The structure of strong tournaments containing exactly one out-arc pancyclic vertex*

Qiaoping Guo[†] Gaokui Xu

School of Mathematical Sciences
Shanxi University
Taiyuan, 030006
China

Abstract

An arc in a tournament T with $n \geq 3$ vertices is called pancyclic if it belongs to a cycle of length l for all $3 \leq l \leq n$. We call a vertex u of T an out-arc pancyclic vertex of T if each out-arc of u is pancyclic in T. Yao, Guo and Zhang [Discrete Appl. Math. 99 (2000), 245–249] proved that every strong tournament contains at least one out-arc pancyclic vertex, and they gave an infinite class of strong tournaments, each of which contains exactly one out-arc pancyclic vertex. In this paper we give the structure of strong tournaments containing exactly one out-arc pancyclic vertex.

1 Introduction

Let D be a digraph with the vertex set V(D) and the arc set A(D). We denote the number of vertices in D by |V(D)|. A subdigraph induced by a subset $A \subseteq V(D)$ is denoted by D[A]. We also write D - A for D[V(D) - A].

A tournament is a digraph, where there is precisely one arc between every pair of distinct vertices. An l-cycle is a cycle of length l. An arc in a digraph D is said to be pancyclic, if it belongs to an l-cycle for all $3 \le l \le n$. An arc leaving from a vertex x in a digraph is called an out-arc of x. We call a vertex u of T an out-arc pancyclic vertex of T, if each out-arc of u is pancyclic in T.

A digraph D is said to be *strong*, if for every pair of vertices x and y, D contains a path from x to y and a path from y to x. A directed path from x to y in D is

^{*} This work is supported by the Natural Science Young Foundation of China (Nos. 11201273, 11401352, 11401354) and by the Natural Science Foundation of Shanxi Province, China (No. 2016011005).

[†] Corresponding author, guoqp@sxu.edu.cn.

denoted by (x, y)-path. D is called k-strong if $|V(D)| \ge k + 1$ and D - X is strong for any set $X \subseteq V(D)$ with |X| < k. If a digraph is strong, it is 1-strong. If a digraph D is k-strong, but not (k+1)-strong, then $\kappa(D) = k$ is defined as the strong connectivity of D.

In [4], Thomassen confirmed that every strong tournament contains a vertex x such that each out-arc of x is contained in a Hamilton cycle. In 2000, Yao et al.[5] extended the result of Thomassen and proved that every strong tournament T has an out-arc pancyclic vertex. In the same paper, they also found an infinite class of strong tournaments, each of which contains exactly one out-arc pancyclic vertex (see Figure 1). For a strong tournament T with minimum out-degree at least two, Guo et al. [3] proved that T contains at least three out-arc pancyclic vertices. This implies that a strong tournament containing exactly one out-arc pancyclic vertex can only be 1-strong.

Example. (Yao [5]). Let $n \geq 5$ be an integer and let T_n be a tournament with the vertex set $\{v_1, v_2, \ldots, v_n\}$ and the arc set

$$\{v_i v_j \mid 2 \le i < j \le n\} \cup \{v_{n-1} v_1, v_n v_1\} \cup \{v_1 v_j \mid 2 \le j \le n-2\}.$$

Then T_n contains exactly one vertex v_n whose out-arcs are pancyclic.

Figure 1: A strong tournament T containing exactly one out-arc pancyclic vertex, where $v_i \to v_j$ for all $2 \le i < j \le n$.

In this paper, we obtain a sufficient and necessary condition for a strong tournament to contain exactly one out-arc pancyclic vertex.

2 Terminology and Preliminaries

We assume that the reader is familiar with the standard terminology on digraphs and refer the reader to [1].

If uv is an arc of a digraph D, then we say that u dominates v or uv is an out-arc of u, and we write $u \to v$. For disjoint subsets X and Y of V(D), if every vertex of X dominates every vertex of Y, we say X dominates Y and write $X \to Y$. If there is no arc from a vertex in Y to a vertex in X, we say $X \Rightarrow Y$. For a tournament, $X \to Y$ if and only if $X \Rightarrow Y$.

Let $x \in V(D)$ and H be a subdigraph of D. The set of all vertices in H dominating x (dominated by x, respectively) is denoted by $N_H^-(x)$ ($N_H^+(x)$, respectively). Furthermore, $d_H^-(x) = |N_H^-(x)|$ ($d_H^+(x) = |N_H^+(x)|$, respectively) is called the *indegree* (out-degree, respectively) of x in H. We will omit the subscript if H = D. We use $\delta^+(D) = \min\{d_D^+(x) \mid x \in V(D)\}$ to stand for the minimum out-degree of D.

A path (cycle) containing every vertex of D is called a *Hamilton path (Hamilton cycle)* of D. For two vertices u, v on a path P, we let uPv denote the unique (u, v)-path on P.

A set $X \subseteq V(D)$ is called a *separating set* if D-X is not strong. A vertex $u \in V(D)$ is also called a *cut vertex* of D if $D-\{u\}$ is not strong. A *strong component* of a digraph D is a maximal induced subdigraph of D which is strong. If D is not strong, then we can partition the vertices in D into strong components T_1, T_2, \ldots, T_r $(r \ge 2)$, such that $T_i \Rightarrow T_j$ if and only if i < j.

In the proofs of our main results, the following results are very useful.

Lemma 2.1 (Camion [2]). A non-trivial tournament is strong if and only if it has a Hamilton cycle.

Lemma 2.2 (Yao [5]). Let T_n be a strong tournament on n vertices and assume that the vertices of T_n are labeled u_1, u_2, \ldots, u_n such that $d^+(u_1) \leq d^+(u_2) \leq \ldots \leq d^+(u_n)$. If $d^+(u_1) = 1$, then all out-arcs of u_1 are pancyclic.

Lemma 2.3 (Guo [3]). Every strong tournament T with minimum out-degree at least two contains at least three out-arc pancyclic vertices.

Lemma 2.4 (Yeo [6]). Let D be a k-strong digraph, with $k \geq 1$, and let S be a separating set in D, such that T = D - S is a tournament. Let T_1, T_2, \ldots, T_r $(r \geq 2)$ be the strong components of T, such that $T_1 \Rightarrow T_2 \Rightarrow \cdots \Rightarrow T_r$. Then, for every $1 \leq l \leq |V(T)| - 1$, $u \in T_1$ and $v \in T_r$, there exists a (u, v)-path of length l in T.

3 Main results

Theorem 3.1. Let T be a strong tournament with strong connectivity $\kappa(T) = 1$. Let v be a cut vertex of T and let T_1, T_2, \ldots, T_r $(r \ge 2)$ be the strong components of T - v, such that $T_i \Rightarrow T_j$ if and only if i < j. Let $x \in V(T_{r-1})$. Then the following hold:

- (1) If $V(T_{r-1}) = \{x\}$, then x is an out-arc pancyclic vertex of T if and only if $V(T_r) \to v \to x$.
- (2) If $|V(T_{r-1})| > 1$, then x is an out-arc pancyclic vertex of T if and only if $V(T_r) \to v \to x$ and for each $y \in N_{T_{r-1}}^+(x)$, there exists a Hamilton path containing xy in T_{r-1} and there exists a 3-cycle containing xy in $D[V(T_{r-1}) \cup \{v\}]$.

Proof. Since T is strong, there is a vertex u in T_1 such that $v \to u$.

(1) (Sufficiency.) Suppose $V(T_{r-1}) = \{x\}$ and $V(T_r) \to v \to x$. Let $x_1 \in N^+(x)$ be arbitrary. Then $x_1 \in V(T_r)$ and $x_1 \to v$. It is clear that xx_1vx is a 3-cycle containing xx_1 . Using Lemma 2.1 on each component, it is easy to prove that there exists a (u, x)-path P_l of length l in T for every $1 \le l \le |V(T)| - |V(T_r)| \cup \{v\}| - 1$. Thus xx_1vuP_lx is a cycle of length l+3 containing xx_1 for every $1 \le l \le |V(T)| - |V(T_r)| - 2$. Suppose that $x_1x_2 \dots x_{|V(T_r)|}x_1$ is a Hamilton cycle of T_r . Then $xx_1x_2 \dots x_lvuP_{|V(T)|-|V(T_r)|-2}x$ is a cycle of length $|V(T)| - |V(T_r)| + i$ containing xx_1 for every $1 \le l \le |V(T_r)|$. Therefore, $1 \le l \le |V(T_r)|$ is contained in an $1 \le l \le l$ containing $1 \le l \le l$ containing $1 \le l \le l$ contained in an $1 \le l \le l$ containing $1 \le l \le l$ contained in an $1 \le l \le l$ containing $1 \le l \le l$ contained in an $1 \le l \le l$ containing $1 \le l \le l$ contained in an $1 \le l \le l$ containing $1 \le l \le l$ contained in an $1 \le l \le l$ containing $1 \le l \le l$ contained in an $1 \le l \le l$ containing $1 \le l \le l$ containing $1 \le l \le l$ contained in an $1 \le l \le l$ containing $1 \le l \le l$ containing

(Necessity.) Now, let $V(T_{r-1}) = \{x\}$ and x is an out-arc pancyclic vertex of T. We will prove $V(T_r) \to v \to x$. Let $z \in V(T_r)$ be arbitrary. Then $z \in N^+(x)$ and xz is pancyclic in T. So xz is in a 3-cycle. Note that $T_i \Rightarrow T_j$ if and only if i < j. This implies that $z \to v \to x$. That is, we have that $V(T_r) \to v \to x$.

(2) (Sufficiency.) Suppose that $|V(T_{r-1})| > 1$, $V(T_r) \to v \to x$ and for each $y \in N_{T_{r-1}}^+(x)$, there exists a Hamilton path containing xy in T_{r-1} and there exists a 3-cycle containing xy in $D[V(T_{r-1}) \cup \{v\}]$. We will prove that x is an out-arc pancyclic vertex of T. Let $w \in N^+(x)$ be arbitrary. Then $w \in V(T_{r-1}) \cup V(T_r)$. We only need to prove that xw is pancyclic in T.

If $w \in V(T_{r-1})$, by assumption, there exists a Hamilton path containing xw in T_{r-1} and there exists a 3-cycle containing xw in $D[V(T_{r-1}) \cup \{v\}]$. Using Lemma 2.1 on each component except T_{r-1} and using the Hamilton path containing xw in T_{r-1} , it is easy to prove that, for each $z \in V(T_r)$, there exists a (u, z)-path P_l of length l in T containing xw for every $3 \le l \le |V(T)| - 2$. Thus uP_lzvu is a cycle of length l+2 containing xw for every $0 \le l \le |V(T)| - 2$. Note that $0 \le l \le |V(T_r)| - 2$. Note that $0 \le l \le |V(T_r)| - 2$. Therefore, $0 \le l \le |V(T_r)| - 2$. Therefore $0 \le l \le |V(T_r)| - 2$. Therefore, $0 \le l \le |V(T_r)| - 2$. Therefore, $0 \le l \le |V(T_r)| - 2$. Therefore, $0 \le l \le |V(T_r)| - 2$. Therefore, $0 \le l \le |V(T_r)| - 2$. Therefore, $0 \le l \le |V(T_r)| - 2$. Therefore, $0 \le l \le |V(T_r)| - 2$. Therefore, $0 \le l \le |V(T_r)| - 2$.

(Necessity.) Let $x \in V(T_{r-1})$ be an out-arc pancyclic vertex of T. We first prove $V(T_r) \to v \to x$. Let $z \in V(T_r)$ be arbitrary. Then $z \in N^+(x)$ and xz is pancyclic in T. So xz is in a 3-cycle which implies that $z \to v \to x$. That is, we have that $V(T_r) \to v \to x$.

For each $y \in N_{T_{r-1}}^+(x)$, we have that xy is pancyclic in T, and so xy is contained in an m-cycle for every $m \in \{3, 4, \ldots, |V(T)|\}$. Let $C = vx_1x_2 \ldots x_{|V(T)|-1}v$ be a

Hamilton cycle containing xy with some $x_k = x$ and $x_{k+1} = y$. Suppose that starting from v, x_i is the first vertex and x_j is the last one appearing in $V(T_{r-1})$ on C. Then $i \leq k < j$ and $x_i x_{i+1} \dots x_j$ is a Hamilton path containing xy of T_{r-1} . Since xy is in a 3-cycle, it is clear that such a 3-cycle can only be contained in the $D[V(T_{r-1}) \cup \{v\}]$.

Theorem 3.2. Let T be a strong tournament with n vertices and strong connectivity $\kappa(T)$. Then T contains exactly one out-arc pancyclic vertex if and only if all of the following hold.

- (1) $n \ge 5$.
- (2) $\kappa(T) = 1$ and there exists a cut vertex v of T and strong components T_1, T_2, \ldots, T_r $(r \ge 3)$ of T v such that $T_i \Rightarrow T_j$ if and only if i < j and $|V(T_r)| = 1$.
- (3) There exists a vertex $z \in V(T_2) \cup \cdots \cup V(T_{r-1})$ such that $v \to z$.
- (4) If $V(T_{r-1}) = \{u_1\}$, then $u_1 \to v$. If $|V(T_{r-1})| > 1$, then, for any $x \in V(T_{r-1})$, we have $x \to v$ or there exists a vertex $y \in N_{T_{r-1}}^+(x)$ such that there is no Hamilton path containing xy in T_{r-1} or there exists a vertex $z \in N_{T_{r-1}}^+(x)$ such that there is no 3-cycle containing xz in $D[V(T_{r-1}) \cup \{v\}]$.

Proof. (Sufficiency.) Let T be a strong tournament with n vertices and strong connectivity $\kappa(T)$ and T satisfies (1)–(4). By (2), assume that v is a cut vertex of T and T_1, T_2, \ldots, T_r ($r \geq 3$) are strong components of T - v such that $T_i \Rightarrow T_j$ if and only if i < j and $|V(T_r)| = 1$. Let $V(T_r) = \{u\}$. Then $d^+(u) = 1$ and Lemma 2.2 implies that u is an out-arc pancyclic vertex of T. We will prove that any vertex except u in T is not an out-arc pancyclic vertex of T. By (3), there exists a vertex $z \in V(T_2) \cup \cdots \cup V(T_{r-1})$ such that $v \to z$. Then vz can not be contained in any Hamilton cycle of T and so v is not an out-arc pancyclic vertex of T. Let $x \in V(T_1) \cup \cdots \cup V(T_{r-2})$ be arbitrary. It is easy to see that xu can not be contained in any Hamilton cycle of T and so x is also not an out-arc pancyclic vertex of T. We consider the vertices of T_{r-1} . By (4) and Theorem 3.1, we have that any vertex T_{r-1} is not an out-arc pancyclic vertex of T. Thus, u is an unique out-arc pancyclic vertex of T.

(Necessity.) Let T be a strong tournament with n vertices and strong connectivity $\kappa(T)$ which contains exactly one out-arc pancyclic vertex. By lemma 2.3, T is a strong tournament with minimum out-degree 1. Let M be the set of vertices with out-degree 1 in T. By Lemma 2.2, all vertices in M are out-arc pancyclic vertices of T. So we have |M| = 1. If $n \leq 4$, then it is clear that $|M| \geq 2$, a contradiction. Therefore, we have $n \geq 5$ and (1) is proved.

Let $M = \{u\}$ and $N^+(u) = \{v\}$. Then v is a cut vertex of T and $\kappa(T) = 1$. Let T_1, T_2, \ldots, T_r $(r \geq 2)$ be the strong components of T - v, such that $T_i \Rightarrow T_j$ if and only if i < j. Obviously, $V(T_r) = \{u\}$ and u is an out-arc pancyclic vertex of T. If r = 2, it is easy to see that v is also an out-arc pancyclic vertex of T, a contradiction. So we have $r \geq 3$. (2) is proved.

If $V(T_2) \cup \cdots \cup V(T_{r-1}) \Rightarrow \{v\}$, then $N^+(v) \subseteq V(T_1)$. Let $v_1 \in N^+(v)$ be arbitrary. By Lemma 2.4, there exists a (v_1, u) -path P_l of length l in T for every $1 \leq l \leq |V(T)| - 2$. So vv_1P_luv is an (l+2)-cycle containing vv_1 for every $1 \leq l \leq |V(T)| - 2$, which implies that v is an out-arc pancyclic vertex of T, a contradiction. Therefore, there exists a vertex $z \in V(T_2) \cup \cdots \cup V(T_{r-1})$ such that $v \to z$ and (3) is proved.

Since u is the unique out-arc pancyclic vertex of T, we have that no vertex in T_{r-1} is an out-arc pancyclic vertex of T. Then (4) is obvious by using Theorem 3.1.

References

- [1] J. Bang-Jensen and G. Gutin, *Digraphs: Theory, Algorithms and Applications*, Springer, London, 2000.
- [2] P. Camion, Chemins et circuits hamiltoniens des graphes complets, C. R. Acad. Sci. Paris 249 (1959), 2151–2152.
- [3] Q. Guo, S. Li, H. Li and H. Zhao, The numbers of vertices whose out-arcs are pancyclic in a strong tournament, *Graphs Combin.* 30 (2014), 1163–1173.
- [4] C. Thomassen, Hamiltonian-connected tournaments, J. Combin. Theory Ser. B 28 (1980), 142–163.
- [5] T. Yao, Y. Guo and K. Zhang, Pancyclic out-arcs of a vertex in a tournament, Discrete Appl. Math. 99 (2000), 245–249.
- [6] A. Yeo, The number of pancyclic arcs in a k-strong tournament, J. Graph Theory 50 (2005), 212–219.

(Received 16 Nov 2016)