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Abstract

Let G be an abelian group of finite order n, and let h be a positive integer.
A subset A of G is called weakly h-incomplete if not every element of G
can be written as the sum of h distinct elements of A; in particular, if A
does not contain h distinct elements that add to zero, then A is called
weakly h-zero-sum-free. We investigate the maximum size of weakly h-
incomplete and weakly h-zero-sum-free sets in G, denoted by Ch(G) and
Zh(G), respectively. Among our results are the following: (i) IfG is of odd
order and (n− 1)/2 ≤ h ≤ n− 2, then Ch(G) = Zh(G) = h+1, unless G
is an elementary abelian 3-group and h = n−3; (ii) If G is an elementary
abelian 2-group and n/2 ≤ h ≤ n − 2, then Ch(G) = Zh(G) = h + 2,
unless h = n− 4.

1 Introduction

Throughout this paper, G denotes a finite abelian group of order n ≥ 2, written in
additive notation. As is well known, G has a unique invariant decomposition: that
is, it can be written uniquely as the direct product of nontrivial cyclic terms with the
order of each term dividing the order of the next; we let q and r denote the exponent
(the order of the last term) and rank (the number of terms) of G, respectively. If G
is cyclic, we identify it with Zn = Z/nZ; more generally, if G is homocyclic, we write
G = Z

r
q. We let L denote the subset consisting of the identity element of G as well

as of all involutions in G: that is, L contains all elements of G of order 1 or 2. Note
that L is a subgroup of G; in fact, L is isomorphic to the elementary abelian 2-group
whose rank equals the number of even-order terms in the invariant decomposition
of G.

For a subset A of G we let |A| denote the size of A and s(A) denote the sum of
the elements of A. For a positive integer h, the (unrestricted) h-fold sumset of A,
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denoted by hA, is the collection of all elements of G that can be written as the sum
of h (not necessarily distinct) elements of A, and the h-fold restricted sumset of A,
denoted by ĥ A, consists of the elements of G that can be written as the sum of h
distinct elements of A.

Many questions in additive combinatorics focus on properties of sumsets; for
example: How large can a subset of G be without its sumset yielding all of G?
While the answer to this question is solved for unrestricted sumsets (see Theorem
2.1 below), we know much less about restricted sumsets. The two questions we
address in this paper are as follows:

• How large can a subset A of G be if ĥ A �= G?

• How large can a subset A of G be if 0 �∈ ĥ A?

In particular, we are interested in finding the quantities

Ch(G) = max{|A| | A ⊆ G, ĥ A �= G}
and

Zh(G) = max{|A| | A ⊆ G, 0 �∈ ĥ A}.
We say that a subset A of G is weakly h-incomplete if ĥ A �= G and that A is weakly
h-zero-sum-free if 0 �∈ ĥ A.

These questions can be traced back to the paper [6] of Erdős and Heilbronn,
and variations have been investigated by several authors, including Balandraud [4];
Gao and Geroldinger [8]; Lev [12]; Nguyen, Szemerédi, and Vu [13]; and Nguyen
and Vu [14]. (The terms ‘h-incomplete’ and ‘h-zero-sum-free’ have been used in
the literature, though we added the word ‘weakly’ to signify the fact that we are
considering restricted sumsets.)

One particularly well-researched special case is the problem of finding the largest
weakly 3-zero-sum-free sets in the elementary abelian 3-group Z

r
3, as it corresponds

to cap sets in affine geometry; see [9] by Gao and Thangadurai and its references for
r ≤ 5 and [15] by Potechin for the case r = 6. The fact that Z3(Z

r
3) is only known

for r ≤ 6 cautions us about the extreme difficulty of these questions; in his blog [17],
Tao writes “Perhaps my favourite open question is the problem on the maximal size
of a cap set.”

At the present time, the only type of group for which Zh(G) and Ch(G) are known
for every value of h is the cyclic group of prime order, and this is due to the fact this
is the only case when tight lower bounds for the size of h-fold restricted sumsets are
known. Namely, solving a thirty-year open question of Erdős and Heilbronn, in 1994
Dias Da Silva and Hamidoune [5] proved that in the cyclic group of prime order p,
for any nonempty subset A and positive integer h ≤ |A| we have

|ĥ A| ≥ min{p, h|A| − h2 + 1}.
(Soon after, Alon, Nathanson, and Ruzsa provided a different proof; cf. [1] and [2].)
The fact that this bound is tight can be seen by realizing that equality holds when A
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is an interval (or, more generally, an arithmetic progression): one can readily verify
that if A is an interval of size m in Zp (with m ≥ h), then ĥ A is an interval of
size min{p, hm − h2 + 1}. Consequently, in Zp, the maximum size of a weakly h-
incomplete set is given by the largest integer m for which hm− h2+1 is less than p,
or m = �(p− 2)/h�+ h. Furthermore, for this value of m, assuming also that h < p,
we can choose an interval A in Zp of size m for which the interval ĥ A avoids zero.
Therefore, we have the following:

Theorem 1.1 For any prime p and positive integer h ≤ p− 1 we have

Ch(Zp) = Zh(Zp) = �(p− 2)/h�+ h.

We make the following observation: When

(p− 1)/2 ≤ h ≤ p− 2,

then �(p− 2)/h� = 1, and thus

Ch(Zp) = Zh(Zp) = h+ 1.

One goal of this paper is to prove that the same equations hold in almost every group
of odd order. Namely, we prove the following: If G is a group of odd order n that is
not an elementary abelian 3-group, and h is an integer with

(n− 1)/2 ≤ h ≤ n− 2,

then
Ch(G) = Zh(G) = h + 1.

More generally:

Theorem 1.2 Let G be an abelian group of order n and exponent q, and suppose
that its subgroup of involutions L has order l. Then for every integer h with

(n+ l)/2− 1 ≤ h ≤ n− 2,

we have
Ch(G) = Zh(G) = h + 1,

with the following two exceptions:

• If h = n− 3 and q = 3, then Ch(G) = h+ 1 and Zh(G) = h.

• If h = n− 2, l = 2, and q ≡ 2 mod 4, then Ch(G) = h + 1 and Zh(G) = h.

Note that Theorem 1.2 is vacuous if (and only if) G is an elementary abelian
2-group; for this case we have the following result:
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Theorem 1.3 Let G be an elementary abelian 2-group of order n = 2r, and suppose
that h is an integer with

n/2− 1 ≤ h ≤ n− 2.

Then
Ch(G) = Zh(G) = h + 2,

except when h = n− 4, in which case Ch(G) = h + 2 and Zh(G) = h.

Given our theorems above—as well as related results such as those in [13] by
Nguyen, Szemerédi, and Vu—we may get the impression that Ch(G) and Zh(G) are
usually equal or that at least they are close to one another. The following example
shows that, actually, Ch(G) and Zh(G) may be arbitrarily far from one another.

We say that an m-subset A of G is a weak Sidon set in G, if 2̂ A has size exactly(
m
2

)
; in other words, if no element of G can be written as a sum of two distinct

elements of A in more than one way (not counting the order of the terms). Weak
Sidon sets were introduced and studied by Ruzsa in [16]; though the same concept
under the name “well spread set” was investigated earlier; cf. [10] and [11].

Proposition 1.4 Let G be an elementary abelian 2-group. Then a subset A of G is
weakly 4-zero-sum-free if, and only if, it is a weak Sidon set.

Proof: Let us suppose first that A is weakly 4-zero-sum-free in G, and that a1+a2 =
a3 + a4 for some elements a1, a2, a3, and a4 of A with a1 �= a2 and a3 �= a4. We then
have

a1 + a2 + a3 + a4 = 0,

which can only happen if the four terms are not pairwise distinct. By our assumption,
this leads to {a1, a2} = {a3, a4}, which proves that A is a weak Sidon set in G. The
other direction is similar. �

According to Proposition 1.4, if A is a weakly 4-zero-sum-free subset of size m in
an elementary abelian 2-group G of order n = 2r, then

(
m

2

)
≤ n.

On the other hand, we clearly have C4(G) ≥ n/2. This yields the following result:

Proposition 1.5 Let G be an elementary abelian 2-group of rank r. We then have

lim
r→∞

(C4(G)− Z4(G)) = ∞.
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2 Weakly h-incomplete sets

In this section we study the function

Ch(G) = max{|A| | A ⊆ G, ĥ A �= G};
but first, we must mention that the related quantity

ch(G) = max{|A| | A ⊆ G, hA �= G}
has been completely determined in [3]. The result can be stated as follows:

Theorem 2.1 (Bajnok; cf. [3]) For any abelian group G of order n and for every
positive integer h, we have

ch(G) = max {(�(d− 2)/h�+ 1) · n/d} ,
where the maximum is taken over all divisors d of n.

Observe that—unlike Ch(G)—the value of ch(G) depends only on the order n of
G and not on its structure.

Below, we will employ the fact that ch(G) is known in the case when G has even
order. Namely, by letting

fh(d) = (�(d− 2)/h�+ 1) · n/d,
we see that fh(1) = 0, fh(2) = n/2, and for d ≥ 3, we get

fh(d) ≤ ((d− 2)/h+ 1) · n/d = ((h− 2)/d+ 1) · n/h ≤ ((h− 2)/3 + 1) · n/h ≤ n/2.

Therefore, we have the following:

Corollary 2.2 For any abelian group G of even order n and for every integer h ≥ 2,
we have ch(G) = n/2.

Let us now turn to the function Ch(G). These values are easy to find for h = 1,
h = n− 1, and h = n:

Proposition 2.3 For any abelian group G of order n we have C1(G) = n − 1,
Cn−1(G) = n− 1, and Cn(G) = n.

Proof: Each of these claims is quite obvious; for example, to see that Cn−1(G) = n−1,
note that for any subset A of G of size n− 1, (n− 1)̂ A consists of a single element,
and, on the other hand, (n − 1)̂ G = G, since for each g ∈ G, the sum of the n − 1
elements in G \ {s(G)− g} equals s(G \ {s(G)− g}) = g. �

Next, we determine Ch(G) for h = 2:
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Theorem 2.4 Let G be an abelian group of order n, and suppose that its subgroup
of involutions has order l. We then have C2(G) = (n+ l)/2.

Proof: First, we prove that C2(G) ≥ (n+ l)/2 by finding a subset A of G with

|A| = (n+ l)/2

for which 2̂ A �= G. Observe that the elements of G \ L are distinct from their
inverses, so we have a (possibly empty) subset K of G \ L with which

G = L ∪K ∪ (−K),

and L, K, and −K are pairwise disjoint. Now set A = L ∪ K. Clearly, A has the
right size; furthermore, it is easy to verify that 0 �∈ 2̂ A and thus 2̂ A �= G.

To prove that C2(G) ≤ (n + l)/2, we need to prove that for every subset A of
G of size larger than (n + l)/2, we have 2̂ A = G. Since this trivially holds when
L = G, we assume that L �= G.

To continue, we need the following property.

Claim: For a given g ∈ G, let Lg = {x ∈ G | 2x = g}. If Lg �= ∅, then |Lg| = l.

Proof of Claim: Choose an element x ∈ Lg. Then, for every y ∈ Lg, we have
2(x − y) = 0, and thus x − y ∈ L. Therefore, x − Lg ⊆ L, so |x − Lg| = |Lg| ≤ l.
Similarly, x+ L ⊆ Lg, so |x+ L| = l ≤ |Lg|. This proves our claim.

Now letm = (n+l)/2+1. Note that our assumption onG implies that 3 ≤ m ≤ n.

Let A be an m-subset of G, let g ∈ G be arbitrary, and set B = g − A. Then
|B| = m, and thus

|A ∩ B| = |A|+ |B| − |A ∪B| ≥ 2m− n = l + 2.

By our claim, we must have an element a1 ∈ A ∩ B for which a1 �∈ Lg. Since
a1 ∈ A ∩ B, we also have an element a2 ∈ A for which a1 = g − a2 and thus
g = a1 + a2. But a1 �∈ Lg, and therefore a2 �= a1. In other words, g ∈ 2̂ A; since g
was arbitrary, we have G = 2̂ A, as claimed. �

The value of C3(G) is not known in general and is, in fact, the subject of active
interest—see [3]. Here we present the result for elementary abelian 2-groups:

Theorem 2.5 If G is the elementary abelian 2-group of order n = 2r, then C3(G) =
n/2 + 1.

Proof: Let H be a subgroup of index 2 in G, select an arbitrary element g ∈ G \H ,
and let A = H ∪ {g}. Clearly, g �∈ 3̂ H ; furthermore, since no two distinct elements
of H add to zero, we have g �∈ 3̂ A. Therefore, C3(G) ≥ n/2 + 1.

Now let B be a subset of G of size n/2 + 2; we need to show that 3̂ B = G.
(This part of our argument is based on the proof of Theorem 1 in [12].) Suppose,
indirectly, that this is not so. Let g ∈ G \ 3̂ B, and C = (g + B) \ {0}. Since
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|C| = |B| − 1 = n/2 + 1, by Corollary 2.2, we must have 3C = G, in particular,
0 ∈ 3C. Therefore, we have elements c1, c2, and c3 that add to 0, and thus elements
b1, b2, and b3 in B for which

(g + b1) + (g + b2) + (g + b3) = 0.

But 2g = 0 in G, so we get g = b1 + b2 + b3. Since g ∈ G \ 3̂ B, this can only happen
if two of b1, b2, or b3, say b1 and b2, equal each other. Therefore, b1 + b2 = 0, so
g = b3, and thus g + b3 = 0. But this is a contradiction, since 0 �∈ C. �

Regarding the general case, we present an immediate lower bound for Ch(G).
Observe that, if A is any subset of size h + 1 in G, then ĥ A has size h + 1 as well.
This yields:

Proposition 2.6 For any abelian group G of order n and for every positive integer
h ≤ n− 2, we have Ch(G) ≥ h+ 1.

We are now ready to establish our results for Ch(G) for ‘large’ h. The following
lemma will prove useful.

Lemma 2.7 Let G be a finite abelian group, and suppose that m and h are integers
for which

Ch+1(G) ≤ m ≤ Ch(G).

Then Cm−h(G) = m.

Proof: Since m ≤ Ch(G), there exists a subset A of G of size m for which ĥ A �= G.
But (m− h)̂ A and ĥ A have the same size, so we must have (m− h)̂ A �= G as well,
and thus Cm−h(G) ≥ m.

Now let B be any subset of G of size m+1; we need to prove that (m−h)̂ B = G.
Since (m− h)̂ B and (h+ 1)̂ B have the same size, we can show that (h+ 1)̂ B = G
instead. Since that follows from Ch+1(G) ≤ m, our proof is complete. �

According to the following result, our lower bound of Proposition 2.6 is actually
exact when h is ‘large’:

Theorem 2.8 Let G be an abelian group of order n, and suppose that its subgroup
of involutions has order l. Then for every integer h with

(n+ l)/2− 1 ≤ h ≤ n− 2,

we have Ch(G) = h+ 1.

Proof: Our claim follows from Proposition 2.3, Theorem 2.4, and Lemma 2.7, since

C2(G) = (n+ l)/2 ≤ h + 1 ≤ n− 1 = C1(G).

�
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We should point out that, when the order of G is odd, then L = {0}, so we have
Ch(G) = h + 1 for all (n − 1)/2 ≤ h ≤ n − 2. More generally, when L �= G, then,
since L is a subgroup of G, (n+ l)/2 is at most 3n/4, so Theorem 2.8 establishes the
function Ch(G) for at least when h ∈ [3n/4, n − 2]. However, Theorem 2.8 is void
when L = G; in this case we have the following two results:

Theorem 2.9 Suppose that G is the elementary abelian 2-group of order n = 2r.

1. For each integer h with n/2− 1 ≤ h ≤ n− 2, we have Ch(G) = h+ 2.

2. For each integer h with 4 ≤ h ≤ n/2− 2, we have

n/2 ≤ Ch(G) ≤ n/2 + h− 2.

Proof: Our first claim follows from Theorem 2.4, Theorem 2.5, and Lemma 2.7, since

C3(G) = n/2 + 1 ≤ h+ 2 ≤ n = C2(G).

The first inequality of the second claim follows from Corollary 2.2, since ch(G) ≤
Ch(G). To prove the second inequality, let A be a subset of G of size n/2 + h − 1.
Let us fix a subset B of A of size h − 3, and let C = A \ B. Then C has size
n/2 + 2, so 3̂ C = G by Theorem 2.5, and thus (h − 3)̂ B + 3̂ C = G as well. But
(h− 3)̂ B + 3̂ C ⊆ ĥ A, so ĥ A = G, which proves our claim. �

3 Zero-sum sets of given size

In this section we develop some results that lay the groundwork for our study of
Zh(G) in Section 4. Namely, given an arbitrary abelian group G of order n, we
present complete answers to the following three questions:

• What are the values of m ∈ N for which an m-subset A of G exists whose
elements sum to zero?

• What are the values of m ∈ N for which an m-subset A of G \ {0} exists whose
elements sum to zero?

• What are the values of m ∈ N for which an m-subset A of G exists whose
elements sum to an element of G \ A?

We believe these results are of independent interest. (We note that some partial
answers to the first two questions appeared in Section 7 of [7].)

We start with the following easy lemma.

Lemma 3.1 Suppose that G is a finite abelian group with L as the subgroup of
involutions; let |L| = l.
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1. If l = 2 with L = {0, e}, then the sum s(G) of the elements of G equals e.

2. If l �= 2, then s(G) = 0.

Proof: Recall that L is isomorphic to an elementary abelian 2-group, hence s(L) = 0,
unless l = 2, in which case s(L) equals the unique element of order 2. Our claims
follow from the fact that we have s(G) = s(L). �

We now classify all positive integers m for which one can find m nonzero elements
in a given abelian group G that add to 0. We separate the cases when G is an
elementary abelian 2-group and when it is not.

Theorem 3.2 Let G be the elementary abelian 2-group of order n = 2r, and let m
be a positive integer. Then G \ {0} contains a zero-sum subset of size m if, and only
if, 3 ≤ m ≤ n− 4 or m = n− 1.

Proof: For a given positive integer k, let M(k) denote the set of nonnegative integers
m for which Z

k
2 \ {0} contains a zero-sum subset of size m. We start by stating and

proving three easy claims about M(k).

Claim 1: Suppose that k ≥ 2. We then have m ∈ M(k) if, and only if, 2k−1−m ∈
M(k).

Proof of Claim 1: Observe that by Lemma 3.1, s(Zk
2) = 0, and thus s(Zk

2 \ {0}) = 0.
Therefore, for any A ⊆ Z

k
2 \ {0}, we have

s(A) = s((Zk
2 \ {0}) \ A),

from which our claim follows.

Claim 2: If m ∈ M(k) for some positive integer k ≥ 2, then m ∈ M(k + 1).

Proof of Claim 2: Clearly, if A is a subset of Zk
2 \ {0} of size m with s(A) = 0, then

B = {0} × A is a subset of Zk+1
2 \ {0} of size m with s(B) = 0.

Claim 3: Let k and l be integers so that 2 ≤ l ≤ k. If m ∈ M(k), then m + 2l ∈
M(k + 1).

Proof of Claim 3: As in the proof of Claim 2, if A is a subset of Zk
2 \ {0} of size m

with s(A) = 0, then B = {0} ×A is a subset of Zk+1
2 \ {0} of size m with s(B) = 0.

Let H be a subgroup of order 2l in Z
k
2. Then C = {1} × H is a subset of

Z
k+1
2 \ {0} of size 2l with s(C) = 0. Therefore, B ∪ C ⊆ Z

k+1
2 \ {0} has size m + 2l

and s(B ∪ C) = 0, and thus m+ 2l ∈ M(k + 1), as claimed.

We are now ready to prove Theorem 3.2. Suppose that G has rank r ≥ 2; we
need to prove that

M(r) = {0} ∪ {3, 4, . . . , 2r − 4} ∪ {2r − 1}.
We trivially have 0 ∈ M(r) and 1 �∈ M(r). Furthermore, 2 �∈ M(r) follows from
the fact that each element of Z

r
2 is its own inverse. By Claim 1, we then have

2r − 3 �∈ M(r), 2r − 2 �∈ M(r), and 2r − 1 ∈ M(r).
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Assume now that 3 ≤ m ≤ 2r − 4; we need to prove that m ∈ M(r). Our
assumption implies that r ≥ 3; we verify our claim for r = 3 and r = 4, then proceed
by induction.

Recall that 2r − 1 ∈ M(r) for each r ≥ 2; in particular, 3 ∈ M(2) and 7 ∈ M(3).
Therefore, by Claim 2, we have 3 ∈ M(3), 3 ∈ M(4), and 7 ∈ M(4). Furthermore,
3 ∈ M(3) implies that 4 ∈ M(3) by Claim 1, and thus 4 ∈ M(4) by Claim 2. By
Claim 1, we then also have {8, 11, 12} ⊆ M(4). This completes the case of r = 3,
and leaves only m = 5, 6, 9, 10 to be verified for r = 4; by Claim 1, it suffices to do
this for m = 5 and m = 6.

For i ∈ {1, 2, 3, 4}, we let ei denote the element of Z4
2 with a 1 in the i-th position

and 0 everywhere else. Then the sets

{e1, e2, e3, e4, e1 + e2 + e3 + e4}
and

{e1, e2, e3, e4, e1 + e2, e3 + e4}
show that 5 ∈ M(4) and 6 ∈ M(4). This completes our claim for r = 4.

Suppose now that k ≥ 4 and m ∈ M(k) for every 3 ≤ m ≤ 2k − 4; we will
show that m ∈ M(k + 1) for every 3 ≤ m ≤ 2k+1 − 4. For 3 ≤ m ≤ 2k − 4, this
follows from Claim 2. Since k ≥ 4, we have 3 ≤ 2k − 7, so 2k − 7 ∈ M(k), and thus
2k − 3 ∈ M(k + 1) by Claim 3; similarly, 2k − 2 ∈ M(k + 1) and 2k − 1 ∈ M(k + 1).
Therefore, m ∈ M(k+1) for every 3 ≤ k ≤ 2k − 1, and thus m ∈ M(k+1) for every
2k ≤ m ≤ 2k+1 − 4 as well by Claim 1. This completes our proof. �

Theorem 3.3 Let G be an abelian group of order n that is not isomorphic to an
elementary abelian 2-group. Suppose that the subgroup of involutions in G has order
l, and let m be a positive integer. Then G \ {0} contains a zero-sum subset of size
m if, and only if, one of the following conditions holds:

• 2 ≤ m ≤ n− 3;

• m = n− 2 and l = 2; or

• m = n− 1 and l �= 2.

Proof: We may clearly assume that 2 ≤ m ≤ n−1. Let us write Ord(G, 2) = L\{0}
and

G = {0} ∪Ord(G, 2) ∪K ∪ −K,

where the four components are pairwise disjoint and, since G is not isomorphic to
an elementary abelian 2-group, K and −K are nonempty. We examine three cases.

Case 1: l = 1.

In this case, the exponent q and the order n are odd, and Ord(G, 2) = ∅, and
thus G \ {0} = K ∪ −K. Clearly, G \ {0} contains a zero-sum subset of every even
size m ≤ n − 1. Furthermore, we see that G \ {0} does not have a zero-sum set of
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size n− 2. It remains to be shown that G \ {0} contains a zero-sum subset of every
odd size 3 ≤ m ≤ n− 4.

If n = 7, then the set {1, 2, 4} proves our claim, so let us assume that n ≥ 9 or,
equivalently, that |K| ≥ 4. Let g1 be any element of K; since |K| ≥ 4, we can find
another element g2 ∈ K so that g2 �= −2g1 and g2 �= q−1

2
g1.

We first prove that the six elements ±g1,±g2, and ±(g1+g2) are pairwise distinct.
Indeed, g1 and g2 are distinct elements of K, so −g1 and −g2 are distinct elements
of −K. So g1 + g2 �= 0, and thus one of g1 + g2 or −(g1 + g2) is an element of K
and the other is an element of −K. If g1 + g2 is in K, then it must be distinct from
both g1 and g2, since neither of these is 0, and so −(g1 + g2) is distinct from −g1
and −g2 as well. Furthermore, if g1 + g2 is in −K, then it must be distinct from
−g1 since g2 �= −2g1, and if it were equal to −g2, then we would get 2g2 = −g1, so
q+1
2

· 2g2 = q+1
2

· (−g1), that is, g2 =
q−1
2
g1, which we ruled out.

Therefore, we are able to partition G as

G = {0} ∪ {±g1,±g2,±(g1 + g2)} ∪K ′ ∪ −K ′,

where K ′ ⊂ K and |K ′| = (n − 7)/2. Note that (m − 3)/2 ≤ |K ′|; let K1 ⊆ K ′ of
size (m− 3)/2. Then

A = {g1, g2,−(g1 + g2)} ∪K1 ∪ −K1

has size m and its elements sum to 0.

Case 2: l = 2.

In this case, q is even and n/q is odd, and |Ord(G, 2)| = 1. Let Ord(G, 2) = {e};
we then have

G = {0} ∪ {e} ∪K ∪ −K.

Clearly, G\{0} contains a zero-sum subset of every even size m ≤ n−2; we consider
odd values of m next.

The case of m = n− 1 is settled by the fact that the elements of G \ {0} add up
to e by Lemma 3.1. Next, we consider m = n − 3, in which case we are looking for
a set A of the form

A = G \ {0, g1, g2}
whose elements add to 0. Now m ≥ 3, so n ≥ 6, and since q is even and n/q is odd,
we then must have q ≥ 6 as well. Let g1 be any element of G of order q, and let
g2 = e− g1. Then g1 and g2 are distinct nonzero elements of G, since g1 = g2 would
imply that g1 has order at most 4. Thus A satisfies our requirements.

This leaves us with the cases of odd m values with 3 ≤ m ≤ n−5. If n = 8, then
our assumptions imply that G is cyclic, in which case the set {1, 3, 4} satisfies our
claim. If n ≥ 10, then |K| ≥ 4, so this case can be handled as in Case 1 above.

Case 3: l > 2.

In this case, q and n/q are even, and |Ord(G, 2)| > 1. Note that the elements of
G, and thus the elements of G \ {0}, sum to 0; this settles the cases of m = n − 1
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and m = n− 2. We need to show that a zero-sum subset of G \ {0} of size m exists
for every 2 ≤ m ≤ n− 3.

Recall that L is isomorphic to an elementary abelian 2-group, so |Ord(G, 2)| is 1
less than a power of 2; so, by assumption, it equals 3 or is at least 7.

Suppose first that |Ord(G, 2)| = 3. Since the three elements of Ord(G, 2) add to 0,
G\{0} contains a zero-sum subset of every odd size 3 ≤ m ≤ 3+2|K| = n−1. Clearly,
G \ {0} also contains a zero-sum subset of every even size 3 ≤ m ≤ 2|K| = n− 4 as
well, completing this case.

Suppose now that |Ord(G, 2)| ≥ 7. By Theorem 3.2, Ord(G, 2), and thus G \
{0}, contains a zero-sum subset of size m for every 2 ≤ m ≤ |Ord(G, 2)| − 3.
If |Ord(G, 2)| − 2 ≤ m ≤ n − 4, then we may write m as m = m1 + 2k1, with
0 ≤ k1 ≤ |K| and m1 = |Ord(G, 2)| − 3 (if m is even) or m1 = |Ord(G, 2)| − 4
(if m is odd). Therefore, G \ {0} contains a zero-sum subset of every size m with
2 ≤ m ≤ n − 4. Finally, if m = n− 3, then m = |Ord(G, 2)|+ 2(|K| − 1), so again
G \ {0} contains a zero-sum subset of size m. This completes our proof. �

Corollary 3.4 Let G be an abelian group of order n. Suppose that the subgroup of
involutions in G has order l, and let m be a positive integer with m ≤ n. Then G
contains a zero-sum subset of size m with the following exceptions:

• G is isomorphic to an elementary abelian 2-group and m ∈ {2, n− 2}; or
• l = 2 and m = n.

Proof: The claim is trivial for m = 1, and is a restatement of Lemma 3.1 if m = n.
If G and m are such that G \ {0} contains a zero-sum set A of size m or m − 1,
then either A or A ∪ {0} satisfies our claim. By Theorems 3.2 and 3.3, this leaves
only the case when G is isomorphic to an elementary abelian 2-group and m = 2 or
m = n − 2, for which the claim follows from the fact that each element is its own
inverse then. �

Corollary 3.5 Let G be an abelian group of order n and exponent q. Suppose that
the subgroup of involutions in G has order l, and let m be a positive integer. Then G
contains a subset A of size m for which s(A) �∈ A if, and only if, one of the following
conditions holds:

• 2 ≤ m ≤ n− 4;

• m = n− 3 and G is not isomorphic to an elementary abelian 2-group;

• m = n− 2 and G is not isomorphic to an elementary abelian 3-group; or

• m = n− 1 and l �= 2; or m = n− 1, l = 2, and q is divisible by 4.

Proof: We can clearly assume that 2 ≤ m ≤ n− 1, and by Theorems 3.2 and 3.3, it
suffices to consider the following cases:
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(i) m = n− 3 and G is isomorphic to an elementary abelian 2-group;

(ii) m = n− 2 and l �= 2; and

(iii) m = n− 1, l = 2.

If m = n − 3 and G is isomorphic to an elementary abelian 2-group, then an
m-set A with s(A) �∈ A exists if, and only if, we can find distinct elements a1, a2, and
a3 in G for which a1 + a2 + a3 ∈ {a1, a2, a3}. This is not possible, since two distinct
elements do not add to 0.

The cases to be considered for m = n−2 are exactly those where, by Lemma 3.1,
s(G) = 0. Therefore, an m-set A with s(A) �∈ A exists if, and only if, we can find
distinct elements a1 and a2 in G for which −a1 − a2 ∈ {a1, a2}, that is, a2 = −2a1 or
a1 = −2a2. This is possible exactly when G has an element whose order is neither 1
nor 3.

Finally, suppose that m = n− 1 and l = 2. In this case, by Lemma 3.1, s(G) = e
where e is the unique element of G of order 2. Therefore, an m-set A with s(A) �∈ A
exists if, and only if, G contains an element a for which 2a = e, which is possible
exactly when q is divisible by 4. �

4 Weakly h-zero-sum-free sets

We start by determining

Zh(G) = max{|A| | A ⊆ G, 0 �∈ ĥ A}
for h = 1, 2, n− 1, and n.

Proposition 4.1 Let G be an abelian group of order n, and suppose that its subgroup
of involutions has order l. We have

1. Z1(G) = n− 1;

2. Z2(G) = (n+ l)/2;

3. Zn−1(G) = n− 1;

4. Zn(G) = n when l = 2, and Zn(G) = n− 1 when l �= 2.

Proof: The first claim is trivial, since G \ {0} is weakly 1-zero-sum-free. Let us write
G = L∪K∪(−K). Clearly, A = L∪K is weakly 2-zero-sum-free. On the other hand,
if B has size more than (n + l)/2, then it contains at least (n− l)/2 + 1 = |K| + 1
elements of K ∪ (−K), so it is not weakly 2-zero-sum-free.

To prove that Zn−1(G) = n−1, let g = s(G). Then s(G\{g}) = 0, so Zn−1(G) ≤
n − 1. But for every element g′ ∈ G \ {g}, we have s(G \ {g′}) = g − g′ �= 0, so
Zn−1(G) ≥ n− 1. Our last claim follows from Lemma 3.1. �

We can easily establish the following lower bound:
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Proposition 4.2 For any abelian group G of order n and all positive integers h ≤
n− 1 we have Zh(G) ≥ h.

Proof: Let A be any subset of G of size h. If s(A) �= 0, we are done. Otherwise,
choose elements a ∈ A and b ∈ G \A. Then for B = (A \ {a})∪{b} we have |B| = h
and

s(B) = s(A)− a+ b = b− a �= 0.

�

Next, we present a necessary and sufficient condition for Zh(G) to be at least
h + 1:

Proposition 4.3 Let G be a finite abelian group and h be a positive integer with
h ≤ n− 1. Then Zh(G) ≥ h + 1 if, and only if, there exists a subset A in G of size
h + 1 for which s(A) �∈ A.

Proof: Suppose first that A is a subset of G of size h + 1 for which s(A) �∈ A; we
prove that A is weakly h-zero-sum-free in G. Let B be any subset of size h of A,
and let a be the element of A for which B = A \ {a}. Then s(B) = s(A)− a; since
s(A) �∈ A, we have s(B) �= 0, as claimed. Therefore, Zh(G) ≥ h + 1.

Conversely, assume that all subsets of G of size h + 1 contain their sum as an
element. Let A be any subset of G of size h + 1. By assumption, s(A) ∈ A; let
B = A \ {s(A)}. Then B has size h and s(B) = 0, so A is not weakly h-zero-sum-
free in G. Therefore, Zh(G) ≤ h. �

Our next two results establish the value of Zh(G) for all ‘large’ h. First, we
consider groups with exponent at least three:

Theorem 4.4 Let G be an abelian group of order n that is not isomorphic to an
elementary abelian 2-group, and suppose that its subgroup of involutions has order l.
For every integer h with

(n+ l)/2− 1 ≤ h ≤ n− 2,

we have

Zh(G) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h if h = n− 3 and q = 3; or

h = n− 2, l = 2, and q ≡ 2 mod 4;

h + 1 otherwise.

Proof: By Proposition 4.2 and Theorem 2.8, we have

h ≤ Zh(G) ≤ h + 1.

Thus our claim follows from Proposition 4.3 and Corollary 3.5. �

For groups of exponent two, we have the following result:
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Theorem 4.5 Suppose that G is isomorphic to an elementary abelian 2-group and
has order n = 2r, and let h be an integer with n/2− 1 ≤ h ≤ n− 2. We then have

Zh(G) =

⎧⎨
⎩

h if h = n− 4;

h+ 2 otherwise.

Proof: By Proposition 4.2 and Theorem 2.9, we have

h ≤ Zh(G) ≤ h + 2.

Therefore, our result will follow from the following two claims.

Claim 1: If h is a positive integer with h ≤ n−2 and h �= n−4, then Zh(G) ≥ h+2.

Proof of Claim 1: Let m = h + 2; we then have 3 ≤ m ≤ n with m �= n − 2.
Thus, by Corollary 3.4, G contains an m-subset A with s(A) = 0; we will prove
that A is weakly h-zero-sum-free in G. Let B be any h-subset of A; we assume that
B = A \ {a1, a2}. Since a1 and a2 are distinct, we have a1 + a2 �= 0, and therefore

s(B) = s(A)− (a1 + a2) = a1 + a2 �= 0.

This proves our claim.

Claim 2: We have Zn−4(G) ≤ n− 4.

Proof of Claim 2: Suppose that A is an arbitrary subset of G with |A| = n − 3; we
let A = G \ {a1, a2, a3}. Note that a1, a2, and a3 are pairwise distinct, so no two of
them add to zero, and thus a1 + a2 + a3 ∈ A. Let B = A \ {a1 + a2 + a3}. We then
have

s(B) = s(A)− (a1 + a2 + a3),

where
s(A) = s(G)− (a1 + a2 + a3) = a1 + a2 + a3.

Thus s(B) = 0, which proves our claim. �
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