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Abstract

Let W denote a linear space over a fixed field F. We define the notions of
weak ISP-system and weak (u,v)-system S = {(U;,V;) : 1 < i < m} of
subspaces of W. We give upper bounds for the size of weak .S P-systems
and weak (u,v)-systerns.

1 Introduction

First we recall the notion of g-binomial coefficients.

The g-binomial coefficient [:1] is a g-analog for the binomial coefficient, also
q
called a Gaussian coefficient or a Gaussian polynomial. The g-binomial coefficient is
given by
n [n],!
[ } =, el (1)
mliq [n—mly!- [m]y!

for n,m € N, where [n],! is the ¢-factorial (see [2], p. 26)
[l =0+aq) A+q+¢) - Q+g+a+...+4").

Clearly we have [Z} = [nfk] . If we substitute ¢ = 1 into (1), then this substitution
q q
reduces this definition to that of binomial coefficients.

Bollobés, in [1], proved the following two remarkable results in extremal combi-
natorics.

Theorem 1.1 Let Ay,... A, and By,... B, be finite sets satisfying the conditions
(i) A;NB; =0 for each 1 <i < m;

(ii) A; N B; #0 for each i # j (1 <i,j <m).
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Then

- 1
Z (\Ai|+\Bi|) < L

i=1 | As]

Theorem 1.2 Let Ay, ... A,, ber-element sets and By, ... B,, be s-element sets such
that

(i) A;NB; =0 for each 1 <i < m;

(ii) A; N B; #0 for each i # j (1 <i,j <m).

m < (T+S>.
s

Tuza proved the following two versions of Bollobas” Theorem.

Then

Theorem 1.3 Let p be an arbitrary real number, 0 < p <1 andt:=1—p.
Let Aq,...A,, and By, ...B,, be finite sets satisfying the conditions

(i) A;NB; =0 for each 1 <i < m;
(ii) AiN B #0 or Ay B #0 fori# 5 (1<1i,7<m).

Then

Zp|f4i|t\3i\ < 1.
=1

Theorem 1.4 Let Ay, ... A, be r-element sets and By, ... B, be s-element sets sat-
isfying the conditions

(i) AN B; =0 for each 1 <i < m;
(ii) AiNB; #0 or A;NB; # 0 fori#j (1 <i,j5<m).
Then s
< s

rrss

Tuza, in [4], raised the following question: Let a,b be fixed positive integers.
Determine the largest integer m := m(a,b) such that there exists a system S =
{(A4;, B;) : 1 <i<m} of m(a,b) pairs of sets satisfying the conditions:

(i) Ay,...A,, are a-element sets and By, ... B, are b-element sets;
(i) A; N B; =0 for each 1 <1i < m;

(i) A4, NB; #Dor A;NB; £ P fori#j (1<ij<m).
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Tuza proved the following property of the numbers m(a, b) in [4].

Proposition 1.5 m(a,1) = 2a+ 1 for each a > 1. For every a,b > 1,
m(a,b) > m(a,b—1)+m(a —1,b).
a+b)

Proposition 1.5 gives a lower bound for m(a, b) near to 2( for every a and b.

Lovész, in [3], used tensor product methods to prove the following skew version
of Bollobas” Theorem for subspaces.

Theorem 1.6 Let F be an arbitrary field. Let Uy,...U, be r-dimensional and
Vi, ...V, be s-dimensional subspaces of a linear space W owver the field F. Assume
that

(i) U;NV; ={0} for each 1 <i < m;

(1) U; NV # {0} whenever i < j (1 <4,j <m).

m < (T+S>.
T

In this paper our main aim is to give a subspace version of Theorems 1.3 and 1.4.

Then

The following definitions were motivated by Theorems 1.4 and 1.6.

Definition. Let F be a fixed field. We say that a system S = {(U;,V;) : 1 <i < m}
is a weak 1S P-system of subspaces of an n-dimensional linear space W over the field
I, if S satisfies the following conditions:

(i) U;NV; ={0} for each 1 <1i < m;
(i) UV, # {0} or U; Vi # {0} fori £ (1<) < m).
Definition. Let F be a fixed field. We say that a system S = {(U;,V;) : 1 <i < m}

of subspaces of a linear space W over the field F is a weak (u, v)-system, if S satisfies
the conditions

(i) S is a weak IS P-system;
(ii) dim(U;) =u and dim(V;) = v for each 1 <i < m.

Our main results are upper bounds for the size of weak IS P-systems and weak
(u,v)-systems.
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Theorem 1.7 Let S = {(U;, Vi) : 1 <i < m} be a weak ISP-system of subspaces
of a linear space W over the finite field F,. Let u; := dim(U;) and v; :== dim(V;) for
each 1 <i<m. Let 0 < 7 <mn be an arbitrary, but fixed integer. Then we have

Ui | (v
o ]qq <1
5,

Theorem 1.8 Let S = {(U;,V;) : 1 <i<m} be a weak (u,v)-system of subspaces
of an n-dimensional linear space W over the finite field F,. Then

7\ w
< | —— .
m_(q—1> K

2 Proofs of our main results

m
i=1

In the proof of our main results we use the following bounds for the g-binomial
coefficients.

Lemma 2.1 Let 0 < j < n be natural numbers. Then
1)< G e
Jda 7 Ng—1

Proof. This follows immediately from the inequalities

¢®) <[], < (L)"q(z),

=\j=1

In the proof of Theorem 1.7 we also use the following simple lemma (see Lemma
2.2 in [5]).

Lemma 2.2 Let V' denote the n-dimensional vector space over the finite field F,
and fix an (n — d)-dimensional subspace K of V', where 0 < d < n. Let Uy be a fized
ly-subspace of V' such that Uy N K = {0}. Let u(n,d;ty,03) denote the number of
ly-subspaces Uy of V' satisfying Uy N K = {0} and Uy C Us. Then

2] v
q q )

2,

u(n, d; 0, 0y) =
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Proof of Theorem 1.7:

Let 1 <i <m, 0 < j <n be fixed integers. Let F(i,7) denote the following
subset of subspaces of W:

Fli,j):={U<W: dm(U) = j,U; CU,V;nU = {0} }.

Then it follows immediately from Lemma 2.2 that

n—v; | qU—ui)vi
; g
|: J i| q |:u'”i| q .
|: Ui i|q

[ F (i) =

for each 0 < j < n.

Lemma 2.3 Let 0 < j < n be fivred. Let 1 < i1 < iy < m be two indices. Then

F(ir, j) N F iz, ) = 0.

Proof. We can prove this statement by an indirect argument. Suppose that there
exist two indices 1 < iy < iy < m such that F(iy, j)NF(iz,j) # 0. Let U € F(iy,7)N
F(ig,j) be an arbitrary, but fixed subspace. Then U; C U and V;, N U = {0}.
Similarly U;, C U and V;, NU = {0}. Hence we find that

Uil M ‘/Zé = {0}

and
Ui2 N ‘/Zd = {0}’

which gives a contradiction, because S = {(U;,V;) : 1 < i < m} is a weak (u,v)-
system of subspaces of the linear space W. O

In the following, let 0 < j < n be a fixed integer. It follows from Lemma 2.3 that

because F(i,j) C{U < W : dim(U) = j}. Hence

AL
&= = uq' )

m
=1

Uq
But it is easy to verify that
L]
7 Jqluily

. |:77/ —V; — UZ]
["*Ui] j—ui 14
q

Us
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and hence it follows from inequality (2) that

Y[ e < [0,
X J Uy q J-a

which was to be proved. O

Proof of Theorem 1.8: If S = {(U;,V;) : 1 <i < m} is a weak (u,v)-system of
subspaces of the linear space W, then u; = dim(U;) = u and v; = dim(V;) = v for
each 1 < i < m. It follows from Theorem 1.7 that

m |:nf‘u7v:| q(j—u)y

J—u

IO

for each 1 < j < n. Let j :=n — v. This choice implies that

It follows from Lemma 2.1 that

m (n—v—u)v
Ca— <1
2 ) v
But then o
m e <1,
'
()
which was to be proved. O

3 Concluding remarks

We can raise the following natural question: Let u,v be fixed positive integers. Let
F be a fixed field. Determine the largest integer ¢ := ¢(u,v) such that there exists
a weak (u,v)-system & = {(U;,V;) : 1 < i <t} of t(u,v) pairs of subspaces of an
n-dimensional linear space W over the field I .

If IF is the finite field F,, then we proved in Theorem 1.8 that

q n
t < (=) g™
(u,v) < (q_l) q

On the other hand, it is easy to verify the lower bound m(u, v) < t(u,v). Namely,
let {ej,...,e,} denote a fixed basis of the n-dimensional linear space W over F. By
the definition of the number m(u,v) there exists a system S = {(4;,B;) : 1 <i <
m(u,v)} of m(u,v) pairs of sets satisfying the conditions:
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(i) Aq,...A,, are u-element sets and By, ... B,, are v-element sets;
(il) A; N B; =0 for each 1 <i < m;
(iii) AinNBj#Dor A;NB; £ 0 fori#j(1<i,j<m).

Define the generated subspaces U; := ({ex : k € A;}) and V; := ({e; : | € B;})
for each 1 <1i < m(u,v).

Then it is easy to verify that the system & = {(U;,V;) : 1 < i < m(u,v)} of
m(u,v) pairs of subspaces is a weak (u, v)-system.
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