- ]

Lemma 3.3. If 7; is a tree with ,(T;) = v,2(7;) and T}, is a tree obtained from T;
by Operation Os, then v,.(Ti11) = Yro(Tit1)-

Proof. Let Operation O3 add a path yzw and the edge zz. Then v,9(Ti41) < 72 (T7)+
2 since any ~,o(T;)-function f can be extended to a 2rDF of T}, by assigning {1,2}
to z and @ to y and w. Now let g be a 7,.(T;11)-function. Clearly we may assume
that ¢g(z) € {0,2}. If g(z) = 0, then g(y) = g(w) = 1 and so the restriction of g to
T; is a WRDF of T;, yielding 7,.(T;1+1) > 7-(T;) + 2. Hence we assume that g(z) = 2.
Then the restriction of g to T; is an almost WRDF of T; with respect to x and since
z € Wi, we conclude that v, (Tiy1) > 7 (Ti;2) + 2 = 7(T;) + 2. Now the result
follows by Observation 2.1. O

Lemma 3.4. If T; is a tree with ,(T;) = v,2(7;) and T}, is a tree obtained from T;
by Operation Oy, then v, (Ti41) = Vr2(Tit1).

Proof. Let Operation O, add a vertex y and the edge xy, and let z be the strong
support vertex of T; adjacent to x. Clearly, v,2(Ti11) < v2(T;) + 1 since any v,o(T;)-
function f can be extended to a 2rDF of T;;; by assigning {1} to y. Now let g be a
Y (Tis1)-function. Then g(z) = 2 anso g(x) € {0,1}. If g(z) = 0, then the restriction
of g to T; is a WRDF of T; implying that v,.(T;11) > 7(T;) + 1. If g(x) = 1, then
g(y) = 0 and thus reassigning the values 0 and 1 to x and y instead of 1 and 0,
respectively, brings us back to the previous situation, and so ~,(T;41) > 7(T;) + 1.
Now by Observation 2.1, we obtain 7, (7j+1) = Yr2(Ti41)- O

Lemma 3.5. If T; is a tree with ~,.(T;) = 7,2(T;) and T} is a tree obtained from T;
by Operation Os, then v, (Tiy1) = Vr2(Tit1).

Proof. Let Operation Oz add a star K3 centered at z and the edge xy, where y
is a leaf of K;3. Clearly, v,2(Tit1) < 72(Ti) + 2. Let g be a 7,.(Tj41)-function.
Without loss of generality, we may assume that g(z) = 2. It follows that g(u) = 0
for every u € N(z) and thus the restriction of g to 7; is a WRDF of T;. Hence
Y (Tis1) > 7(T;) 4+ 2, and the desired result follows from Observation 2.1. O

We recall the following proposition from [10].



J. AMJADI ET AL./AUSTRALAS. J. COMBIN. 74 (1) (2019), 61-73 67

Proposition 3.6. Let G be a connected graph. If there is a path vzvev, in G with
deg(vy) = 2 and deg(vy) = 1, then G has a v,2(G)-function f such that |f(vy)| = 1,

| f(v3)] = 1 and f(v1) # f(vs).
Now we are ready to prove the main result of this section.

Theorem 3.7. Let T be a tree of order n > 3. Then v,.(T) = ~,2(T) if and only if
TeT.

Proof. First we prove the sufficiency. Let T € 7. Then there exists a sequence of
trees 11, Ts, ..., Ty (k > 1) such that T} is Ps, and if k£ > 2, then T}, can be obtained
recursively from 7; by one of the aforementioned Operations.

We proceed by induction on the number of operations applied to construct 7.
If £ =1, then T'= P; and 7,(P;) = v.2(P3) = 2. Suppose that the result is true
for each tree 7" € T which can be obtained from a sequence of operations of length
k —1 and let 7" = T;_;. By the induction hypothesis, we have 7, (T") = ~,.2(1").
Since T' = T}, is obtained from 7" by one of the Operations O, Oy, O3, O4 or Os, we
conclude from Lemmas 3.1, 3.2, 3.3, 3.4 and 3.5 that ~,.(T) = v,2(T).

Now we prove the necessity. Let T' be a tree with +,.(T) = 7,2(T). We use
an induction on the order n of T. If n = 3, then the only tree T' of order 3 with
Y (T) = 72(T) is Ps that belongs to 7. Let n > 4 and let the statement hold for
all trees T" of order less than n and v,.(T") = ~,2(T"). Let T be a tree of order n
with 7,(T) = 74,2(T) and let f be a ~,.(T)-function. If diam(7") = 2, then T is a
star belongs to 7 since it can be obtained from P; by applying Operation O;. If
diam(7") = 3, then T is a double star DS,, (¢ > p > 1) different from a path P,
(since 2 = v,.(Py) < Y2(Py) = 3). Hence ¢ > 2. If p =1, then T' € T because it
is obtained from P3 by applying first Operation O, and then Operation O; so that
the support vertex can have any number of leaves. If p > 2, then T" € T because it
is obtained from P5 by applying first Operation O3, and then Operation O; so that
the support vertices can have any number of leaves. Henceforth we may assume that
diam(7T") > 4.

Let v1vy . .. vy, with k£ > 5, be a diametral path in T" such that deg(v,) is as large
as possible and root T at vg. If degp(ve) > 4, then clearly ~,.(T) = ~,.(T — v1) and
Yr2(T) = Ypo(T — vy), implying that ~,.(T — vy) = vo(T — v1). By the induction
hypothesis on 7" — vy, we have T'— vy € T. Therefore T' € T because it is obtained
from T'— vy by using Operation O;. Hence we can assume that degg(vy) < 3. We
consider two cases.

Case 1. degy(ve) = 3. Consider the following subcases.
Subcase 1.1. v3 has at least one child, say y, with depth 1. Clearly deg,(y) € {2, 3}.

Let 7" =T-T,,. If deg,(y) = 2, then clearly, the restriction of any ~,o(7")-function g
satisfying the condition of Proposition 3.6, to 7" is a 2rDF of T” of weight ~,o(T") — 2.
If deg;(y) = 3, then there is a v,o(T")-function that assigns the set {1,2} to vy and
y, and so the restriction of such a 7,o(7T")-function to 7" is a 2rDF of T" of weight
Yr2(T) — 2. In each case, we obtain 7,9(1") > v,2(1") + 2. Moreover, if h is a v, (1")-
function, then it can be extended to a WRDF of T" by assigning a 2 to v and a 0
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to its leaves yielding that ~,.(7) < ~,.(7") + 2. By Observation 2.2, we deduce that
Y (T") = v2(T"), and thus v,2(T) = vo(T")+2 and 7,(T) = 7,.(T") +2. By induction
on 7", we have T" € T. Next we shall show that vs € W7, NW2,. Clearly, if vs ¢ W,
then v,2(T";v3) < 72(T"), and so any minimum almost 2rDF of 7" with respect to v3
can be extended to a 2rDF of T' by assigning the sets {1, 2} and () to v, and its leaves,
respectively. Hence v,9(T) < 7,2(T";v3) + 2 < 42(T") + 2, a contradiction. Hence
vy € W}, Likewise, if v3 &€ W2, then v,.(T) < v,.(T";v3) +2 < 7,.(T") + 2, which leads
to a contradiction. Hence v3 € W2, and therefore v € W}, N W#,. Consequently,
T € T since it is obtained from 7" by using Operation Os.

Subcase 1.2. v3 is a support vertex. Assume first that v3 has at least three leaves.
Let T" be the tree obtained from T by removing a leaf neighbor of v3. Note that v
remains a strong support vertex in 7", and so one can check that +,.(T") = ~,.(7") and
Yr2(T) = 42(T"). Tt follows that v,(T") = 4,2(7"), and the induction on 7" implies
that 77 € T. Therefore T € T because it is obtained from 7" by using Operation
;. Hence we can assume that vz has either one or two leaves.

Suppose that v is adjacent to two leaves. Let 7" =T — T,,. Obviously, v,o(T) >
Yr2(T") 42 and v, (T') < v,.(T") + 2. Using the fact that v, (T") = 7,2(7T"), the previous
inequalities imply that

W2(T) Z 7r2(T") +2 2 3 (T") + 2 2 3 (T),

and thus v,.o(T) = Yo (T") + 2, v (T) = - (T") 4+ 2 and ~,.(T") = ~,2(T"). By induction
on T', we obtain that 7" € T. Now using a similar argument to that used in Subcase
1.1 we can see that vz € W}, NWZ2,. Therefore T € T since it is obtained from 7" by
using Operation Os.

Finally, suppose that v is adjacent to exactly one leaf, say w. Note in that case
degr(vg) = 3. Let T" = T — {w} and let g be a 7,o(T)-function. Without loss of
generality, we may assume that |g(v3)| # 1. We also note that g(vy) = {1,2}, since
vg has two leaves. Now if g(v3) = (), then clearly |g(w)| = 1, and thus the restriction
of g to T" is a 2rDF of T" implying that v,o(T) > ~.o(T") + 1. If g(v3) = {1,2},
then clearly g(w) = g(v4) = 0, and so the function ¢’ : V(T") — P({1,2}) defined
by ¢'(vs) = 0, ¢'(vs) = {1} and ¢'(z) = g(z) otherwise, is a 2rDF of T” yielding
also v,2(T) > v2(T") + 1. On the other hand, the inequality ~,.(T) < 7.(T") + 1
follows from the fact that any 7, (7”)-function can be extended to a WRDF of T' by
assigning a 1 to w. Now by Observation 2.2, we deduce that ~,.(7") = ~,2(T"). Using
the induction on 77, it follows that 7" € T which implies that 7" € T since T can be
obtained from 7" by applying Operation O,.

Subcase 1.3. degy(vs) = 2. Let 7" = T — T,,. Note that 7" has order n’ > 2,
since diam(7") > 4. Moreover, n' # 2 for otherwise T is a tree of order 6 with
Y (T) = 3 < 72(T) = 4. Hence we assume that n’ > 3. On the other hand, it is a
simple matter to see that v,.o(T) > v.2(T") + 2. Also, v,.(T) < 7,.(1") 4 2 since any
~-(T")-function can be extended to a WRDF of T" by assigning a 2 to vy and a 0 to
every u € N(vq). According to Observation 2.2, we obtain that ~,.(7") = v,2(7"). By
induction on 17", we have T' € T. Therefore T' € T because it is obtained from 7" by
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applying Operation Os.

Case 2. deg(vy) = 2. Let T" =T — T,, and let g be a 7,o(T)-function. Without
loss of generality, we may assume that g(ve) = 0 and g(v1) = {1} and 2 € g(vs).
Thus the restriction of g to 7" is a 2rDF yielding v,2(T") > 74,2(71") + 1. On the other
hand, we also have 7,.(T) < 7,.(7") + 1. From the assumption v,o(7") = ~,.(T") and
Observation 2.2, we conclude that 7,.(T") = v.o(7") and thus v,.o(T) = Y2(T") + 1.
By induction on 7", we have 7" € T. Using the fact that v,9(T) = v2(T") + 1, we
deduce that vs € W3,. Therefore T € T because it is obtained from 7" by applying
Operation O,. O

4 Settlement of Problem 2

In this section we provide a constructive characterization of all trees T" with ~,.(T") =
~vr(T'). For this purpose, we define the family F of unlabeled trees T' that can be
obtained from a sequence Ty, T3, ..., T,, (m > 1) of trees such that 73 is a path
Ps, and, if m > 2, T}, can be obtained recursively from 7; by one of the following
operations.

Operation 7;. If x € V(T;) and x is a strong support vertex, then 7;,; is obtained
by adding a new vertex y attached by an edge zy.

Operation 7;. If z € W%, then T;,, is obtained by adding a path P, attached by
an edge joining x and a leaf of P.

Operation 73. If z € W% ﬂWﬁ,, then T}, is obtained by adding a path P5 attached
by an edge joining x and the central vertex of P;.

Operation 7;. If x € V(T;) is not a support vertex and is adjacent to a strong
support vertex of T;, then 7j,, is obtained by adding a new vertex y attached by an
edge zy.

Operation 75. If x € V(T;), then T;;; is obtained by adding a star K 5 attached
by an edge joining x and a leaf of K 3.

In the rest of the paper, we shall prove that for any tree 7' of order n > 3,
¥ (T) = vr(T) if and only if T' € F.

It worth mentioning that if 7" is a tree with ~,.(7") = yg(T), then (1) implies
that v,.(T") = 72(T), and thus by Theorem 3.7, T" € T. However, not every tree
T e T satisfies v,.(T) = yr(T"). This can be seen by the path Ps, where Ps; € T but
3= (Fs) <Vr(F5) = 4.

We will use the following lemmas.
Lemma 4.1. If T; is a tree with 7,(T;) = vg(T;) and T;;; is a tree obtained from T;
by Operation 71, then v,.(Ti11) = Yr(Tit1)-

Proof. Clearly v(Ti+1) = v (Ti) and Yr(Tit1) = Yr(T}), and thus 7.(Ti1) =
Yr(Lit1)- O
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Lemma 4.2. If T} is a tree with v,.(T;) = yr(T;) and T}, is a tree obtained from 7;
by Operation 73, then v,.(Ti11) = Yr(Tit1)-

Proof. Let T, add a path P, = yz and join x to y. Since x € W%, let f be a
vr(T;)-function such that f(x) # 0. Clearly, if f(x) = 2, then yg(Ti+1) < vr(Ti) + 1.
Hence assume that f(x) = 1. Then the function f’ defined by f'(2) = f'(z) = 0,
f'(y) =2 and f'(u) = f(u) for every u € V(T;) — {z} is an RDF of T;;; and thus
V8(Tis) < 7r(T) + 1. Tn any case, 1a(Tia1) < 7a(Th) + 1. Now let g be a7,(Ti)-
function. If g(y) = 2, then clearly g(x) = 0 and so the function h : V(T;) — {0, 1,2}
defined by h(z) = 1 and h(u) = g(u) otherwise, is a WRDF of T; implying that
Y (T;) < w(h) =7 (Tix1) — 1. If g(y) = 0 or 1, then x is defended by some vertex of
Nlz] — y, and so the restriction of g to T; yields a WRDF of T; and so 7,.(Tj41) >
v (T;) + 1. By Observation 2.3, we obtain v,(T;4+1) = vr(Ti41)- O

Lemma 4.3. If T is a tree with v,.(T;) = vgr(T;) and T}, is a tree obtained from 7;
by Operation T3, then ,.(T;11) = Yr(Ti41).

Proof. Let T3 add a path yzw and the edge xz. Then vg(T;y1) < vr(T;) + 2 since
any vg(7;)-function can be extended to an RDF of T}, by assigning a 2 to z and a
0 to y and w. Now let g be a 7, (T;,1)-function. If g(z) = 2, then the restriction of g
to T; is an almost WRDF of T; with respect to x and since z € W%,, we deduce that
Vo(Ti1) = % (Tis2) + 2 = 7(Ti) + 2. 1f g(2) = 0 then g(y) = g(w) = 1 and clearly
the restriction of g to T; is a WRDF of T}, implying that ~,.(T;41) > ~,(T;) + 2. The
case g(z) = 1 is ignored since we can construct a +,(7;,1)-function that assigns a 2
to z by using the positive weight assigned to y or z. Now the desired result follows
by Observation 2.3. O

Lemma 4.4. If T} is a tree with v,.(T;) = vgr(T;) and T}, is a tree obtained from 7;
by Operation 7y, then v,.(Ti11) = Yr(Tit1)-

Proof. Let T, add a vertex y and the edge xzy. Obviously, vgr(Ti11) < vr(T;) + 1.
Now let g be a 7,.(T;41)-function. Note that we can assume that the strong support
vertex adjacent to x in 7T} is assigned a 2. Now, if g(z) = 0, then g(y) = 1 and the
restriction of g to T; is a WRDF of T} implying that 7, (T;11) > 7.(T;)+1. If g(x) > 0,
then we can restrict the function g to T; by assigning to x the value g(z) — 1, yielding
Y (Tis1) > v (T;) + 1. Using Observation 2.3, the desired result follows. O

Lemma 4.5. If T; is a tree with +,(T;) = vg(T;) and T;;, is a tree obtained from T;
by Operation 75, then 7,(Ti1) = va(Tis1 ).

Proof. Let T5 add a star K 3 centered at z and the edge xy, where y is a leaf of K 3.
Clearly, vr(Ti+1) < vr(T;) 4+ 2. Let g be a 7,.(T;11)-function. Note that g(z) = 2. If
g(y) = 0, then the restriction of g to T; is a WRDF of T; of weight ~,(T;11) — 2. If
g(x) = 1, then we can restrict the function g to T; by assigning 1 to z, yielding a
WRDF of T; of weight ~,.(T;4+1)—2. In any case, v,.(T;+1) > 7.(1;)+2. By Observation
2.3, we obtain v, (Tit1) = Yr(Ti+1). O
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Now we are ready to prove the main result of this section.

Theorem 4.6. Let T' be a tree of order n > 3. Then ~,.(T) = vg(T) if and only if
T e F.

Proof. First we prove the sufficiency. Let T" € F. Then there exists a sequence of
trees 11, Ts, ..., Ty (k > 1) such that T} is Ps, and if k£ > 2, then T;,; can be obtained
recursively from 7T; by one of the aforementioned Operations.

We proceed by induction on the number of operations applied to construct 7T'. If
k =1, then T'= P; and ~,(P3) = yr(P3) = 2. .Suppose that the result is true for
each tree of F which can be obtained from a sequence of operations of length k£ — 1
and let 7" = Tj_;. By induction on 7", we have 7,.(T") = ~2(T"). Since T' = Ty, is
obtained from 7" by one of the Operations Ti, 73, 73, T4 and 75, we conclude from
Lemmas 4.1, 4.2, 4.3, 4.4 and 4.5 that +,(T) = vg(T).

Now we prove the necessity. Let T be a tree with 7,.(T") = yr(T). We proceed
by induction on n. If n = 3, then T' = P5 and clearly P; € F. Let n > 4 and assume
that for every tree T" of order n’, with 3 < n’ < n such that ~,(T") = vg(T"), we
have 7" € F. Let T be a tree of order n with 7,.(T') = yg(T). If diam(7") = 2, then T
is a star that belongs to F since it can be obtained from P3 by applying Operation
Ti. If diam(7) = 3, then T is a double star DS,, (¢ > p > 1) different from a
path P, (since v,.(Py) < yr(Py)). Hence ¢ > 2. If p = 1, then T' € F because it is
obtained from P3 by applying first Operation 75, and then Operations 7;. If p > 2,
then T' € F because it is obtained from P; by applying first Operation 73, and then
Operation 77 so that the support vertices can have any number of leaves. Henceforth
we assume that diam(7) > 4.

Let vivg...vx (kK > 5) be a diametral path in T such that deg(vy) is as large as
possible and root T at vg. If degp(ve) > 4, then ~,.(T) = v.(T — v1) and vx(T) =
Yr(T — vy) and thus 7,.(T — v;) = Yg(T — v1). By induction on T" — vy, we have
T —wv, € F. Therefore, T' € F because it is obtained from T — v; by using Operation
T1. Hence we assume that deg;(vy) € {2,3}. We consider two cases.

Case 1. degy(v9) = 3. We consider the following subcases.
Subcase 1.1. v3 has at least one child besides vq, say us, which is a support vertex.

Let T" =T —T,,. First Suppose that g is a yg(T')-function with a maximum number
of vertices assigned a 2. Then either g(us) = 2 or g(vs) > 0 and the leaf neighbor of
ug is assigned a positive value. In any case, the restriction of g to 7" is an RDF of
T', and thus yg(7T) > vr(T") + 2. On the other hand, we have 7,(T) < 7,(T") 4 2.
By Observation 2.4, we obtain ~,(7") = vg(T"). It follows that yg(T') = yg(T") + 2
and (1) = 7,.(T") + 2. Moreover, since 7,.(T") = vgr(1"), by induction on 7", we
have 7" € F. In the next we shall show that vy € W2 NW,. It is a simple matter to
see that v3 € W, and hence we only show that v3 € W2, Suppose, to the contrary,
that vs & W2, and let h be a minimum almost WRDF of 7" with respect to v3. Then
h can be extended to WRDF of T" by assigning a 2 to vy and a 0 to its leaves, which
implies that v,(T) < 7.(T";v3) + 2 < 7,(T") + 2, a contradiction. Hence vz € W2,
and therefore v3 € W2 NW.,. Consequently, T € F because it can be obtained from
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T’ by applying Operation 73.

Subcase 1.2. wv3 is a support vertex. We first assume that vz has at least three
leaves. Let T” be the tree obtained from 7' by deleting a leaf neighbor of v3. Hence v3
remains a strong support vertex in 7", and thus v,.(7') = v,.(7"), and v(T) = vr(T").
It follows that 7,.(1T") = vg(T"), and so T € F. Therefore T € F because it is
obtained from 7" by using Operation 7;. Hence we can assume that vz is a support
vertex with at most two leaves.

Suppose that vs is adjacent to two leaves. Let 7" = T — T,,. Then vg(T) >
Yr(T") + 2 and v,(T) < 7,.(1") + 2. It follows that

Ye(T) = Va(T) > va(T') +2 > 3 (T) + 2 > 7(T),

and thus Yg(T') = yr(T") +2, 7. (T) = %(1") + 2 and 7,(T") = yg(T"). By induction
on T, we obtain that 7" € F. Using the same argument as in Subcase 1.1, we can
show that vy € W2 N W4, Therefore T € F since it can be obtained from 7" by
using Operation 7.

Suppose now that vs is adjacent to exactly one leaf, say w. Seeing the previous
cases, we have degp(v3) = 3. Let T" = T — {w}. Clearly, v,.(T') < 7,(T")+ 1. Let g be
a Yr(T)-function. We may assume that g(v2) = 2 and thus g(vs) # 1. If g(v3) = 0,
then clearly g(w) = 1 and the restriction of g to 7" is an RDF of 7" implying that
Yr(T) > vr(T") + 1. If g(vs) = 2, then clearly g(w) = ¢g(vs) = 0, and so the
function ¢’ : V(T") — {0, 1,2} defined by ¢'(v3) = 0, ¢'(vs) = 1 and ¢'(u) = g(u)
otherwise, is an RDF of 7" yielding yg(7') > vr(17") + 1. By Observation 2.4, we
have v,.(T") = yg(T") and so T" € F. Therefore T' € F since it can be obtained from
T’ by using Operation 7.

Subcase 1.3. deg;(vs) = 2. Let 7" =T — T,,. Using the facts that diam(7) > 4
and (1) = ygr(T) one can see that 7" has order at least three. Since there is a
~vr(T)-function g that assigns a 2 to v9 and a 0 to every neighbor of vy, the restriction
of g to T" yields yg(T) > vr(T") + 2. Also, v,.(T') < v,.(T") + 2. By Observation 2.4,
Y (T") = vr(T") and thus 7" € F. Therefore, T' € F because it can be obtained from
T’ by applying Operation 7s.

Case 2. degyp(vg) = 2. Let 7" = T — T,,. Clearly v.(T) < 7,(T") + 1. Let g be
a Ygr(T)-function with maximum number of vertices assigned a 2. The choice of g
implies that g(ve) € {2,0}. If g(v2) = 2, then the function h : V(T") — {0, 1,2}
defined by h(vs) = min{2, g(v3) + 1} and h(u) = g(u) otherwise, is an RDF of 7"
implying that vg(T) > vg(T') + 1. If g(ve) = 0, then we must have g(v;) = 1
(else we can change the assignments of v; and v, to be in the previous situation).
Hence g(vs) = 2 and the restriction of g to 7" yields also yg(T') > vr(T’) + 1.
It follows that +,.(T) = vg(T) > Yr(T") +1 > 7.(T") + 1 > ~.(T) and thus we
have equality throughout this inequality chain. In particular, v,.(7") = vg(7") and
Yr(T) = vr(T") + 1. By induction on 7", we have 7" € F. Also, yr(T) = yr(T") + 1
implies that v3 € W2, (according to the restriction of g to T"). It follows that T' € F
because it is obtained from T” by applying Operation 7s. O
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