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Abstract

A quasi-symmetric design (QSD) is a (v, k, λ) design with two intersection
numbers x, y, where 0 ≤ x < y < k. The block graph of a QSD is a
strongly regular graph (SRG), whereas the converse is not true. Using
Neumaier’s classification of SRGs related to the smallest eigenvalue, a
complete parametric classification of QSDs whose block graph is an SRG
with smallest eigenvalue −3, or second largest eigenvalue 2, is obtained.

1 Introduction

Let X be a finite set of v elements called points, and β be a set of k-element subsets
of X called blocks, such that each pair of points occurs in λ blocks. Then the pair

∗ Corresponding author.
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D = (X, β) is called 2-(v, k, λ) design. For a 2-(v, k, λ) design D, the number of
blocks containing α in X is r, which is independent of α. The number of blocks in
D is denoted by b. A number x, 0 ≤ x < k, is called an intersection number of D if
there exist B,B′ ∈ β such that |B ∩ B′| = x. Symmetric designs have exactly one
intersection number.

A 2-design with two intersection numbers is said to be a quasi-symmetric design
(QSD). Denote these intersection numbers by x and y, where 0 ≤ x < y < k.
The parameters (v, b, r, k, λ; x, y) are called the standard parameters of a QSD. The
standard parameters are called feasible if they satisfy all necessary conditions. The
block graph Γ of a QSD D has vertices that are blocks of D, where two distinct
blocks B,B′ are adjacent if and only if |B ∩ B′| = y. It was shown in [15] and
[4] that a connected Γ is a strongly regular graph (SRG) with parameters (b, a, c, d).
Here b is the number of vertices of Γ, i.e. the number of blocks of the design D, a its
valency, any two adjacent vertices have exactly c common neighbors, and any two
non-adjacent vertices have exactly d common neighbors. We assume, as is customary,
that an SRG is neither the null graph nor the complete graph. The block graph of
D and block graph of D, the complement of the design D, are isomorphic.

It is well-known that a connected block graph of a QSD is an SRG with three
eigenvalues, the smallest of which is −m = −k−x

y−x
. In Theorem 6 and Remark 7 of

[11], a technique was developed to prove the non-existence of many classes of QSDs
with prescribed block graphs. Let Γ be a (b, a, c, d) SRG. To find feasible parameters
of a QSD whose block graph is Γ, steps given in the Remark 7 of [11] are followed.
In Appendix II, using these steps, we give the Mathematica code which finds the
feasible parameters of QSDs associated with an SRG having parameters (b, a, c, d).
We have assigned (15, 6, 1, 3) to (b, a, c, d) and executed the code. The code with
output is shown.

Theorem 1 ([11], Theorem 6). Let D be a QSD with parameters (v, b, r, k, λ; x, y)
and Γ be the strongly regular block graph with parameters (b, a, c, d) of D. Let y =
z+x, k = mz+x and r = nz+λ, for positive integers m and n, where m ≤ n. Then
the following conditions hold:

(i) n =
m2 − 2m+ a− c

m− 1
, c− d = n− 2m and a− d = m(n−m);

(ii) m =
1

2

(
d− c+

√
(d− c)2 + 4(a− d)

)
;

(iii) z =
(−a + c− d+m+ bm) (b− s) s

b (c− d+ 2m) (−a−m+ bm)
for some positive integer s;

(iv) 0 ≤ b2 − 4q, where

q =
b (c− d+ 2m) (−a−m+ bm)

gcd(b (c− d+ 2m) (−a−m+ bm) ,−a+ c− d+m+ bm)
.
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Using Neumaier’s classification of SRGs with smallest eigenvalue −m (see The-
orem 2), we prove Theorem 4 which gives a complete parametric classification of
QSDs having feasible block graph parameters and with least eigenvalue −3. Theo-
rem 6 deals with the case where the second eigenvalue is 2.

Theorem 2 ([7], Theorem 5.1). Let Γ be an SRG with smallest eigenvalue −m,
where m is an integer with m ≥ 2. Then Γ is one of:

1. the complete multipartite graphs with s classes of size m, with parameters

(ms,m(s− 1), m(s− 2), m(s− 1));

2. the Latin square graphs LSm(n), with parameters

(
n2, m(n− 1), n+m2 − 3m,m(m− 1)

)
;

3. the Steiner graphs Sm(n), with parameters

(
(m+ n(m− 1))(n+ 1)

m
,mn, n +m2 − 2m,m2

)
;

4. finitely many other exceptional graphs.

Theorem 2 generalizes Seidel’s classification result ([12], Theorem 14) about
strongly regular graphs with least eigenvalue −2.

The Mathematica code given in Appendix I, is written, using inequalities and
Krein conditions given in [7], to find exceptional feasible parameters of SRGs with
smallest eigenvalue −3. To find SRGs with smallest eigenvalue −k, the same code
may be executed by assigning m = k. As a QSD and its complement have isomorphic
block graphs, we list a set of parameters of a QSD, where v ≥ 2k.

We refer to [2] for existence results of SRGs and to [5, 6, 8, 9, 14] for QSDs.
For relations between parameters of QSD and SRG we refer to the sections “Pre-
liminaries” of [10] and [11]. For basics in design theory we refer to [1], and for
quasi-symmetric designs to [13].

The Computer Algebra Systems Mathematica 5 [16] and WxMaxima [17] are
used to simplify symbolic calculations given in this paper.

The following inequalities are necessary conditions for existence of QSD which
are used in the Mathematica code given in Appendix II.

Lemma 3 ([3]). Let D be a QSD with standard parameter set (v, b, r, k, λ; x, y). Then
the following inequalities hold:
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0 ≤ k(v − 6)(v − 3)(v − k)(2k − x− y)2

−2k(v − 3)(v − k)(2k(v − k)− 3v)(2k − x− y)

+(6− v)(v − 3)(v − 1)(k − x)(k − y)(2k − x− y)

+k(v − k)(5v + 3k(v − k)(k(v − k)− 2(v − 1))− 3)

+(v − 3)(k(v − k)(3v + 2)− 6(v − 1)v)(k − x)(k − y);

0 ≤ k(v − k)(k(v − k)− 1) + (v − 2)(v − 1)(k − x)(k − y)

−k(v − 2)(v − k)(2k − x− y).

2 QSDs with m = 3 or n = m+ 2

In this section we give a complete parametric classification of QSDs having feasi-
ble block graph parameters with m = 3 and QSDs with n = m + 2, which are
complements of QSDs with m = 3. We rely on Neumaier’s Theorem 2.

Theorem 4. Let Γ be an SRG with smallest eigenvalue −3 (i.e. m = 3) and having
feasible parameters of the block graph of a QSD D. Then one of the cases below
occurs:

1. Γ is the complete multi-partite graph with s classes of size 3, with parameters,
(3s, 3(s − 1), 3(s − 2), 3(s − 1)) and D is a 2-(9(1 + 2u), 6(1 + 2u), 5 + 12u)
design with intersection numbers 3(1+2u) and 4(1+2u) or the complement of
this design.

2. Γ is the Steiner graph S3(n), with parameters

(
(3 + 2n)(n+ 1)

3
, 3n, n+ 3, 9

)

and D has parameters v = 3 + 2n, k = 3, z = λ = 1, if x = 0 and v =
9(z − 1)z + 6xz + x2

x
, k = 3z + x and λ =

(x+ 3z − 1)(x+ 3z)

6
, if x �= 0, or

its complement.

3. Γ and D (up to complementation) are one of the cases given in Table 1.

Proof. Using Theorem 2 leads to one of: the complete multipartite graph with s
classes of size 3; the Latin square graph LS3(n); the Steiner graph S3(n); or finitely
many other exceptional graphs. The conclusions 1 and 2 follow by using, respectively,
Theorem 24, Proposition 23, and Theorem 25 from [10].

It now remains to find the parameters of the finitely many exceptional graphs
arising in Theorem 2. We use the Mathematica code given in Appendix I to find
exceptional feasible parameters of SRGs with eigenvalue −3. For each set (b, a, c, d)
of exceptional feasible parameters of SRGs obtained above, the code given in Ap-
pendix II is run to find feasible parameters of QSDs whose block graph parameters
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Table 1: Feasible parameters of QSDs related to known exceptional SRGs with
eigenvalue −3.

Strongly Regular Graph Quasi-symmetric Design
Sr.No. b a c d ∃ v k λ x y ∃

1) 15 6 1 3 Y 10 4 2 1 2 Y
2) 56 45 36 36 Y 21 6 4 0 2 Y
3) 69 20 7 5 Y 24 8 7 2 4 N
4) 77 60 47 45 Y 22 6 5 0 2 Y

5) 85 14 3 2 ?
35 7 3 1 3 N
35 14 13 5 8 ?

6) 120 77 52 44 Y 21 7 12 1 3 Y
7) 176 105 68 54 Y 22 7 16 1 3 Y
8) 231 30 9 3 Y 56 16 18 4 8 ?
9) 253 140 87 65 Y 23 7 21 1 3 Y

are (b, a, c, d), and the outcome is given in Table 1. During this process, the following
parameters of SRGs were found:

(49, 32, 21, 20), (57, 42, 31, 30), (76, 54, 39, 36), (96, 57, 36, 30),
(209, 16, 3, 1), (841, 200, 87, 35), (1344, 221, 88, 26), (1911, 270, 105, 27).

However, by [2], these SRGs do not exist. We thus arrive at conclusion 3 of the
theorem.

If D is a QSD with block graph Γ, then the second largest eigenvalue of Γ is
n−m. We now use the following theorem to classify QSDs with n−m = 2.

Theorem 5. If Γ is an SRG with second largest eigenvalue 2, then one of the fol-
lowing assertions holds:

1. Γ is a pseudo-geometric graph for pg(t− 1, t+1, t− 2) or the complement of a
pseudo Latin square graph L3(t+ 1).

2. Γ is a pseudo-geometric graph corresponding to pg(3t − 2, 2t + 1, 2(t − 1)),
complement of a Steiner graph S3(3t) or complement of a Steiner graph S3(3t−
1).

3. Γ is a pseudo-geometric graph corresponding to pg(t+1, s+1, s−2) where (s, t)
belongs to: (3, 3), (3, 5), (3, 9), (4, 1), (4, 7), (4, 9), (4, 12), (4, 17), (4, 27), (5, 1),
(5, 7), (5, 9), (5, 12), (5, 17), (5, 27), (6, 18), (7, 25), (8, 3), (8, 5), (8, 15), (8, 21),
(9, 42), (14, 2), (14, 4), (14, 32), (32, 5).

4. Γ has one of the parameter sets:
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(26, 15, 8, 9), (36, 14, 4, 6), (56, 10, 0, 2), (76, 30, 8, 14),
(77, 16, 0, 4), (81, 20, 1, 6), (99, 56, 28, 36), (100, 22, 0, 6),
(105, 52, 21, 30), (105, 32, 4, 12), (120, 42, 8, 18), (126, 100, 80, 84),
(126, 50, 13, 24), (154, 72, 26, 40), (162, 56, 10, 24), (162, 92, 46, 60),
(176, 70, 18, 34), (225, 128, 64, 84), (232, 154, 96, 114), (243, 110, 37, 60),
(253, 112, 36, 60), (300, 182, 100, 126), (351, 210, 113, 144),
(375, 272, 190, 216), (405, 272, 172, 204), (441, 352, 276, 300),
(476, 342, 236, 270), (540, 392, 274, 312), (703, 520, 372, 420).

Proof. If the degree of Γ is greater than 2 and Γ has the eigenvalues a, 2 and −m,
then the complementary graph Γ has the eigenvalues b−a−1, m−1 and −3. Now use
the classification of SRGs corresponding to smallest eigenvalue −3 given in Theorem
2 to complete the proof. Observe that the complement of SRGs given in Case 1 of
Theorem 4 are not connected and also do not have second largest eigenvalue 2.

Theorem 6. If D is a QSD whose block graph is the SRG with second largest eigen-
value 2, then D is one of the designs mentioned in Table 2 or its complement.

Table 2: Feasible parameters of QSDs related to SRGs with eigenvalue 2.

Strongly Regular Graph Quasi-symmetric Design
Sr.No. (s, t)∗ b a c d ∃ v k λ x y ∃

1) (4, 1) 15 8 4 4 Y 6 2 1 0 1 Y
2) (4, 9) 95 40 12 20 ? 76 36 21 16 18 ?
3) (5, 12) 126 65 28 39 Y 105 40 18 14 16 ?

4) (8, 5) 69 48 32 36 ?
46 6 1 0 1 N
46 16 8 4 6 ?

5) (8, 21) 261 176 112 132 ? 232 56 15 12 14 ?
6) (14, 4) 85 70 57 60 ? 51 21 14 6 9 N
7) – 26 15 8 9 Y 13 3 1 0 1 Y
8) – 77 16 0 4 Y 56 16 6 4 6 Y

*SRGs obtained from pg(t+ 1, s+ 1, s− 2)

Proof. The block graph of D is one of the graphs mentioned in Cases 1–4 of Theo-
rem 5. For Cases 1 and 2, we rule out the possibility of QSDs, whose block graphs
are given below, by observing that Δ = b2 − 4q < 0, using part (iv) of Theorem 1.

Theorem 26 of [10] rules out the possibility of a QSD whose block graph is the
complement of the pseudo Latin square graph L3(t + 1) for t ≥ 3.

Let Γ be the complement of a Steiner graph S3(3t) for t ≥ 2 with parameters
((1 + 2t)(1 + 3t), 2t(3t − 2), 8 − 13t + 6t2, 2(t − 1)(3t − 2)). Using part (iii) of

Theorem 6 in [11], observe that z =
s (−1 + 2t) (1− s+ 5t + 6t2)

3t(1 + 2t)2 (−2 + 3t)
, (−1 + 2t) and

t(1 + 2t)2 (−2 + 3t) are relatively prime. Write

s
(
1− s+ 5t+ 6t2

)
= pt(1 + 2t)2 (−2 + 3t)
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for positive integer p, and observe that the discriminant

Δ = −(1 + 2t)2
(−1 + (−6 − 8p) t + (−9 + 12p) t2

)

of this quadratic in s is negative for t ≥ 5.

Observe that, for t = 2, Δ = −25(−49+ 32p) is negative for p ≥ 2 and for p = 1,
z is not an integer; and for t = 3, Δ = −196(−25 + 21p) is negative for p ≥ 2 and
for p = 1, z is not an integer. Similarly the possibility of t = 4 may be ruled out.

Let Γ be the complement of a Steiner graph S3(3t−1) for t ≥ 2, with parameters
(t(1 + 6t), 2(−1 + t)(−1 + 3t), 13 − 17t + 6t2, 2(−1 + t)(−4 + 3t)). Observe that

z =
s (−5 + 6t) (−s+ t + 6t2)

(−1 + t) (−1 + 3t) (1 + 6t)2
, with (−5 + 6t) and (−1 + t)((−1 + 3t)(1 + 6t)2

being relatively prime. Hence s(−s + t + 6t2) = p(−1 + t)(−1 + 3t)(1 + 6t)2. The
discriminant of this quadratic in s is Δ = −(1 + 6t)2 (−t2 + p (4− 16t+ 12t2)). Since
Δ < 0, this case is ruled out.

For each set of parameters given in Cases 3 and 4 we run the Mathematica code
given in Appendix II to get parameters of QSDs mentioned in Table 2.

Appendix I

flag:=1

m:=3

a:=d+m(n−m)

c:=d+ n− 2m

b:= (d+(m−1)(n−m))(d+m(n+1−m))
d

f := (m−1)(d+m(n−m))(d+m(n+1−m))
dn

d1:=m(m−1)(n+1−m)(n−m)
d

n1:=m(m−1)(m3(2m−3)+1)+2m−2
2 + 1

k1:=Max[0, 2m− n]

k2:=Max[0, n− 2m + 2]

For[d = 1, d < m3(2m− 3) + 1,

For[n = m+ 1, n < n1,

If[IntegerQ[b]&&IntegerQ[f ]

&&IntegerQ[d1]&&d(n−m(m− 1)) ≤ (m− 1)(n −m)(n +m(m− 1))

&&b ≤ f(f + 3)/2&&d �= m2&&d �= m(m− 1)&&IntegerQ[
√

(c− d)2 + 4(a− d)]

&&d ≥ k1&&d1 ≥ k2&&2(n−m+ 1) ≤ m(m− 1)(d+ 1),

Print[flag++, " : ", b, "&", a, "&", c, "&", d, "& \\\\ "]];n++]; d++]
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Appendix II

b:=15
a:=6
c:=1
d:=3
ANS:="No"
k:=mz + x
r:=nz + λ
y:=z + x
m:=(d− c+

√
Factor[(d − c)∧2 + 4(a− d)])/2

λ:= bx+az+mz−nxz−mnz2

x+mz

x:=−az−mz+bmz−msz
s

n:=c− d+ 2m
z:= (−a+c−d+m+bm)(b−s)s

b(c−d+2m)(−a−m+bm)

q:=b(c− d+ 2m)(−a−m+ bm)/GCD[b(c − d+ 2m)(−a−m+ bm),
(−a+ c− d+m+ bm)]

s:=1
2(b+

√
b2 − 4pq)

v:=bk/r
P :=k(v − 6)(v − 3)(v − k)(2k − x− y)∧2− 2k(v − 3)(v − k)(2k(v − k)− 3v)(2k−x−y)
+(6− v)(v − 3)(v − 1)(k − x)(k − y)(2k − x− y) + k(v − k)(5v + 3k(v − k)(k(v − k)
−2(v − 1)) − 3) + (v − 3)(k(v − k)(3v + 2)− 6(v − 1)v)(k − x)(k − y)
Q:=k(v − k)(k(v − k)− 1) + (v − 2)(v − 1)(k − x)(k − y)− k(v − 2)(v − k)(2k − x− y)
For[p = 1, p ≤ Max[1,Quotient[b∧2, 4q]],
If[b2 − 4pq ≥ 0&&IntegerQ[s]&&IntegerQ[z]&&IntegerQ[x]&&IntegerQ[λ]&&IntegerQ[v]
&&P ≥ 0&&Q ≥ 0,
{Print[b, "&", a, "&", c, "&", d, "&", v, "&", k, "&", λ, "&", x, "&", y, "& \\\\ "],
ANS = "YES"}]; p++]
Print["Does Design parameters exist? ",ANS]

Output:
15&6&1&3&10&4&2&1&2& \\
Does Design parameters exist? YES
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