Parking cars after a trailer

RICHARD EHRENBORG ALEX HAPP

Department of Mathematics University of Kentucky Lexington, KY 40506 U.S.A.

richard.ehrenborg@uky.edu alex.happ@uky.edu

Abstract

Recently, the authors extended the notion of parking functions to parking sequences, which include cars of different sizes, and proved a product formula for the number of such sequences. We give here a refinement of that result involving parking the cars after a trailer. The proof of the refinement uses a multi-parameter extension of the Abel–Rothe polynomial due to Strehl.

1 Introduction

Parking sequences were introduced in [3] as an extension of the classical notion of parking functions, where we now take into account parking cars of different sizes. This extension differs from other extensions of parking functions [1, 5, 6, 7, 11] since the parking sequences are not invariant under permuting the entries. The main result in [3] is that the number of parking sequences is given by the product

$$(y_1+n)\cdot(y_1+y_2+n-1)\cdots(y_1+\cdots+y_{n-1}+2),$$
 (1.1)

where the *i*th car has length y_i . Note that this reduces to the classical $(n+1)^{n-1}$ result of Konheim and Weiss [4] when setting $y_1 = y_2 = \cdots = y_n = 1$. The proof in [3] is an extension of the circular argument by Pollak; see [8].

We now introduce a refinement of the result by adding a trailer.

Definition 1.1. Let there be n cars C_1, \ldots, C_n of sizes y_1, \ldots, y_n , where y_1, \ldots, y_n are positive integers. Assume there are $z - 1 + \sum_{i=1}^n y_i$ spaces in a row, where the trailer occupies the z - 1 first spaces. Furthermore, let car C_i have the preferred spot c_i . Now let the cars in the order C_1 through C_n park according to the following rule:

Starting at position c_i , car C_i looks for the first empty spot $j \geq c_i$. If the spaces j through $j + y_i - 1$ are empty, then car C_i parks in these spots. If any of the spots j + 1 through $j + y_i - 1$ is already occupied, then there will be a collision, and the result is not a parking sequence.

Iterate this rule for all the cars C_1, C_2, \ldots, C_n . We call (c_1, \ldots, c_n) a parking sequence for $\vec{y} = (y_1, \ldots, y_n)$ if all n cars can park without any collisions and without leaving the $z - 1 + \sum_{i=1}^{n} y_i$ parking spaces.

As an example, consider three cars of sizes $\vec{y} = (2, 2, 1)$, a trailer of size 3, that is z = 4, and the preferences $\vec{c} = (5, 6, 2)$. Then there are 2 + 2 + 1 = 5 available parking spaces after the trailer, and the final configuration of the cars is

All cars are able to park, so this yields a parking sequence.

2 The result

We now have the main result. Observe that when setting z = 1, this expression reduces to equation (1.1).

Theorem 2.1. The number of parking sequences $f(\vec{y}; z)$ for car sizes $\vec{y} = (y_1, \dots, y_n)$ and a trailer of length z - 1 is given by the product

$$f(\vec{y};z) = z \cdot (z + y_1 + n - 1) \cdot (z + y_1 + y_2 + n - 2) \cdot \cdot \cdot (z + y_1 + \dots + y_{n-1} + 1).$$

The first part of our proof comes from the following identity. Let $\dot{\cup}$ denote disjoint union of sets.

Lemma 2.2. The number of parking sequences for car sizes $(y_1, \ldots, y_n, y_{n+1})$ and a trailer of length z-1 satisfies the recurrence

$$f(\vec{y}, y_{n+1}; z) = \sum_{L \dot{\cup} R = \{1, \dots, n\}} \left(z + \sum_{l \in L} y_l \right) \cdot f(\vec{y}_L; z) \cdot f(\vec{y}_R; 1),$$

where $\vec{y}_S = (y_{s_1}, \dots, y_{s_k})$ for $S = \{s_1 < s_2 < \dots < s_k\} \subseteq \{1, \dots, n\}.$

Proof. Consider the situation required for the last car C_{n+1} to park successfully:

- Car C_{n+1} must see, to the left of its vacant spot, the trailer along with a subset of the cars labeled with indices L occupying the first $z-1+\sum_{l\in L}y_l$ spots. Hence, the restriction \vec{c}_L of $\vec{c}=(c_1,c_2,\ldots,c_{n+1})$ to the indices in L must be a parking sequence for \vec{y}_L and trailer of length z-1. This can be done in $f(\vec{y}_L;z)$ possible ways.

- Car C_{n+1} must have a preference c_{n+1} that lies in the range $[1, z + \sum_{l \in L} y_l]$.
- Car C_{n+1} must see, to the right of its vacant spot, the complementary subset of cars labeled with indices $R = \{1, 2, ..., n\} L$ occupying the last $\sum_{r \in R} y_r$ spots. These cars must have parked successfully with preferences \vec{c}_R and no trailer, that is, z = 1. This is enumerated by $f(\vec{y}_R; 1)$.

Now summing over all decompositions $L \dot{\cup} R = \{1, 2, \dots, n\}$, the recursion follows.

The next piece of the proof of Theorem 2.1 utilizes a multi-parameter convolution identity due to Strehl [10]. Let $\mathbf{x} = (x_{i,j})_{1 \leq i < j}$ and $\mathbf{y} = (y_j)_{1 \leq j}$ be two infinite sets of parameters. For a finite subset A of the positive integers, define the two sums

$$\mathbf{x}_{>a}^A = \sum_{j \in A, j > a} x_{a,j}$$
 and $\mathbf{y}_{\leq a}^A = \sum_{j \in A, j \leq a} y_j$.

Define the polynomials $t_A(\mathbf{x}, \mathbf{y}; z)$ and $s_A(\mathbf{x}, \mathbf{y}; z)$ by

$$t_A(\mathbf{x}, \mathbf{y}; z) = z \cdot \prod_{a \in A - \max(A)} (z + \mathbf{y}_{\leq a}^A + \mathbf{x}_{>a}^A),$$

$$s_A(\mathbf{x}, \mathbf{y}; z) = \prod_{a \in A} (z + \mathbf{y}_{\leq a}^A + \mathbf{x}_{>a}^A).$$

Note that, when A is the empty set, we set $t_A(\mathbf{x}, \mathbf{y}; z)$ to be 1. We directly have that

$$(z + \mathbf{y}_{\leq \max(A)}^{A}) \cdot t_A(\mathbf{x}, \mathbf{y}; z) = z \cdot s_A(\mathbf{x}, \mathbf{y}; z).$$
(2.1)

Now Theorem 1, equation (6) in [10] states:

Theorem 2.3 (Strehl). The polynomials $s_L(\mathbf{x}, \mathbf{y}; z)$ and $t_R(\mathbf{x}, \mathbf{y}; w)$ satisfy the following convolution identity:

$$s_A(\mathbf{x}, \mathbf{y}; z + w) = \sum_{L \dot{\cup} R = A} s_L(\mathbf{x}, \mathbf{y}; z) \cdot t_R(\mathbf{x}, \mathbf{y}; w).$$
(2.2)

Strehl first interprets $s_A(\mathbf{x}, \mathbf{y}; z)$ and $t_A(\mathbf{x}, \mathbf{y}; z)$ as sums of weights on functions, then translates these via a bijection to sums of weights on rooted, labeled trees where the $x_{i,j}$'s record ascents, and the y_j 's record descents. The proof of (2.2) then follows from the structure inherent in splitting a tree into two. A similar result using the same bijection was discovered by Eğecioğlu and Remmel in [2].

Proof of Theorem 2.1. The proof follows from noticing that our proposed expression for $f(\vec{y}; z)$ is Strehl's polynomial $t_{\{1,2,\ldots,n\}}(\mathbf{1}, \mathbf{y}; z)$. By induction we obtain

$$f(\vec{y}, y_{n+1}; z) = \sum_{L \dot{\cup} R = \{1, 2, \dots, n\}} \left(z + \sum_{l \in L} y_l \right) \cdot f(\vec{y}_L; z) \cdot f(\vec{y}_R; 1)$$

$$= \sum_{L \dot{\cup} R = \{1, 2, \dots, n\}} (z + \mathbf{y}_{\leq \max(L)}^L) \cdot t_L(\mathbf{1}, \mathbf{y}; z) \cdot t_R(\mathbf{1}, \mathbf{y}; 1)$$

$$= \sum_{L \dot{\cup} R = \{1, 2, \dots, n\}} z \cdot s_L(\mathbf{1}, \mathbf{y}; z) \cdot t_R(\mathbf{1}, \mathbf{y}; 1)$$

$$= z \cdot s_{\{1, 2, \dots, n\}}(\mathbf{1}, \mathbf{y}; z + 1)$$

$$= t_{\{1, 2, \dots, n+1\}}(\mathbf{1}, \mathbf{y}; z),$$

where we used the recursion in Lemma 2.2, equation (2.1) and Theorem 2.3.

3 Concluding remarks

The polynomial $t_A(\mathbf{x}, \mathbf{y}; z)$ satisfies the following convolution identity; see [10, Equation (7)],

$$t_A(\mathbf{x}, \mathbf{y}; z + w) = \sum_{B \dot{\mathbf{U}}C = A} t_B(\mathbf{x}, \mathbf{y}; z) \cdot t_C(\mathbf{x}, \mathbf{y}; w).$$
(3.1)

Hence it is suggestive to think of this polynomial as of binomial type and the polynomial $s_A(\mathbf{x}, \mathbf{y}; w)$ as an associated Sheffer sequence; see [9]. When setting all the parameters \mathbf{x} to be constant and also the parameters \mathbf{y} to be constant, we obtain the classical Abel–Rothe polynomials. Hence it is natural to ask if other sequences of binomial type and their associated Sheffer sequences have multi-parameter extensions. Since the Hopf algebra $\mathbf{k}[x]$ explains sequences of binomial type, one wonders if there is a Hopf algebra lurking in the background explaining equations (3.1) and (2.2).

Acknowledgments

The authors thank the four referees for their comments. Both authors were partially supported by National Security Agency grant H98230-13-1-0280. This work was partially supported by a grant from the Simons Foundation (#429370 to Richard Ehrenborg). The first author wishes to thank the Mathematics Department of Princeton University where this work was completed.

References

- [1] D. Chebikin and A. Postnikov, Generalized parking functions, descent numbers, and chain polytopes of ribbon posets, Adv. in Appl. Math. 44 (2010), 145–154.
- [2] O. Eğecioğlu and J. Remmel, Bijections for Cayley trees, spanning trees, and their q-analogues, J. Combin. Theory Ser. A 42 (1986), 15–30.
- [3] R. Ehrenborg and A. Happ, Parking cars of different sizes, *Amer. Math. Monthly* **123** (2016), 1045–1048.
- [4] A. G. Konheim and B. Weiss, An occupancy discipline and applications, SIAM J. Appl. Math. 14 (1966), 1266–1274.
- [5] J. P. S. Kung and C. Yan, Gončarov polynomials and parking functions, *J. Combin. Theory Ser. A* **102** (2003), 16–37.
- [6] J. P. S. Kung and C. Yan, Exact formulas for moments of sums of classical parking functions, Adv. in Appl. Math. 31 (2003), 215–241.
- [7] J. P. S. Kung and C. Yan, Expected sums of general parking functions, *Ann. Comb.* **7** (2003), 481–493.
- [8] J. Riordan, Ballots and trees, J. Combinatorial Theory 6 (1969), 408–411.
- [9] G.-C. Rota, D. Kahaner and A. Odlyzko, On the foundations of combinatorial theory. VIII. Finite operator calculus., *J. Math. Anal. Appl.* **42** (1973), 684–760.
- [10] V. Strehl, Identities of Rothe–Abel–Schläfli–Hurwitz-type, *Discrete Math.* **99** (1992), 321–340.
- [11] C. Yan, Generalized parking functions, tree inversions, and multicolored graphs, Special issue in honor of Dominique Foata's 65th birthday, *Adv. in Appl. Math.* **27** (2001), 641–670.

(Received 22 Aug 2017)