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Abstract

A (K3, M\)-frame of type ¢g* is a K s-decomposition of a complete u-
partite graph with u parts of size g into partial parallel classes each of
which is a partition of the vertex set except for those vertices in one
of the w parts. In this paper, we completely solve the existence of a
(K13, A)-frame of type g*.

1 Introduction

In this paper, the vertex set and edge set (or edge-multiset) of a graph G (or multi-
graph) are denoted by V(G) and E(G) respectively. For a graph G, we use AG to
represent the multi-graph obtained from G by replacing each edge of G with \ copies
of it. A graph G is called a complete u-partite graph if V(G) can be partitioned into
u parts M;, 1 < i < u, such that two vertices of GG, say x and y, are adjacent if and
only if z € M; and y € M; with i # j. We use AK(my, mg,...,m,) for the A\-fold of
the complete u-partite graph with m; vertices in the group M;.

Given a collection of graphs H, an H-decomposition of a graph G is a set of sub-
graphs (blocks) of G whose edge sets partition F(G), and each subgraph is isomorphic
to a graph from H. When H = {H }, we write H-decomposition as H-decomposition
for the sake of brevity. A parallel class of a graph G is a set of subgraphs whose
vertex sets partition V(G). A parallel class is called uniform if each block of the
parallel class is isomorphic to the same graph. An H-decomposition of a graph G
is called (uniformly) resolvable if the blocks can be partitioned into (uniform) par-
allel classes. Recently, a lot of results have been obtained on uniformly resolvable
‘H-decompositions of K, especially on uniformly resolvable H-decompositions with
H = {Gy1,G,} ([6, 7, 11, 15, 18-21, 23-26]) and with % = {G1, G2, G5} ([8]). For
the graphs related to this paper, the reader is referred to [3, 17].
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A (resolvable) H-decomposition of AK(my,ma,...,m,) is called a (resolvable)
group divisible design, denoted by (H, A)-(R)GDD. When A = 1, we usually omit A
in the notation. The type of an H-GDD is the multiset of group sizes |M;|, 1 <i < u,
and we usually use the “exponential” notation for its description: type 11273% ...
denotes ¢ occurrences of groups of size 1, j occurrences of groups of size 2, and so on.
In this paper, we will use K 3-RGDDs as input designs for recursive constructions.
There are some known results on the existence of K;3-RGDDs. For example, K 3-
RGDDs of types 2% and 4% have been constructed in [17], and the existence of a
K, 3-RGDD of type 12* for any u > 2 has been solved in [3].

Let K be a set of positive integers. If H = {K, Ky, ..., K;} with |V(K;)| € K
(1 <1 < t), then H-GDD is also denoted by K-GDD, and an K-GDD of type 1"
is called a pairwise balanced design, denoted by (K,v)-PBD. It is usual to write k
rather than {k} when K = {k} is a singleton.

A set of subgraphs of a complete multipartite graph covering all vertices except
those belonging to one part M is said to be a partial parallel class missing M. A
partition of an (H,\)-GDD of type g* into partial parallel classes is said to be a
(H, \)-frame. Frames were firstly introduced in [1]. Frames are important combi-
natorial structures used in graph decompositions. Stinson [27] solved the existence
of a (K3, 1)-frame of type g*. For the existence of a (K4, \)-frame of type g*, see
[10, 12-14, 22, 28, 29]. Cao et al. [5] started the research of a (Cy, 1)-frame of type
g*. Buratti et al. [2] have completely solved the existence of a (Cj, \)-frame of type
g* recently. Here we focus on the existence of a (K7 3, A)-frame of type g* which can
be used in uniformly resolvable H-decompositions with K 3 € H in [3]. It is eisy to

29

see that the number of partial parallel classes missing a specified group is ==. So

we have the following necessary conditions for the existence of a (K73, \)-frame of
type g“.

Theorem 1.1. The necessary conditions for the ezistence of a (K3, \)-frame of
type g* are A\g =0 (mod 3), g(u —1) =0 (mod 4), u > 3 and g =0 (mod 4) when
u=3.

Not many results have been known for the existence of a (K 3, A)-frame of type g*.

Theorem 1.2. [3] There exists a Ky 3-frame of type 12* for u > 3.

In this paper, we will prove the following main result.

Theorem 1.3. The necessary conditions for the existence of a (Kj 3, A)-frame of type
g" are also sufficient with the definite exception of (X, g,u) = (6t + 3,4,3), t > 0.

2 Recursive constructions

For brevity, we use I;, to denote the set {1,2,...,k}, and use (a;b, ¢,d) to denote the
3-star K3 with vertex set {a,b,c,d} and edge set {{a,b},{a,c},{a,d}}. Now we
state two basic recursive constructions for (K3, A)-frames. Similar proofs of these
constructions can be found in [9] and [27].
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Construction 2.1. If there exists a (K13, \)-frame of type gi" 95> . .. g, then there
is a (K13, \)-frame of type (mgy)" (mg2)"* ... (mg,)" for any m > 1.

Construction 2.2. If there exist a (K,v)-GDD of type gi' g% ... gtm and a (K, 3,\)-
frame of type h* for each k € K, then there exists a (Ky3,\)-frame of type

(hg1)"(hg2)® ... (hgm)"™.

Definition 2.1. Let G be a A-fold complete u-partite graph with w groups My, My, . . .,
M, such that |M;| = g for each 1 < i < u. Suppose N; C M; and |N;| = h for any
1 <i<wu. Let H be a \-fold complete u-partite graph with uw groups (called holes)
Ny, Na, ..., Ny. An incomplete resolvable (K13, \)-group divisible design of type g*
with a hole of size h in each group, denoted by (K13, \)-IRGDD of type (g, h)", is a

2A(g—h)(u—1)
3

resolvable (K1 3, \)-decomposition of G—E(H) in which there are parallel

2)\h (u—1)

classes of G and partial parallel classes of G — H.

Lemma 2.3. There exzists a (K1 3,3)-IRGDD of type (12,4).

Proof: Let the vertex set be Z16U{ag, a1, as, az}U{bg, b1, ba, b3}, and let the two groups
be {0,2,...,14} U{ao, a1, as,as} and {1,3,...,15} U {bg, by, ba, b3}. The required 8
partial parallel classes can be generated from two partial parallel classes @)1, Q)2 by
+4j (mod 16), j = 0,1,2,3. The required 16 parallel classes can be generated from
four parallel classes P;, i = 1,2,3,4, by +45 (mod 16), j = 0,1,2,3. The blocks in
@1, Q2 and P; are listed below.

Q1 (4;1,3,5) (9;0,6,8) (12;7,11,15)  (13;2,10,14)

Q> (0;5,7,11)  (3:6,10,14) (12;1,9,15)  (13;2,4,8)

P (0:;3,7,15)  (1;2,10,14) (ao;5,9,13)  (bo;4,8,12)  (11;a1,az,a3) (6;by, by, bs)
P2 (6;3,7,15) (9;2,10,12) (a1,1,5,13) (bl,O 4 8) (11;@0,@2,@3) (14;[)0,()2,()3)
P3 (1 ;3,7,15) (1;6,8,10) (a2,5,9,13) (bg,o 4 12) (11;@0,@1,@3) (2;[)0,[)1,()3)
P4 (4;5,11,15) (3;2,6,14) (a3,1,9,13) (b3,0 8 12) (7, ao,al,ag) (10;[)0,()1,()2)

0

A k-GDD of type n* is called a transversal design, denoted by TD(k,n). A
TD(k,n) is idempotent if it contains a parallel class of blocks. A resolvable TD(k,n)
is denoted by RTD(k,n). If we can select a block from each parallel class of an
RTD(k,n), and all these n blocks form a new parallel class, then this RTD(k, n) is
denoted by RTD*(k,n).

Construction 2.4. Suppose there exist an RTD*(u,n), a (K13, \)-IRGDD of type
(g + h,h)", a (Ki3,\)-RGDD of type g*, and a (K3, \)-RGDD of type (g + h),
then there exists a (K13, \)-RGDD of type (gn + h)*.

Proof: We start with an RTD*(u, n) with n parallel classes P, = {B;1, Bi2, - .., Bin},
1 <i < n, and a parallel class Q = {B11, Ba1, ..., Ba1}. Give each vertex weight g.
For each block B;; in P; \ @, place a (K3, A\)-RGDD of type g* whose t = Mg_l)
parallel classes are denoted by FZ, 1 < s <t. For each block B;; in Q) with 1 <17 <
n—1, place a (K; 3, A\)-IRGDD of type (g+h, h)" on the vertices of the weighted block
Bj1 and hu new common vertices (take them as u holes). Denote its t parallel classes
by F5,1<s <t and its w = w partial parallel classes by @, 1 < s < w.
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Further, place on the vertices of the weighted block B,; and these hu new vertices
a (K13, A)-RGDD of type (g + h)* whose t + w parallel classes are denoted by F?,
1 <s<t+w.

Let Ff = U Ffj,lgsgt,1§i§n,ande:FﬂjU(U”fQ ), 1 <j<w.

It is easy to see F * and T} are parallel classes of the required (K3, A)-RGDD of type
(gn + h)". 0

Construction 2.5. If there is a (Ki3,\)-RGDD of type ¢*, then there exists a
(K13, \)-frame of type g**** for any u > 1.

Proof: We start with a Ky-frame of type 12“T! in [4]. Suppose its vertex set is Io, ;1.
Denote its 2u + 1 partial parallel classes by F; (i € I5,41) which is with respect to
the group {i}. The required (K3, \)-frame of type ¢g***' will be constructed on
Ipy+1 % I, For any B = {a,b} € F}, place on B x I, a copy of a (K;3,A\)-RGDD

of type ¢?, whose 23ﬂ parallel classes are denoted by P;j(B), 1 < j < %. Let

U Pj(B),i€ Ih41,1 <j< %. Then each Pij is a partial parallel class with

BEF;
respect to the group {i} x I,. Thus we have obtained a (K7 3, A)-frame of type g****
for any u > 1. 0

Note that if there exists a (K73, A)-frame of type g®, then it is easy to see that
these 2)\g/3 partial parallel classes missing the same group form a (K; 3, A\)-RGDD
of type g?>. Combining with Construction 2.5, we have the following conclusion.

Lemma 2.6. The existence of a (K3, )\)-frame of type g° is equivalent to the exis-
tence of a (K13,\)-RGDD of type g°.

Construction 2.7. If there exist a (K1 3, \)-frame of type (m1g)** (mag)"? ... (mwg)™
and a (K3, \)-frame of type ¢g"*¢ for any 1 < i < t, then there exists a (K3, \)-
frame of type gzgdm“‘i*s, where ¢ =0, 1.

Proof: If there exists a (K 3, A\)-frame of type (m1g)“(mag)" ... (m¢g)", there are
QM 2G| partial parallel classes missing G, 1 < j < uj+us+...u;. Add ge new common
Vertlces (if e > 0) to the vertex set of G; and form a new vertex set G;. Then break up
G with a (K 3, A)-frame of type g!@il/9+e with groups G1 G2 ...,G‘]-ijg, M, where
2)|Gj] 4 2Age
3 3

the ge common vertices (if € > 0) are viewed as a new group M. It has
partial parallel classes.

2|G5 I}-\

Next match up the partial parallel classes missing G; with

parallel classes missing GZ to get the required partial parallel Classes Wlth respect to

the group G’ (note that 2)‘|G 2G| Z\Zill/g 26, l) 1<i<|Gyl/g.

2Aga

Finally, combine these partial parallel classes (if € > 0) from all the groups

2Ag5

to get partial parallel Classes missing M. 0
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3 A=1

By Theorem 1.1, it is easy to see that the two cases A = 1 and A = 3 are crucial for
the whole problem. In this section we first consider the case A = 1.

Lemma 3.1. For each u =1 (mod 4), u > 5, there ezists a Ky 3-frame of type 3.

Proof: For uw = 5,9, let the vertex set be Zs,, and let the groups be M; = {i,i +
u,i+ 2u}, 0 <i <wu—1. The required 2 partial parallel classes with respect to the
group M; are {Q1 4+, Q1+i+u, Q1 +i+2u} and {Q+ 1, Q2 + i+ u, Qs+ i+ 2u}.
The blocks in ()7 and @), are listed below.

u=>5 Q1 (1;52,3,4) Q2 (2;6,8,9)

u=9 Qi (1;2,3,4) (5;15,16,17) Qs (1;5,6,7) (4;11,12,17)

For u > 13, we start with a K 3-frame of type 12“~V/4 from Theorem 1.2 and

apply Construction 2.7 with € = 1 to get the required K; s-frame of type 3", where
the input design, a K s-frame of type 3%, is constructed above. 0

Lemma 3.2. For each u =1 (mod 2), u > 5, there ezists a Ky 3-frame of type 6.

Proof: For v =1 (mod 4), apply Construction 2.1 with m = 2 to get a K s-frame
of type 6%, where the input design a K; 3-frame of type 3“ exists by Lemma 3.1.

For u = 3 (mod 4), when u = 7,11,15, let the vertex set be Zg,, and let the
groups be M; = {i+ju: 0<j <5},0<i<u-—1. Three of the four required
partial parallel classes Py, Py, P, with respect to the group M, can be generated from
an initial partial parallel class P by +i (mod 6u), i = 0,2u,4u. The last partial
parallel class missing My is Py = QU{Q +2u}U{Q +4u}. All these required partial
parallel classes can be generated from Py, P, Py, P; by +2j (mod 6u), 0 < j <u—1.
For each u, the blocks in P and @ are listed below.

u=7 P (1,2,3,4) (5:9,10,11)  (6;8,12,15)  (13;22,23,24) (16;17,19,20)
(18:29,34,36) (25;33,37,41) (26;31,38,39) (40;27, 30, 32)
Q (1;16,19,23)  (3;20,22,26)  (10;25,27,32)
wu=11 P (41;60,61,65) (5;9,10,12)  (6;7,8,13) (14;17,18,19)  (15;21,23,24)
(16:25,26,28) (20;34,35,36) (27;37,39,40) (29;43,45,46) (30;38,47,48)
(31:52,54,56) (3;1,50,51)  (32;53,57,59) (42;2,4,62)  (64;49,58,63)
Q (1;4,27,28)  (2;15,25,38)  (7:36,39,43)  (18;42,52,53) (19;54,56,57)
w=15 P (66;79,83, 86) (2:1,58,70)  (69;11,67,74) (73;8,10,12)  (14;17,18,19)
(16;23,24,25) (26;36,37,38) (27;39,40,41) (28;42,44,46) (29;47, 48, 49)
(31:52,53,54) (32;51,55,56) (33;43,50,57) (34;59,61,62) (35;63,71,81)
(3:64,77,89)  (4;6,87,88)  (13;5,7,82)  (20;9,68,84)  (21;72,78,85)
(22: 65, 76, 80)
Q (1:4,10,32)  (3:36,37,38)  (5:42,43,53)  (9:48,49,50)  (14:51,52,58)

(16;17,56,57)

(24; 55,59, 71)

For v = 19, apply Construction 2.1 with m = 3 to get a K s-frame of type
363, where the input design a K 3-frame of type 12 exists by Lemma 1.2. Further,
applying Construction 2.7 with e = 1 and a K 3-frame of type 67 constructed above,
we can obtain a K s-frame of type 6.
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For u = 23, start with a TD(4,3) in [16]. Delete a vertex from the last group to
obtain a {3,4}-GDD of type 332!, Give each vertex weight 12, and apply Construc-
tion 2.2 to get a K 3-frame of type 3624'. Applying Construction 2.7 with € = 1,
we can obtain a K s-frame of type 6%.

For w = 35, apply Construction 2.1 with m = 5 to obtain a K s-frame of type
307. Then apply Construction 2.7 with e = 0 to get a K 3-frame of type 6.

For u = 47, start with a TD(5,5) in [16]. Delete two vertices from the last
group to obtain a {4,5}-GDD of type 513!. Give each vertex weight 12, and apply
Construction 2.2 to get a K7 3-frame of type 60*36'. Applying Construction 2.7 with
e = 1, we can obtain a K 3-frame of type 617

For all other values of u, we can always write v as u = 2t+6n+1 where 0 <t < n,
t #2,n>4and n # 6. From [16], there is an idempotent TD(4, n) with n blocks
By, By, ..., B, in a parallel class. Delete n — ¢ vertices in the last group that lie in
Bii1, Biia, ..., B,. Taking the truncated blocks By, B, ..., B, as groups, we have
formed a {t,n,3,4}-GDD of type 4'3"* when t > 3, or a {n,3,4}-GDD of type
4t3" when t = 0,1. Then give each vertex weight 12, and use Construction 2.2 to
get a K s-frame of type 48'36" . Further, we use Construction 2.7 with £ = 1 to
obtain a K s-frame of type 6“. The proof is complete. 0

In this section we continue to consider the case \ = 3.

Lemma 4.1. For each u =1 (mod 4), u > 5, there is a (K, 3,3)-frame of type 1*.

Proof: For uw = 5,9,13,17,29, 33, let the vertex set be Z,, and let the groups be
M; = {i}, i € Z,. The two partial parallel classes are P, 4+ ¢ and P, 4 i with respect
to the group M;. The blocks in P, and P, are listed below.

U=95 P (1;2,3,4)
P2 (2a 173a4)
u=9 Pl (1a273a4) (576a778)
P2 (1a274a6) (375a778)
u=13 P, (1;2,3,4) (5:6,7,8) (9:10,11,12)
Py (1;5,7,9) (2:;8,10,11)  (12;3,4,6)
u=17 P, (1;2,3,4) (5:6,7,8) (9:10,12,14)  (11;13,15,16)
Py (1;5,6,7) (2:8,9,10) (3:11,13,16)  (4;12,14,15)
u=29 P (1;2,3,4) (5:6,7,8) (9:10,11,12)  (13;17,18,19)
(14;20,21,22) (15;23,24,25) (16;26,27,28)
Py (1;5,6,7) (2;9,10,11)  (3;8,13,16)  (4;19,20,21)
(12;23,24,26) (18;22,25,27) (28;14,15,17)
wu=33 P (1;2,3,4) (5;6,7,8) (9;10,11,12)  (13;17,18,19)
(14;20,21,22)  (15;23,24,25) (16;27,28,29) (26;30,31,32)
P, (1;5,6,8) (2;9,10,11)  (3;12,13,14)  (4;17,21,22)
(7;23,24,26)  (15;25,29,30) (16;27,28,31) (32;18,19,20)

For all other values of u, apply Construction 2.2 with a ({5,9,13,17,29,33}, u)-
PBD from [4] to obtain the conclusion. 0
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Lemma 4.2. For each u € {7,11,15,23,27}, there is a (K1 3,3)-frame of type 2*.

Proof: Let the vertex set be Zy,, and let the groups be M; = {i,i+u}, 0 <i < u—1.
The 4 partial parallel classes missing the group M; are P; + 14, 1 < j < 4. For each
u, the blocks in P; are listed below.

u="17 }ﬂ

Py
Py
Py
Py
P
P
Py

P
Py
Ps

P,

Py

Py

Py

Py

Py

Py

Py

Py

(1;2,3,4)
4)
6
,11)
4
6
8

Y

Y

o -

Y

)

)

)

Y

[N OOCﬁOOl\’)OTCOl\D

Y

ql\j\.
o o

,25)

)

wu “
© = oW W O UL UTWw

o -
OO“

27)

1;

1 )
2; 1
1 )
1 )
1 )
1;8,9,13)
1; )
22;23,24
1;5,6,7)
16; 21, 26,
1;8,9,10)
17:24, 26, 28)
1;8,11,12)
1325, 27, 29)
18:8,21,38)
36;1,17,28)
43;12,25,35)
8:29, 40, 43)
17:15,27,32)
3:1,14,34)
24:16, 37, 45)
41;28,32, 35)
31;13,26, 36)
31;6,14,41)
1

7,12, 19, 39)
44,29,35,45)

35,13, 18, 24)

10;2,8,34)
44;22,23,37)
35;32, 36, 42)
45;8, 44, 46)
49; 28, 30, 33)
9;17,23,52)
213,14, 33)
1;16,21,40)
)

(
(
(
(
(
(
(
(
(
(
(
(1;
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(3

(22;

(11;

(16 13,36, 39
(5;

(24;

(12;11, 30, 34)
(44;7, 40, 43)

(33:3,26,42)
(10; 8,11, 40)

52; 40, 46, 49)
7:19, 30, 32)
20;5,9,43)

19:10,12 52)
2: 38,47, 50)
5:7,22,29)

28;29, 44, 50)
19,42, 47)

10;8, 15, 49)
50; 12, 37, 46)
48;18,52,53)
2;

(
(
(
(
(2;
(
(
(1;
(
(
(
(2;28,30,38)

(1
(8
(8
(1
(9;
(9
(4
(6

,12,13)
2,13)
,11,13)
2:6,8,13)
0,12,13
3

2

0;11
;6,1
9,1

110,15, 18

1
1

£12,17,19
1
(9;10,11,12)

(4;10,11,12)
(3;11,12,13)

(5:17,18,19)

(14;2,7,20)
(13;9,10, 40)

(2;26,28,45)
(4: 33,38, 44)

(18;5,8,9)
(21;25, 29, 33)

(28; 1,27, 36)
(32;13, 34, 38)

(28;11,17,26)
(4;12,16,29)
(39; 21, 33,53)
(9:13, 34, 39)
(40; 6,24, 53)
(18;4,41,51)
(19;6,18,30)
(24; 20, 36, 38)
(48; 26, 35, 45)
(51;15, 25, 32)
(8;34,43,47)
(26;17,21,29)

) (
,14,15)
)
)

4;15,16,17)

4;10, 18, 20)

(
0;16,17,18) (
(
(

7,17,19,21)

(13;17,18,19)
(13;17,18,19)
(4;14,22,23)

(9;21,22,26)

(4; 29,37, 45)
(306,26, 27)

(25; 11,39, 42)
(35:9,18,41)

(27; 3,20, 39)
(2;14,15,17)

(4;7,22,43)
(9:2,15,30)

(41;15,31,47)
(45; 14,25, 38)

(1;20, 21, 48)
(3:23,26,31)

(43:5, 34, 53)
(37: 25,41, 51)

8;19,20,21)
2:19,20,21)
1;13,15,16)
4;2,4,5)

(14;16,20,21)
(14;22,23,24)
(16; 20,25, 27)

(10;23,24, 28)

(15;31,34,41)
(16;3,5,42)

(21;10,13,31)
(7:19, 24, 37)

(6;22,38,42)
(19;1,4,10)

(21;16,24, 25)
(37:5,18,20)

(42;3,6,48)
(36, 7507 1)

(25;11,14,43)
(15,16, 17, 37)

(2;31,32,46)
(7;3,4,12)

(33;9,40,41)
(44;7,23,49)

Lemma 4.3. There exists a (Ky3,3)-frame of type 2* for each u =1 (mod 6) and

u > 19.

Proof: For each u, we start with a K s-frame of type 125

by Lemma 1.2, and
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apply Construction 2.7 with ¢ = 1 to get a (K 3,3)-frame of type 2%, where the

input design a (K 3, 3)-frame of type 27 comes from Lemma 4.2. 0
Lemma 4.4. There exists a (K1 3,3)-RGDD of type g*, g = 8,20, 52.
Proof: Let the vertex set be Zy,, and let the groups be {0,2,...,2¢9 — 2} and

{1,3,...,29 — 1}. The required 2g parallel classes can be generated from P by
+1 (mod 2g). The blocks in P are listed below.
g=8 (0;1,3,5) (2:7,9,13) (11;4,8,10) (15;6,12, 14)
g=20 (0:1,3,5) (2;7,9,11) (4;13,15,17)  (6:19,21,23)  (8:25,27,29)
(31;10,18,20) (33;22,24,26) (35;28,30,32) (37;12, 34, 36) (39;14, 16, 38)
g =52 (89;68,84,102) (15;14,46,96) (37;56,60,72)  (26;59,67,77)  (4;3,61,73)
(43;0,6,10) (12:19.51,57)  (50:1,7,53) (86;11,99,101) (74;9,25,69)
(16;71, 93, 103) (23;30,44,82)  (95;32, 52 90) (62;5,33,81)  (34;41,47,85)
(87;42,88,98)  (58;29,31,35) (39;22,36,92)  (91;8,18,76)  (2:49,65,97)
(24;13,21,63)  (55;20,40,80) (75;38,66,100) (45;28,64,78)  (79;48,54,70)
(94; 17,27, 83)
a

Lemma 4.5. There exists a (Kyg3,3)-frame of type 1> for any 1 > 4 and | = 0
(mod 4).

Proof: We distinguish two cases.

1. 1 =0 (mod 8). Applying Construction 2.5 with a (K 3,3)-RGDD of type 82
from Lemma 4.4, we can obtain a (K 3,3)-frame of type 8. Then apply Construc-
tion 2.1 with m = 1/8 to get a (K 3,3)-frame of type 3.

2. 1 =4 (mod 8). Let [ =8k +4, k > 1. For [ = 12, take a K s-frame of type
123 from Theorem 1.2 and repeat each block 3 times to get a (K 3, 3)-frame of type
123. For | = 20,52, the conclusion comes from Lemmas 2.6 and 4.4. For all other
values of [, applying Construction 2.4 with u =2, n =k, ¢ = 8 and h = 4, we can
obtain a (K 3,3)-RGDD of type (8k + 4)?, where the input designs an RTD*(2, k)
can be obtained from an idempotent TD(3, k) in [16], a (/K 3,3)-IRGDD of type
(12,4)? exists by Lemma 2.3, a (K 3,3)-RGDD of type 8% comes from Lemma 4.4,
and a K; 3-RGDD of type 12% comes from Lemma 1.2. Then apply Construction 2.5
to get a (K73, 3)-frame of type (8% + 4)3. 0

Lemma 4.6. For any t > 0, a (K 3,6t + 3)-frame of type 4> can not exist.

Proof: By Lemma 2.6 we only need to prove there doesn’t exist a (K 3, 6t+3)-RGDD
of type 42. Assume there exists a (K 3,6t + 3)-RGDD of type 42. Without lose of
generality, we suppose the vertex set is Zg, and the two groups are {0,2,4,6} and
{1,3,5,7}. There are 16t + 8 parallel classes. For each vertex v, suppose there are
exactly  parallel classes in which the degree of v is 3. Then we have 3x + (16t 4+ 8 —
x) =4(6t + 3). So xz = 4t + 2.

Now we consider two vertices 0 and 1. The edge {0, 1} appears exactly in 3 + 6t
parallel classes. Suppose there are exactly a parallel classes in which the degree of 0
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is 3, and b parallel classes in which the degree of 0 is 1. Then the vertex 1 has degree
3 in the later b parallel classes. So there are 4t + 2 — b parallel classes in which 0 and
1 are not adjacent and the degree of 1 is 3. Thus in these 4¢ + 2 — b parallel classes
the degree of 0 is 3. So we have 4t + 2 — b+ a < 4t + 2. That is a < b. Similarly, we
can prove b < a. Now we have a = b. Note that a + b = 6t + 3. Thus we obtain a
contradiction. 0

Lemma 4.7. There exists a (K3, 6t)-frame of type 4°, t > 1.

Proof: We first construct a (K7 3,6)-RGDD of type 42. Let the vertex be Zg, and
let the two groups be {0,2,4,6} and {1,3,5,7}. The required 16 parallel classes are
Pi={0+4¢1+43+755+7),(7T+752+4,4+4,6+14)},i=0,2,4,6,j=0,24,6.
By Lemma 2.6 there exists a (K 3,6)-frame of type 4%. Repeat each block ¢ times
to get the conclusion. 0

Lemma 4.8. For each u > 4, there exists a (K 3,3)-frame of type 4*.

Proof: For u = 5,9, apply Construction 2.1 with m = 4 to get a (K 3,3)-frame of
type 4%, where the input design a (K7 3, 3)-frame of type 1* exists by Lemma 4.1.

For uw = 7,11,15,19,23, apply Construction 2.1 with m = 2 to get a (K;3,3)-
frame of type 4%, where the input designs (K 3, 3)-frames of type 2% exist by Lem-
mas 4.2 and 4.3.

When u = 4,6,8,10, 14, let the vertex set be 4u, and let the groups be M; =
{i,i+u,i4+2u,i+3u}, 0 <i<wu—1. With respect to the group M;, 0 <i <wu—1,
the 8 partial parallel classes are P; +14 +uk, j = 1,2, 0 < k < 3. The blocks in P,
and P, are listed below.

u=4 P (1;2,3,6) (5:7,10,11)  (14;9,13,15)
P, (1;7,10,14)  (2;5,9,15) (13;3,6,11)
u=6 P (1;2,3,4) (5:7,8,9) (10;11,13,14) (15;19,20,22) (16;17,21,23)
Py (1;3,8,9) (2:7,10, 11 (4:14,15,17)  (13;21,22,23) (5;16,19,20)
u=8 P (1;2,3,4) (5:6,7,9) (10;11,12,13)  (14;17,18,19)
(15;20,21,26) (23;28,29,30) (31;22,25,27)
P, (1,10 11 12) (2:9,13,14)  (3;15,17,18)  (4;19,22,23)
(6;25,28,31)  (7;21, 26 27) (205,29, 30)
u=10 P (1;2,3,4) (5:6,7 (9:11,12,13)  (14;15,18,19) (16;21,22,23)
(17;24, 25, 26) (27,31 33 36) (29:35,37,38) (39;28,32,34)
Py (1:9,12, 13) (2;14,15,16)  (3;17,18,19)  (4;21,22,23) (524, 26, 28)
(6;29,31,34)  (8;32,35,37)  (11;27,33,36) (25;7,38,39)
wu=14 P (4;19,38,52,) (5;27,32,36)  (10;33,34,55) (11:6,9,18)  (13;7,12,17)
(21;15,25,26) (23;8,16,20)  (24;37,51,54) (39;29,45,49) (40;22, 31, 35)
(46,1,30 48) (47,2,3 50)  (53;41,43,44)
Py (2:1,11,36)  (3;18, 19, 20 ) (4;21,22,23)  (5:24,25,26)  (6;27,29,30)
(7:31,32,33)  (8:34.35,45)  (9:17.52.53)  (12:47,48,55) (13; 15,46, 49)
(41; 10,40, 44) (43 39,50,51) (54;16,37,38)

For u = 12,18, apply Construction 2.1 with m = % and a (K 3, 3)-frame of type
8% from Lemma 4.5 to get a (K7 3, 3)-frame of type (3
with e = 0 and a (K 3, 3)-frame of type 45, we can get a (K 3,3)-frame of type 4.

7).

Applying Construction 2.7
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For all other values of u, take a ({4,5,6,7,8,9,10,11,12,14,15,18,19,23}, u)-
PBD from [4], then apply Construction 2.2 to obtain the conclusion. 0

Lemma 4.9. For each u=1 (mod 2), u > 5, there is a (K, 3,3)-frame of type 2*.

Proof: Foru =1 (mod 4), apply Construction 2.1 with m = 2 to get a (K 3, 3)-frame
of type 2%, where the input design a (K 3, 3)-frame of type 1" exists by Lemma 4.1.

For v = 3 (mod 4), when v € {7,11,15,19,23,27,31,55}, a (K3, 3)-frame of
type 2% exists by Lemmas 4.2 and 4.3.

For u = 35,63, we start with a (K 3,3)-frame of type 1° or 1° from Lemma 4.1,
and apply Construction 2.1 with m = 14 to get a (K 3, 3)-frame of type 14° or 14°.
Applying Construction 2.7 with e = 0 and a (K 3, 3)-frame of type 27, we can get a
(K1 3,3)-frame of type 2%,

For u = 39, start with a TD(5,4) in [16]. Delete a vertex from the last group to
obtain a {4,5}-GDD of type 3!'4%. Give each vertex weight 4, and apply Construc-
tion 2.2 to get a (K 3, 3)-frame of type 121164, where the input design (K 3, 3)-frames
of type 4* and 4° exist by Lemma 4.8. Applying Construction 2.7 with ¢ = 1 and
(K1 3,3)-frames of type 27 and 2°, we can obtain a (K 3, 3)-frame of type 2%,

For uw = 47, start with a TD(5,5) in [16]. Delete 2 vertices from the last group
to obtain a {4,5}-GDD of type 3'5%. Give each vertex weight 4, and apply Con-
struction 2.2 to get a (K 3, 3)-frame of type 12!120*. Applying Construction 2.7 with
e =1, we can obtain a (K 3, 3)-frame of type 247.

For u = 95, we start with a (K 3,3)-frame of type 1° from Lemma 4.1, and
apply Construction 2.1 with m = 38 to get a (K 3,3)-frame of type 38°. Applying
Construction 2.7 with € = 0 and a (K 3, 3)-frame of type 2, we can get a (K 3, 3)-
frame of type 2%.

For all other values of u, we can always write v as u = 2t+8n+1 where 0 <t < n,
t #2,3,n>4and n # 6,10. We start with an idempotent TD(5,n) in [16] with n
blocks By, Bs, -, B, in a parallel class. Delete n — ¢ vertices in the last group that
lie in By1, Byio,- -+, B,. Taking the truncated blocks By, By, - -, B, as groups, we
have formed a {t,n,4,5}-GDD of type 54"7" when ¢ > 4, or a {n,4,5}-GDD of
type 5'4"7" when ¢t = 0,1. Give each vertex weight 4, and apply Construction 2.2
to get a (K1 3, 3)-frame of type 20'16"*. Applying Construction 2.7 with e = 1 and
(K13, 3)-frames of types 27 and 2'', we can obtain a (K 3, 3)-frame of type 2*. The
proof is complete. 0

5 Proof of Theorem 1.3

Now we are in the position to prove our main result.
Proof of Theorem 1.3: We distinguish two cases.

1. A=1,2 (mod 3). In this case we have three subcases.
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(1) g =3 (mod 12). By Theorem 1.1 we have u = 1 (mod 4), u > 5. There exists
a K s-frame of type 3" by Lemma 3.1. Repeat each block A times to get a (K73, A)-
frame of type 3*. Apply Construction 2.1 with m = ¢/3 to get a (K33, A)-frame of
type g“.

(2) g =6 (mod 12). By Theorem 1.1 we have u = 1 (mod 2), v > 5. Similarly
we can obtain a (K 3, A)-frame of type 6" from a K 3-frame of type 6* which exists by
Lemma 3.2. Then we apply Construction 2.1 with m = g/6 to get a (K 3, \)-frame
of type g".

(3) g = 0 (mod 12). By Theorem 1.1 we have v > 3. Similarly we can use
Construction 2.1 with m = ¢/12 and a K s-frame of type 12" from Lemma 1.2 to
obtain a (K 3, \)-frame of type g“.

2. A=0 (mod 3). In this case we also have three subcases.

(1) g =1,3 (mod 4). By Theorem 1.1 we have u =1 (mod 4), u > 5. Similarly
we can use Construction 2.1 with m = ¢ and a (K3, 3)-frame of type 1" from
Lemma 4.1 to obtain a (K 3, A)-frame of type g*.

(2) g =2 (mod 4). By Theorem 1.1 we have u = 1 (mod 2), v > 5. Similarly
we can use Construction 2.1 with m = ¢/2 and a (K 3,3)-frame of type 2* from
Lemma 4.9 to obtain a (K7 3, A)-frame of type g*.

(3) g =0 (mod 4). Let g = 4s, s > 1. By Theorem 1.1 we have v > 3. When
v = 3 and s = 1, by Lemma 4.6 a (K3, 6t 4+ 3)-frame of type 4* can not exist
for any ¢ > 0, and by Lemma 4.7 there exists a (K 3, 6t)-frame of type 43 for any
t > 1. When v =3 and s > 1, a (K3, A)-frame of type g* can be obtained from a
(K1 3,3)-frame of type g" which exists by Lemma 4.5. When u > 4, there exists a
(K1 3,3)-frame of type 4 by Lemma 4.8. Apply Construction 2.1 with m = s to get
a (Kj 3, A)-frame of type g*. 0
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