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Abstract

Recently, the authors extended the notion of parking functions to park-
ing sequences, which include cars of different sizes, and proved a product
formula for the number of such sequences. We give here a refinement of
that result involving parking the cars after a trailer. The proof of the re-
finement uses a multi-parameter extension of the Abel–Rothe polynomial
due to Strehl.

1 Introduction

Parking sequences were introduced in [3] as an extension of the classical notion of
parking functions, where we now take into account parking cars of different sizes.
This extension differs from other extensions of parking functions [1, 5, 6, 7, 11] since
the parking sequences are not invariant under permuting the entries. The main result
in [3] is that the number of parking sequences is given by the product

(y1 + n) · (y1 + y2 + n− 1) · · · (y1 + · · ·+ yn−1 + 2), (1.1)

where the ith car has length yi. Note that this reduces to the classical (n + 1)n−1

result of Konheim and Weiss [4] when setting y1 = y2 = · · · = yn = 1. The proof
in [3] is an extension of the circular argument by Pollak; see [8].

We now introduce a refinement of the result by adding a trailer.

Definition 1.1. Let there be n cars C1, . . . , Cn of sizes y1, . . . , yn, where y1, . . . , yn
are positive integers. Assume there are z − 1 +

∑n
i=1 yi spaces in a row, where the

trailer occupies the z − 1 first spaces. Furthermore, let car Ci have the preferred
spot ci. Now let the cars in the order C1 through Cn park according to the following
rule:
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Starting at position ci, car Ci looks for the first empty spot j ≥ ci. If the
spaces j through j+ yi− 1 are empty, then car Ci parks in these spots. If
any of the spots j + 1 through j + yi − 1 is already occupied, then there
will be a collision, and the result is not a parking sequence.

Iterate this rule for all the cars C1, C2, . . . , Cn. We call (c1, . . . , cn) a parking se-
quence for �y = (y1, . . . , yn) if all n cars can park without any collisions and without
leaving the z − 1 +

∑n
i=1 yi parking spaces.

As an example, consider three cars of sizes �y = (2, 2, 1), a trailer of size 3, that
is z = 4, and the preferences �c = (5, 6, 2). Then there are 2 + 2 + 1 = 5 available
parking spaces after the trailer, and the final configuration of the cars is

1 2 3 4 5 6 7 8

T C3 C1 C2

All cars are able to park, so this yields a parking sequence.

2 The result

We now have the main result. Observe that when setting z = 1, this expression
reduces to equation (1.1).

Theorem 2.1. The number of parking sequences f(�y; z) for car sizes �y = (y1, . . . , yn)
and a trailer of length z − 1 is given by the product

f(�y; z) = z · (z + y1 + n− 1) · (z + y1 + y2 + n− 2) · · · (z + y1 + · · ·+ yn−1 + 1).

The first part of our proof comes from the following identity. Let
�∪ denote disjoint

union of sets.

Lemma 2.2. The number of parking sequences for car sizes (y1, . . . , yn, yn+1) and a
trailer of length z − 1 satisfies the recurrence

f(�y, yn+1; z) =
∑

L
�∪R={1,...,n}

(
z +

∑
l∈L

yl

)
· f(�yL; z) · f(�yR; 1),

where �yS = (ys1, . . . , ysk) for S = {s1 < s2 < · · · < sk} ⊆ {1, . . . , n}.

Proof. Consider the situation required for the last car Cn+1 to park successfully:

– Car Cn+1 must see, to the left of its vacant spot, the trailer along with a subset
of the cars labeled with indices L occupying the first z − 1 +

∑
l∈L yl spots.

Hence, the restriction �cL of �c = (c1, c2, . . . , cn+1) to the indices in L must be a
parking sequence for �yL and trailer of length z−1. This can be done in f(�yL; z)
possible ways.
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– Car Cn+1 must have a preference cn+1 that lies in the range [1, z +
∑

l∈L yl].

– Car Cn+1 must see, to the right of its vacant spot, the complementary subset
of cars labeled with indices R = {1, 2, . . . , n} − L occupying the last

∑
r∈R yr

spots. These cars must have parked successfully with preferences �cR and no
trailer, that is, z = 1. This is enumerated by f(�yR; 1).

Now summing over all decompositions L
�∪R = {1, 2, . . . , n}, the recursion follows.

The next piece of the proof of Theorem 2.1 utilizes a multi-parameter convolution
identity due to Strehl [10]. Let x = (xi,j)1≤i<j and y = (yj)1≤j be two infinite sets
of parameters. For a finite subset A of the positive integers, define the two sums

xA
>a =

∑
j∈A,j>a

xa,j and yA
≤a =

∑
j∈A,j≤a

yj.

Define the polynomials tA(x,y; z) and sA(x,y; z) by

tA(x,y; z) = z ·
∏

a∈A−max(A)

(z + yA
≤a + xA

>a),

sA(x,y; z) =
∏
a∈A

(z + yA
≤a + xA

>a).

Note that, when A is the empty set, we set tA(x,y; z) to be 1. We directly have that

(z + yA
≤max(A)) · tA(x,y; z) = z · sA(x,y; z). (2.1)

Now Theorem 1, equation (6) in [10] states:

Theorem 2.3 (Strehl). The polynomials sL(x,y; z) and tR(x,y;w) satisfy the fol-
lowing convolution identity:

sA(x,y; z + w) =
∑

L
�∪R=A

sL(x,y; z) · tR(x,y;w). (2.2)

Strehl first interprets sA(x,y; z) and tA(x,y; z) as sums of weights on functions,
then translates these via a bijection to sums of weights on rooted, labeled trees where
the xi,j’s record ascents, and the yj’s record descents. The proof of (2.2) then follows
from the structure inherent in splitting a tree into two. A similar result using the
same bijection was discovered by Eǧecioǧlu and Remmel in [2].
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Proof of Theorem 2.1. The proof follows from noticing that our proposed expression
for f(�y; z) is Strehl’s polynomial t{1,2,...,n}(1,y; z). By induction we obtain

f(�y, yn+1; z) =
∑

L
�∪R={1,2,...,n}

(
z +

∑
l∈L

yl

)
· f(�yL; z) · f(�yR; 1)

=
∑

L
�∪R={1,2,...,n}

(z + yL
≤max(L)) · tL(1,y; z) · tR(1,y; 1)

=
∑

L
�∪R={1,2,...,n}

z · sL(1,y; z) · tR(1,y; 1)

= z · s{1,2,...,n}(1,y; z + 1)

= t{1,2,...,n+1}(1,y; z),

where we used the recursion in Lemma 2.2, equation (2.1) and Theorem 2.3.

3 Concluding remarks

The polynomial tA(x,y; z) satisfies the following convolution identity; see [10, Equa-
tion (7)],

tA(x,y; z + w) =
∑

B
�∪C=A

tB(x,y; z) · tC(x,y;w). (3.1)

Hence it is suggestive to think of this polynomial as of binomial type and the poly-
nomial sA(x,y;w) as an associated Sheffer sequence; see [9]. When setting all the
parameters x to be constant and also the parameters y to be constant, we obtain the
classical Abel–Rothe polynomials. Hence it is natural to ask if other sequences of bi-
nomial type and their associated Sheffer sequences have multi-parameter extensions.
Since the Hopf algebra k[x] explains sequences of binomial type, one wonders if there
is a Hopf algebra lurking in the background explaining equations (3.1) and (2.2).
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