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In this paper we give a bijection between the Kirkman years in PG(3, 2) and the 
packings of the 3-subsets of an 8-set with (7,3,1 )-designs thus showing the existence 
of and providing contructions for Kirkman years in PG(3, 2). 

It is well-known that the 35 lines in PG(3, 2) can be partitioned into 7 sets, each 

containing 5 parallel lines, providing a solution to Kirkman's schoolgirl problem, 

see e.g. [2]. A set of 5 parallel lines in PG(3, 2) is called a Kirkman day or a parallel 

claBs in PG(3, 2) and such a partition of the 35 lines into 7 days is called a Kirkman 

week or a Kirkman triple Bystem in PG(3, 2). The main goal of this paper is to show 

that the collection of all Kirkman days in PG(3, 2) can be partitioned into disjoint 

Kirkman weeks. Such a partition we call a Kirkman year in PG(3,2). 

By a packing of the k-subsets of a set S with (v, k, A)-designs we will mean 

a partition of all the k-subsets of S into (v, k, A)-designs. Notice here we permit 

v < 151. In [3], Sharry and Street used the term overlarge set for such a set of designs. 

We will construct a bijection between the packings of the 3-subsets of an 8-set with 

(7,3,1)-designs and the Kirkman years in PG(3,2). Hence to construct Kirkman 

years one needs only to construct these packings. This has been accomplished by 

Sharry and Street in [3] where they show that there are exactly 11 different such 

packings. 

Before proceeding with the construction of the bijection we set some notation. P, 

L, 'D, W, and Y will denote respectively the points, lines, Kirkman days, Kirkman 

weeks and Kirkman years in PG(3,2). S = {I, 2, ... ,8} and Sj will denote the 

collection of j -su bsets of S. Finally, D will denote the collection of all (7,3,1)­

designs whose point set is a 7-subset of Sand P will denote the collection of all 

packings of the 3-subsets of S with (7,3,1)-designs. 
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In [1] we gave a geometric construction of the Steiner System S (4, 7, 23). The 

point set of this Steiner System was PUS. The blocks were of three types which we 

called planes, line sets and extended ovoid sets. The 70 line sets were of the form 

K U I where K E S4 and IE£'. Each of the 70 elements of S4 appeared exactly 

once in the line sets and each of the 35 lines in £, appeared exactly twice in the line 

sets. Define 7jJ : S4 -+ £, by specifying thatljJ(K) is the line appearing with K in 

the line sets. The following properties of 'ljJ have been verified in [1]: 

(1) For two 4-sets K 1 ,K2 E S4: 

(i) 'ljJ(Kd = 'ljJ(K2) iff Kl n K2 = 0; 

(ii) 1'ljJ(K1 ) n 'ljJ(K2)1 = 1 iff IKI n K21 = 2; 

(iii) 'ljJ(KI) n 'ljJ(K2) = 0 iff IKI n K21 = 1 or 3. 

(2) For any a E S, {'ljJ(K) I a EKE S4} = £'. 

(3) Four points from PUS appear at most once in the line sets 

K U 'ljJ(K), K E S4. 

For a line 1 E £ notice that by (2) there is a unique 4-set K E S4 containing 

1 with 'ljJ(K) = 1. We will denote this K by 'ljJ-l(l). For a day D in 1) we let 

SD = {'ljJ-l(l) II ED}. 

Proposition 1. Let D E 1). Either I n KI = 3 or there is a unique line 
KESD 

10 E D with 7jJ-l(lO) n 'ljJ-l(l) = {I} for every [E D\{lo}. 

Proof: Suppose I n KI =I- 3. Since lines in D are parallel we have by (l)(iii) 
KESD 

that 1'ljJ-l(l) n 'ljJ-l(/')1 = 1 or 3 for 1 =I- [' ED. 

Case 1. If 1'ljJ-l(/) n 'ljJ-l(I')1 = 3 for every 1 i= l' E D then consider any two 

elements {I, a, b, c} and {I, a, b, d} of SD. An element of SD which does not contain 

1, a and b must be a subset of {I, a, b, c, d} since it must intersect both {I, a, b, c} and 

{I, a, b, d} in three places. Hence we may assume there is at least one more element 

of SD containing 1, a and b for else we would have five 4-subsets of {I, a, b, c, d} 

each contain 1. There are only (;) = 4 of these. Assume then that {I, a, b, e} is 

in SD. Now an element of SD which does not contain all three of 1, a and b must 

contain 1, c, d, e and one of a or b. This clearly cannot be done with a 4-set. 

Case 2. If there are two lines I, I' E D with 'ljJ-l(l) n 'ljJ-l(l') = {I} then we may 
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assume {l,a,b,c} and {l,d,e,f} are in SD with {a,b,c} n {d,e,f} = 0. Another 

element of SD cannot intersect both {I, a, b, c} and {I, d, e, f} in 3 places and cannot 

intersect both {I, a, b, c} and {I, d, e, f} in 1 place so we may assume SD contains 

{I, a, b, g} with 9 rf. {I, a, b, c, d, e, fl. Notice that any other element of SD which 

intersects {l,d,e,f} in three places must intersect one of {l,a,b,c} or {l,a,b,g} in 

two places since {I, a, b, c} U {I, d, e, f} U {I, a, b, g} S. Consequently every other 

element of SD intersects {I, d, e, f} in exactly one place and intersects {I, a, b, c} in 

exactly three places. Take lo = ~( {I, d, e, f}). 

o 

Define r : S3 -+ V by 

r(J) = {~(JU {x}) I x E S\J}. 

Notice that the image of r is actually inside V, for if a E ~(JU {x}) n~(J U {y}) 

then J U {a} is a 4-subset of (J U {x}) U ~(J U {x}) and of (J U {y}) U ~(J U {y}) 

contradicting (3). 

Define X : '0-+ S3 as follows: 

X (D) = n K, if I n I = 3 
KESD KESD 

= ~-1(10)\{1} where 10 is the unique line in D 

of Proposition I, otherwise. 

Theorem 2. r and X are bijections between S3 and 'O. 

Proof: To show that r 0 X is the identity on V let D E 'O. If J = n K 
KESD 

has size 3 then clearly r(J) = {~(J U {x}) I x E S\J} = D. If not then sup-

pose ~-1(l0) {l,a,b,c}. For 10 =I- 1 E D, ~-1(l) n {a,b,c} = 0 so SD = 
{{I, a, b, c}, {I, d, e, f}, {I, d, e, g}, {I, d, f, g}, {I, e, f, g}} where S = {I, a, b, ... ,g}. 

Consider all 4-subsets of S containing a, b and c. They are {a, b, c, I}, {a, b, c, d}, 

{a, b, c, e}, {a, b, c, f} and {a, b, c, g}. Notice that the last four of these are just the 

complements of the last four in SD and the first is the same as the first in SD. It 

follows from (l)(i) that r( {a, b, c}) = D. To show X 0 r is the identity on S3 let 

J E S3 and let D = r(J). If I E J then n K J and hence X(D) = J. If 
KESD 

I rf. J let 10 = ~(J U {I}). Notice that for x E S\(J U {I}), ~-l(~(J U {x})) is 
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S\(JU{x}). Consequently, 1/;-l(lo)n1/;-l(l) = {I} for each 1=1= 10 in D. This shows 

that 10 is the unique line of Proposition 1 and hence XeD) = 1/;-1(10) = J. 0 

Lemma 3. For J1 , J2 E 83 , r(Jl ) n r(J2 ) = 0 iff IJl n J2 1 = l. 
Proof: Suppose first that IJ1nJ2 1 = 0 and let a, b be the two points in S\(J1 UJ2 ). 

NoticethatKl = JlU{a} andK2 = J2 U{b} are disjoint so by (1)(i),1/;(K1) = 1/;(K2 ) 

and r(J1 ) n r(Jz) =1= 0. Next suppose IJI n J2 1 = 1 and let x E J1 n J2 • If 

I E r( J1 ) n r( J2 ) then {x} U I is a 4-set of points from PUS appearing in two line 

sets contradicting (3). Finally, f III n J2 1 = 2 let e E J1 \J2 and d E J2 \J1 • Then 

1/;(J1 U {d}) = 1/;{J2 U {e}} so r(Jl ) nr(J2 ) =1= 0. 0 

Theorem 4. r induces a bijection f' : D -t W. 

Proof: Since any two blocks of a (7,3,1)-design intersect in one place we see by 

Lemma 3 that reD) S;;; W. Let W E W. Sw = {r-l(D) IDE W} is a set of seven 

blocks of size 3 on say v points. Since any two days in W are disjoint we have by 

Lemma 3 that any two blocks of Sw intersect in exactly one place. Let J E Sw. 

Since each of the remaining six blocks of Sw must intersect J in exactly one place 

and since lSI = 8 we see that no point of J can occur ~ore than 3 times in the 

blocks of Sw. On the other hand, a point of J occurring fewer than 3 times in the 

blocks of Sw forces another point of J to occur more than 3 times. Hence every 

point of J occurs exactly 3 times in the blocks of Sw. Sinc~ J ::.:.::J <1J." a.rbltJ:a..L.,Y­

block of Sw we have that every point of S which occurs at all occurs exactly 3 times 

in the blocks of Sw. This shows that the dual of Sw is a (7,3,1)-design. Hence Sw 

is also. o 

The following Corollary now follows from Theorem 2 and Theorem 4: 

Corollary 5. f' induces a bijection f' : P -t y. 
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