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Abstract

The Gale-Ryser theorem determines when there exists a (0, 1)-matrix
with prescribed row and column sum vectors R and S, respectively. We
consider a mod k analogue of this theorem and give an algorithm for
existence and construction of a matrix with prescribed R and S mod k.
A necessary condition for existence is that the sum of the entries of R
and the sum of the entries of S are congruent mod k. We show that if
the size of the matrix is large enough, this condition is also sufficient.

1 Introduction

In this paper we continue our investigations begun in [3] concerning combinatorial
properties of matrices over the integers modulo k.

The following theorem is well-known and is easy to prove by a simple recursive
algorithm (see e.g. [1]).

Theorem 1.1 Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be nonnegative in-
tegral vectors. There exists a nonnegative integral matrix A with row sum vector R
and column sum vector S if and only if

r1 + r2 + · · ·+ rm = s1 + s2 + · · ·+ sn. (1)

Moreover, if (1) holds then there exists such a matrix with at most m+n−1 nonzero
entries.
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Theorem 1.1 characterizes when the set Z+(R, S) of nonnegative integral matrices
with row sum vector R and column sum vector S is nonempty. The classical Gale-
Ryser theorem is a specialization of Theorem 1.1 whereby the entries of the matrix
A are restricted to be zeros and ones.

Let R = (r1, r2, . . . , rm) be a nonnegative integral vector with max{ri : 1 ≤
i ≤ m} ≤ n for some integer n, and let R∗ = (r∗1, r

∗
2, . . . , r

∗
n) be the conjugate of

R considered as a partition of the integer τ defined to be r1 + r2 + · · · + rm. This
conjugate is obtained by considering the Ferrers diagram of R, defined to be an m×n
(0, 1)-matrix in which row i has ri 1’s that have been left-justified (1 ≤ i ≤ m). For
each j with 1 ≤ j ≤ n, r∗j is the number of 1’s in column j of the Ferrers diagram.
We have r∗1 ≥ r∗2 ≥ · · · ≥ r∗n ≥ 0, r∗1 + r∗2 + · · ·+ r∗n = τ , and r∗j = |{i : ri ≥ j}| for
1 ≤ j ≤ n.

Now let S = (s1, s2, . . . , sn) be another nonnegative integral vector, and let
A(R, S) be the set of (0, 1)-matrices in Z

+(R, S). The Gale [4] and Ryser [5] theorem
(see also [1]) characterizes when A(R, S) is nonempty, that is, when Z

+(R, S) con-
tains a (0, 1)-matrix. This characterization is in terms of the notion of majorization
which we now define.

Let X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) be two nonnegative integral
vectors, and let X ′ = (x′

1, x
′
2, . . . , x

′
n) and Y = (y′1, y

′
2, . . . , y

′
n) be, respectively, a

reordering of the components of X and Y to get nonincreasing vectors, that is,
x′
1 ≥ x′

2 ≥ · · · ≥ x′
n and y′1 ≥ y′2 ≥ · · · ≥ y′n. Then X is majorized by Y , written

X � Y provided

k∑
i=1

x′
i ≤

k∑
i=1

y′i for all k with equality when k = n.

Theorem 1.2 The set A(R, S) is nonempty if and only if S is majorized by R∗.
When S is nonincreasing this is

(Gale-Ryser conditions)

j∑
i=1

si ≤
j∑

i=1

r∗i for all j with equality when j = n. (2)

In the results that follow, Theorem 1.2 is often used with nonincreasing vectors R
and S in order to use conditions (2) as written here, but this is not required with the
given definition of majorization. Note also that the conditions (2) imply that ri ≤ n
for all i so that R∗ can be regarded as a vector with n components by including
additional 0’s. When (2) holds, the Gale-Ryser algorithm to construct a matrix in
A(R, S) inserts sn 1’s in column n in those rows with the largest prescribed row
sums (giving preference to the bottommost rows in case of ties) and then proceeds
recursively.

Let k be an integer with k ≥ 2, and let (Zk,+k) be the additive group of integers
modulo k. The set of elements of Zk is taken to be {0, 1, . . . , k − 1}. The following
mod k analogue of Theorem 1.1 was established in [2].
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Theorem 1.3 Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be vectors with en-
tries in Zk. Then there exists an m × n matrix with entries in Zk with mod k row
sum vector R and mod k column sum vector S if and only if we have the following
congruence modulo k:

r1 + r2 + · · ·+ rm ≡ s1 + s2 + · · ·+ sn mod k. (3)

Moreover, if (3) holds then there exists such a matrix with at most m+n−1 nonzero
entries.

Our goal here is to develop a mod k theorem having the same relationship to
Theorem 1.3 as Theorem 1.2 has to Theorem 1.1, that is, a mod k Gale-Ryser
theorem. Accordingly, let Zk(R, S) denote the set of all matrices with entries in Zk

whose mod k row sum vector is R and whose mod k column sum vector is S, where
R and S satisfy (3). Let Ak(R, S) denote the set of all (0, 1)-matrices in Zk(R, S).

If k = 2, that is, if we consider Z2 = {0, 1}, then there is nothing new to
investigate since Z2 has only the two elements 0 and 1, and so A2(R, S) always
equals Z2(R, S). Thus we now assume that k ≥ 3. The following examples indicate
some of the subtleties that arise in our investigations. If U and V are integral
vectors with the same number of components, then we write U ≡ V mod k provided
corresponding components of U and V are congruent modulo k.

Example 1.4 Let k = 3 and R = S = (2, 0). Then there is a matrix in Z3(R, S),
namely [

2 0
0 0

]
but, as is easily checked, the Gale-Ryser conditions fail and there does not exist a
matrix in A(R, S), nor a matrix in A3(R, S).

Now let R = S = (2, 0, 0). Then again the Gale-Ryser conditions fail and A(R, S)
is empty. Define R′ = S ′ = (2, 3, 3) where R′ ≡ R mod 3 and S ′ ≡ S mod 3. Then
the Gale-Ryser conditions now hold and thus A3(R, S) �= ∅; indeed the matrix⎡

⎣ 0 1 1
1 1 1
1 1 1

⎤
⎦

is in A3(R, S). This example generalizes to vectors R = S = (2, 0, . . . , 0) and
R′ = S ′ = (2, 3, . . . , 3) of arbitrary size at least 3. �

Example 1.5 Let n = 3, and let R = (2, 2, 2) and S = (1, 1, 1). Then there is a
matrix in Z3(R, S), namely ⎡

⎣ 2 2 1
2 2 1
0 0 2

⎤
⎦ ,
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but there does not exist a (0, 1)-matrix in Z3(R, S); in fact, such a matrix would have
to have exactly two 1’s in each row and only one 1 in each column, an impossibility.
Also, since the real sum of the proposed row sums does not equal the real sum of the
proposed column sums, there does not exist a matrix in Z

+(R, S). �

More generally, let m and n be positive integers. Let R = (2, 2, . . . , 2) be an
m-tuple of 2’s, and let S = (1, 1, . . . , 1) be an n-tuple of 1’s. In order that there
exists a matrix A in A3(R, S) we must have

2m ≡ n mod 3.

As Example 1.5 shows with m = n = 3, this does not suffice in general for there to
be a matrix in A3(R, S). But if m = n = 6, so that now each row of A can contain
two or five 1’s and each column can contain one or four 1’s, there is a matrix in
A3(R, S), for instance, the matrix⎡

⎢⎢⎢⎢⎢⎢⎣

1 1
1 1

1 1
1 1

1 1 1 1 1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

In Section 2 we obtain a mod k analogue of the Gale-Ryser algorithm which either
uses the Gale-Ryser algorithm to construct a matrix in Ak(R, S) or concludes that
no such matrix exists. In Section 3, we show that if m and n are large enough, the
necessary condition (3) for the nonemptiness of Ak(R, S) is also sufficient. In Section
4, we make some final comments.

2 An Algorithm

Examples 1.4 and 1.5 motivate the following discussion.

Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be vectors with entries in Zk =
{0, 1, . . . , k−1}. By Theorem 1.3 a necessary condition for Ak(R, S) to be nonempty
is that (3) holds. The following lemma concerning the nonemptiness of Ak(R, S) is
now obvious.

Lemma 2.1 The set Ak(R, S) is nonempty if and only if there exist nonnegative
integral vectors R′ = (r′1, r

′
2, . . . , r

′
m) and S ′ = (s′1, s

′
2, . . . , s

′
n) where r′i ≡ ri mod k

(1 ≤ i ≤ m) and s′j ≡ sj mod k (1 ≤ j ≤ n), such that A(R′, S ′) is nonempty, that
is, if and only if there exist vectors R′ and S ′, obtained from R and S by adding
multiples of k to their components, which satisfy the Gale-Ryser conditions.

So the question of nonemptiness of Ak(R, S) reduces to:
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(*) Given R and S such that (3) holds, when does there exist R′ and S ′ with R′ ≡
R mod k and S ′ ≡ S mod k such that R′ and S ′ satisfy the Gale-Ryser conditions
(2)?

The following algorithm either constructs a matrix in Ak(R, S) or gives the con-
clusion that no such matrix exists.

GRk(R, S): Algorithm for the Existence of a Matrix in Ak(R, S)

The algorithm takes as input a positive integer k ≥ 3, and integral vectors R =
(r1, r2, . . . , rm) and S = (s1, s2, . . . , sn), with n ≥ r1 ≥ r2 ≥ · · · ≥ rm and m ≥ s1 ≥
s2 ≥ · · · ≥ sn, and with entries in {0, 1, . . . , k − 1} such that

r1 + r2 + · · ·+ rm ≡ s1 + s2 + · · ·+ sn mod k. (4)

The algorithm either ends in FAILURE or it outputs integral vectors R′ and S ′ with
R′ ≡ R mod k and S ′ ≡ S mod k along with a matrix in A(R′, S ′), which is also in
Ak(R, S). Assume without loss of generality that the real sums of the components
of R and S satisfy s1 + s2 + · · ·+ sn ≤ r1 + r2 + · · ·+ rm.

To start, copy R and S into new integral vectors R′ = (r′1, . . . , r
′
m) and S ′ =

(s′1, . . . , s
′
n). We will update these as the algorithm progresses.

(i) If r′1 + r′2 + · · · + r′m = s′1 + s′2 + · · · + s′n, then go to step (ii). Otherwise,
r′1 + r′2 + · · ·+ r′m > s′1 + s′2 + · · ·+ s′n and, by assumption (4), the difference
is a multiple of k. If s′n + k > m, we stop and declare FAILURE. Otherwise
we increase the smallest entry of S ′ (that is, s′n) by k and sort the new entries
giving S ′′ = (s′′1 = s′n + k, s′′2 = s′1, . . . , s

′′
n = s′n−1). Repeat this step, treating

S ′′ as the new S ′ until FAILURE or directed to step (ii).

(ii) If S ′ � R′∗, then we reorder the entries of R′ and S ′ so that R′ ≡ R mod k and
S ′ ≡ S mod k and use the Gale-Ryser algorithm to construct a matrix A in
A(R′, S ′). We then output R′, S ′, and the matrix A and stop. If s′n + k > m
or r′m+k > n, then we stop and declare FAILURE. Otherwise, we increase the
smallest entries in R′ and S ′ (that is, r′m and s′n) by k and sort the new entries,
giving nonincreasing vectors R′′ = (r′′1 = r′m + k, r′′2 = r′1, . . . , r

′′
m = r′m−1) and

S ′′ = (s′′1 = s′n + k, s′′2 = s′1, . . . , s
′′
n = s′n−1) which preserves r′′1 + r′′2 + · · ·+ r′′m =

s′′1 + s′′2 + · · ·+ s′′n. Repeat this step, treating R′′ and S ′′ as the new R′ and S ′

until failure or the algorithm outputs a valid matrix.

Before verifying this algorithm, we give an example.

Example 2.2 We take k = 4. Let m = n = 5, and let R = (3, 3, 3, 0, 0) and
S = (1, 1, 1, 1, 1), where 5 = s1 + s2 + s3+ s4 + s5 ≡ r1 + r2 + r3+ r4 + r5 = 9 mod 4.
Since 5 < 9, in step (i) we increase s5 by 4 which, after sorting, gives R′ = (3, 3, 3, 0, 0)
and S ′ = (5, 1, 1, 1, 1) with 3 + 3 + 3 + 0 + 0 = 5 + 1 + 1 + 1 + 1. We now go to
step (ii). Since S ′ �� R′∗, we increase both r′5 and s′5 by 4 and sort to give the
new R′ = (4, 3, 3, 3, 0) and new S ′ = (5, 5, 1, 1, 1). Since we still have S ′ �� R′∗, we
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increase both the new r′5 and new s′5 by 4 and sort to now give R′ = (4, 4, 3, 3, 3) and
S ′ = (5, 5, 5, 1, 1). Now we have S ′ � R′∗ and so A(R′, S ′) �= ∅. In fact, we have

A′ =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 0
1 1 1 0 1
1 1 1 0 0
1 1 1 0 0
1 1 1 0 0

⎤
⎥⎥⎥⎥⎦ ∈ A(R′, S ′).

Reversing our sorting, this gives

A =

⎡
⎢⎢⎢⎢⎣

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 0 1

⎤
⎥⎥⎥⎥⎦ ∈ A4(R, S).

�

We now verify the correctness of the algorithm.

Theorem 2.3 The class Ak(R, S) is nonempty if and only if the GRk(R, S) algo-
rithm terminates with vectors R′ and S ′ satisfying S ′ � R′∗ and a matrix in Ak(R, S).

Proof. If the algorithm outputs A ∈ Ak(R, S), then the class is clearly nonempty.

Conversely, we need to show that if there is a matrix A ∈ Ak(R, S), then the
GRk(R, S) algorithm does not end in FAILURE. For the sake of contradiction, we
assume Ak(R, S) �= ∅ and the GRk(R, S) algorithm ends in FAILURE.

Suppose the algorithm stops in step (i) with FAILURE. Since the algorithm
always adds k to the smallest component of the current column sum vector, it follows
that if S ′′ = (s′′1, s

′′
2, . . . , s

′′
n) is any vector obtained from S by successively increasing

components by k to get s′′1 + s′′2 + · · · + s′′n = r1 + r2 + · · · + rm, then for at least
one i we have s′′i > m. Thus there cannot exist vectors R′ and S ′, obtained from
R and S, respectively, by adding positive multiples of k to components, such that
A(R′, S ′) �= ∅. This implies that Ak(R, S) = ∅, a contradiction.

Now suppose the algorithm outputs FAILURE in step (ii), but there exists A ∈
A(R̂, Ŝ) for some R̂ = (r̂1, r̂2, . . . , r̂m) ≡ R mod k and Ŝ = (ŝ1, ŝ2, . . . , ŝn) ≡ S mod k
where Ŝ � R̂∗ by Theorem 1.2. At some point in step (ii) we considered R′ and S ′

with r′1 + r′2 + · · ·+ r′m = r̂1 + r̂2 + · · ·+ r̂m. Both R′ and R̂ are obtained from R by
adding multiples of k to the entries of R. Since we obtain R′ by recursively adding
k to the smallest components of R, we have R̂∗ � R′∗. Similarly, S ′ � Ŝ. Thus
we have S ′ � Ŝ � R̂∗ � R′∗, and the algorithm would have returned R′ and S ′, a
contradiction. �

In the next section we show that if m and n are large enough in terms of k, then
Ak(R, S) �= ∅ provided only that the obvious congruence equation (3) holds.
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3 An Existence Theorem

Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn). Theorem 2.3 provides an algorithm
to determine when a class Ak(R, S) is nonempty. If k ≥ max{m,n}, then Ak(R, S) �=
∅ if and only if A(R, S) �= ∅, and thus the Gale-Ryser conditions (2) give a necessary
and sufficient condition for Ak(R, S) to be nonempty. If k = 2, then, for any m and
n, Ak(R, S) �= ∅ if

∑m
i=1 ri ≡

∑n
j=1 sj mod 2 by Theorem 1.3. When k ≥ 3, we now

show that if m and n are large enough as a function of k (a linear bound), then the
obvious necessary condition (3) guarantees that Ak(R, S) �= ∅.

Theorem 3.1 Let k be an integer with k ≥ 2, and let m and n be integers with
m,n ≥ 3k − 1. Assume that R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) are vectors
with ri, sj ∈ Zk = {0, 1, . . . , k− 1} for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then the following
are equivalent:

(i) Zk(R, S) �= ∅.
(ii) Ak(R, S) �= ∅.
(iii)

∑m
i=1 ri ≡

∑n
j=1 sj mod k.

Proof. We know that in general (ii) implies (i), and (i) and (iii) are equivalent.
Thus we need only show that if m,n ≥ 3k − 1, then (iii) implies (ii). So we assume
that (iii) holds. We refer to the GRk(R, S) algorithm.

Claim 1: Step (i) of GRk(R, S) does not end in failure.

Now let |R| =
∑m

i=1 ri and |S| =
∑n

j=1 sj, a real sum in both instances, so
that |R| ≡ |S| mod k. Without loss of generality we assume that |R| ≥ |S| so
that |R| = |S|+ tk for some nonnegative integer t. We may recursively add k to the
smallest integer in S arriving at a vector, continued to be labelled S = (s1, s2, . . . , sn),
such that |R| = |S|. This new vector S depends on |R| and not on the individual
components of R. We now assume that the components of R and S have been
rearranged so that as real numbers they are nonincreasing. Since the entries of
R have not changed, we continue to have that ri ∈ {0, 1, . . . , k − 1} for all i and
|R| ≤ m(k − 1). If the algorithm fails in Step (i), then at some point we obtain
a nonincreasing vector S ′ = (s′1, s

′
2, . . . , s

′
n) such that s′n > m − k and thus |S ′| >

n(m− k) = mn− nk. If m ≥ n, then using the assumption that n ≥ 3k − 1, we get

m(k − 1) ≥ |R| > |S ′| > mn− nk ≥ mn−mk = m(n− k) ≥ m(2k − 1),

a contradiction. If n > m, then using that m ≥ 3k − 1, we have

m(k − 1) ≥ |R| > |S ′| > mn− nk = n(m− k) ≥ m(2k − 1),

which is also a contradiction. Thus in either case, in the GRk(R, S) algorithm we
succeed to advance to Step (ii). This completes the verification of Claim 1.
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We now relabel the new vector obtained from Step (i) using S = (s1, s2, . . . , sn) as
before, and assume that R = (r1, r2, . . . , rm) and S are arranged to be nonincreasing.
Thus now |R| = |S|. If S � R∗, then the Gale-Ryser theorem produces a matrix in
A(R, S) and thus a matrix in Ak(R, S). Thus we now assume that S �� R∗.

Claim 2: |R| satisfies
|R| < (k − 1)s1. (5)

Let t be the smallest integer such that the tth majorization inequality fails:

t−1∑
i=1

si ≤
t−1∑
i=1

r∗i and
t∑

i=1

r∗i <
t∑

i=1

si, so that r∗t < st.

(If t = 1, then we are only asserting that r∗1 < s1, that is, that the number of nonzero
ri is strictly less than s1.) Since the components of R are from {0, 1, . . . , k − 1} and
those of both R and S are nonincreasing (R∗ is always nonincreasing by definition),
we then have

|R| =
k−1∑
i=1

r∗i =
t∑

i=1

r∗i +
k−1∑
i=t+1

r∗i <

t∑
i=1

si + (k − 1− t)r∗t+1

≤
t∑

i=1

si + (k − 1− t)r∗t

<
t∑

i=1

si + (k − 1− t)st

≤ ts1 + (k − 1− t)s1 = (k − 1)s1.

This completes the verification of Claim 2.

Claim 3: The largest component s1 of S satisfies s1 < 2k − 1.

If s1 ≤ k, then the claim certainly holds, so we assume that s1 > k. Since s1 > k
and sn + k ≥ s1, we also have

|S| =
n∑

i=1

si ≥ s1 + (n− 1)sn ≥ s1 + (n− 1)(s1 − k) = ns1 − kn + k.

Combining this with (5), we get

ns1 − kn+ k ≤ |S| = |R| < s1(k − 1). (6)

Using (6) and the assumption that n ≥ 3k − 1, we get

s1 <
kn− k

n− k + 1
= k +

k(k − 2)

n− k + 1
≤ k +

k(k − 2)

2k
<

3k

2
≤ 2k − 1.

This completes the verification of Claim 3.
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The remainder of the proof depends on which of m and n is larger. We only
consider in detail the case when n is as least as large as m.

First assume that m ≤ n. Since n ≥ 3k − 1 ≥ 2k − 1 ≥ r1 + k and m ≥
3k − 1 = (2k − 1) + k > s1 + k, we can now add k to each component of R and to
the m smallest components of S to obtain, after reordering, nonincreasing vectors
R′ = (r′1, r

′
2, . . . , r

′
m) and S ′ = (s′1, s

′
2, . . . , s

′
n) with |R′| = |S ′|.

Claim 4: S ′ � R′∗, and hence, after reordering the rows and columns to match the
original R and S, there exists a matrix A ∈ A(R′, S ′) where A ∈ Ak(R, S).

Since the components of S originally were also in {0, 1, . . . , k − 1}, the recursive
process of adding k to the smallest component implies that the components of S ′ lie
in an interval l, l + 1, . . . , l + k (for some l ≥ 0) of k + 1 consecutive integers (thus
s′n + k ≥ s′1). The sums in the majorization assertion satisfy:

t∑
i=1

r′∗i =

⎧⎨
⎩

mt, if t ≤ k

mk +
∑t−k

i=1 r
∗
i , if k < t < 2k − 1

|R′|, if 2k − 1 ≤ t
(7)

and
t∑

i=1

s′i ≤ tk +

t∑
i=1

si. (8)

The majorization assertion in the claim is verified in three parts.

(a) First, if t ≥ 2k − 1, then

t∑
i=1

s′i ≤ |S ′| = |R′| =
t∑

i=1

r′∗i .

(b) Next, suppose that t ≤ k. Then, combining (7) and the fact that every entry
in S ′ is less than m,

t∑
i=1

s′i ≤ ts1 ≤ tm =

t∑
i=1

r′∗i .

(c) Finally suppose that k < t < 2k − 1. Then we do some calculation. We have

m ≥ 3k − 2

m− 2t ≥ 3k − 2− 2t

m− k − t > m− 2t ≥ 3k − 2− 2t

m− t > 4k − 2− 2t = 2(2k − 1− t), and so,
m− t

2k − 1− t
> 2.

Combining this inequality with claims 2 and 3, we get

|R| < s1(k − 1) < 2k(k − 1) <
m− t

2k − 1− t
k(k − 1),
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and so

|R|2k − 1− t

k − 1
< k(m− t)

|R|
(
k − 1

k − 1
− t− k

k − 1

)
< km− tk

|R|+ tk < km+
t− k

k − 1
|R|. (9)

Since each entry of R is at most k − 1 and thus R∗ has at most k − 1 nonzero
components, the average of the components of R∗ is at least |R|

k−1
and thus the sum

of the first t− k (therefore the largest) components of R∗ is at least t−k
k−1

|R|. Hence
t∑

i=1

r′∗i ≥ km+
t− k

k − 1
|R|. (10)

From (8),
t∑

i=1

s′i ≤ tk +

t∑
i=1

si ≤ tk + |S| = tk + |R|. (11)

Combining (9), (10), and (11), we get

t∑
i=1

s′i ≤ tk + |R| ≤ mk +
t− k

k − 1
|R| ≤

t∑
i=1

r∗i .

Thus the majorization inequality holds if k < t < 2k − 1 and this completes the
verification of Claim 4.

In the case when m > n, we add k to all the components of S and to the n
smallest components of R. We get an inequality similar to (7) of the form

t∑
i=1

r′∗i =

⎧⎨
⎩

nt+ α, if t ≤ k

nk +
∑t−k

i=1 r
∗
i + β, if k < t < 2k − 1

|R′|, if 2k − 1 ≤ t

,

where α and β are nonnegative quantities coming from the largest m−n components
of R that do not get changed and so become the smallest components of R′, and (8)
becomes an equality (which does not change the argument). The remainder of the
verification of the majorization inequalities is very similar to the case when n ≥ m,
and we omit the details. �

Remark 3.2 As can be seen in Example 1.5, some version of the hypothesis in
Theorem 3.1 requiring n andm to be large relative to k is necessary for the conclusion
to hold. While our proof uses 3k − 1 as a lower bound, this bound is not tight in
general. It is very likely that the constant 3 in the linear bound in terms of k can
be replaced with 2. If k = 3, it is not difficult to show that m,n ≥ 4 suffice. The
next example shows that in general a lower bound of 2k − 3 does not guarantee the
existence of a matrix in Ak(R, S). �
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Example 3.3 Let k be an integer with k ≥ 2, and let n = 2k − 3. The vectors
R = (r1, r2, . . . , rn) and S = (s1, s2, . . . , sn) with si = k − 1 > ri = k − 2 for
1 ≤ i ≤ k and si = ri = k − 1 for k + 1 ≤ i ≤ n. Then

r1 + r2 + · · ·+ rn ≡ s1 + s2 + · · ·+ sn mod k

and so by Theorem 1.3 there is an n× n matrix with entries in Zk with mod k row
sum vector R and mod k column sum vector S. However, the algorithm GRk(R, S)
fails in step (i) because the vectors R and S have different real sums, and adding k
to the smallest entry in R gives 2k − 2 > n. �

4 Coda

A different approach for a mod k analogue of the Gale-Ryser theorem is also possible.

Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be vectors with ri, sj ∈ Zk =
{0, 1, . . . , k − 1} for 1 ≤ i ≤ m and 1 ≤ j ≤ n, such that

∑m
i=1 ri ≡

∑n
j=1 sj mod k

but Ak(R, S) = ∅. Suppose that we extend R to an m′-vector R′ by including an
additional m′ −m ≥ 0 components equal to zero and extend S to an n′-vector S ′ by
including an additional n′ − n ≥ 0 components equal to zero. Then it follows that
A(R, S) �= ∅ if and only if A(R′, S ′) �= ∅ but, while Ak(R, S) �= ∅ trivially implies
that Ak(R

′, S ′) �= ∅, we may have Ak(R, S) = ∅ but Ak(R
′, S ′) �= ∅.

Example 4.1 With k = 3, let m = n = 3, and let R = (2, 2, 2) and S = (1, 1, 1). As
pointed out in Example 1.5, there does not exist a (0, 1)-matrix in A3(R, S). With
R′ = (2, 2, 2, 0) and S ′ = S = (1, 1, 1), the matrix⎡

⎢⎢⎣
1 1 0
1 1 0
1 1 0
1 1 1

⎤
⎥⎥⎦

in A3(R
′, S ′). �

A more general possibility is the following. Let k ≥ 2 and l ≥ 2 be integers,
and let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be nonnegative integral vectors.
What are necessary and sufficient conditions that there exist a nonnegative integral
matrix (respectively, a (0, 1)-matrix) A such that the mod k row sums of A equal R
and the mod l column sums of A equal S? Let Z+

k,l(R, S) be the set of all nonnegative
integral matrices with mod k row sum vector equal toR and mod l column sum vector
equal to S. Let Ak,l(R, S) ⊆ Z

+
k,l(R, S) be the set of all (0,1)-matrices with mod k

row sum vector equal to R and mod l column sum vector equal to S.
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Example 4.2 Let k = 3 and l = 2, and let R = (1, 1, 1, 2) and S = (1, 1, 0, 0, 1).
Then

A =

⎡
⎢⎢⎣

1 1 1 1 0
1 1 1 1 0
0 1 0 0 0
1 0 0 0 1

⎤
⎥⎥⎦

has mod 3 row sum vector R and mod 2 column sum vector S. Thus A ∈ A3,2(R, S).
�

Perhaps a more approachable but still interesting possibility is to take one of k
and l equal to ∞ and interpret Z+

∞ as the nonnegative integers using real arithmetic.
Then Z

+
∞,∞(R, S) is what we have previously called Z

+(R, S), and A∞,∞(R, S) is
A(R, S). We can also consider Z+

k,∞(R, S) and Ak,∞(R, S).

Let R = (r1, r2, . . . , rm) be a vector with ri ∈ Zk = {0, 1, . . . , k−1} for 1 ≤ i ≤ m,
and let S = (s1, s2, . . . , sn) be a vector with sj ∈ Z

+. Assume that s1 + s2 + · · · +
sn ≥ r1 + r2 + · · · + rm. Suppose there exists a matrix A ∈ Ak,∞(R, S), and let
τ = (s1 + s2 + · · · + sn) − (r1 + r2 + · · · + rm). Then τ ∈ Z and τ ≡ 0 mod k, say
τ = pk where p ≥ 0. This leads to the following simple algorithm to determine the
nonemptiness of Ak,∞(R, S):

• Start with R and its Ferrers diagram F (including empty rows if some compo-
nents of R equal 0).

• Iteratively insert k 1’s in the row of F with the smallest sum until pk 1’s
have been inserted. The result is the Ferrers diagram F̃ of a vector R̃ whose
conjugate is R̃∗.

• Then Ak,∞(R, S) �= ∅ if and only if S � R̃∗.

The justification is: Ak,∞(R, S) �= ∅ if and only if some way of iteratively inserting

k 1’s in the rows of F gives a vector R̂ whose conjugate R̂∗ satisfies S � R̂∗. By
always inserting k 1’s in the row with the smallest sum guarantees that R̂∗ � R̃∗.

Example 4.3 Let k = 3 and let R = (2, 2, 1, 0, 0) and S = (3, 3, 3, 2, 2, 1), and
consider A3,∞(R, S). Then τ = 9 = 3 · 3 and R∗ = (3, 2, 0, 0, 0). Using the above

algorithm, we get R̃ = (2, 2, 4, 3, 3) and R̃∗ = (5, 5, 3, 1, 0, 0). We have that S � R̃∗

and so there exists a matrix in A(R̃, S). An example of a matrix in A3,∞(R, S) is⎡
⎢⎢⎢⎢⎣

1 0 0 1 0 0
0 0 1 0 1 0
1 1 1 0 1 0
1 1 1 0 0 0
0 1 0 1 0 1

⎤
⎥⎥⎥⎥⎦ .

�
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