
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 67(3) (2017), Pages 476–485

On k-total edge product cordial graphs

Jaroslav Ivančo
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Abstract

A k-total edge product cordial labeling is a variant of the well-known
cordial labeling. In this paper we characterize graphs admitting a 2-
total edge product cordial labeling. We also show that dense graphs and
regular graphs of degree 2(k − 1) admit a k-total edge product cordial
labeling.

1 Introduction

We consider finite undirected graphs without loops, multiple edges and isolated ver-
tices. If G is a graph, then V (G) and E(G) stand for the vertex set and edge set of
G, respectively. Cardinalities of these sets are called the order and size of G. The
sum of the order and size of G is denoted by τ(G), i.e., τ(G) = |V (G)| + |E(G)|.
The subgraph of a graph G induced by A ⊆ E(G) is denoted by G[A]. The set of
vertices of G adjacent to a vertex v ∈ V (G) is denoted by NG(v). For integers p, q
we denote by [p, q] the set of all integers z satisfying p ≤ z ≤ q.

Let k be an integer greater than 1. For a graphG, a mapping ϕ : E(G) → [0, k−1]
induces a vertex mapping ϕ∗ : V (G) → [0, k − 1] defined by

ϕ∗(v) ≡
∏

u∈NG(v)

ϕ(vu) (mod k).

Set μϕ(i) := |{v ∈ V (G) : ϕ∗(v) = i}|+ |{e ∈ E(G) : ϕ(e) = i}| for each i ∈ [0, k−1].
A mapping ϕ : E(G) → [0, k − 1] is called a k-total edge product cordial (for short
k-TEPC) labeling of G if

|μϕ(i)− μϕ(j)| ≤ 1 for all i, j ∈ [0, k − 1].

A graph that admits a k-TEPC labeling is called a k-total edge product cordial (k-
TEPC) graph.

The following claim is evident.
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Observation 1. A mapping ϕ : E(G) → [0, k − 1] is a k-TEPC labeling of a graph
G if and only if⌊

τ(G)

k

⌋
≤ μϕ(i) ≤

⌈
τ(G)

k

⌉
for each i ∈ [0, k − 1].

A k-total edge product cordial labeling is a version of the well-known cordial
labeling defined by Cahit [2]. Vaidya and Barasara [5] introduced the concept of
a 2-TEPC labeling as the edge analogue of a total product cordial labeling. They
called this labeling the total edge product cordial labeling. In [5, 6] they proved
that cycles Cn for n �= 4, complete graphs Kn for n > 2, wheels, fans, double fans
and some cycle related graphs are 2-TEPC. In [7] they proved that any graph can
be embedded as an induced subgraph of a 2-TEPC graph. The concept of k-TEPC
graphs was defined by Azaizeh et al. in [1]. They proved that paths Pn for n ≥ 4,
cycles Cn for 3 < n �= 6, some trees and some unicyclic graphs are 3-TEPC graphs.
We refer the reader to [4] for comprehensive references.

In Section 2 we characterize 2-TEPC graphs. In Section 3 we prove that graphs
with sufficiently large size and 2(k − 1)-regular graphs are k-TEPC.

2 2-TEPC graphs

For a graph G, denote by O(G) the set of all integers t such that there is a mapping
ϕ : E(G) → [0, 1] satisfying μϕ(0) = t.

As μϕ(0) + μϕ(1) = τ(G), by Observation 1, we immediately have

Observation 2. A graph G is 2-total edge product cordial if and only if{⌊
τ(G)

2

⌋
,

⌈
τ(G)

2

⌉}
∩ O(G) �= ∅.

Lemma 1. An integer t belongs to O(G) if and only if there is a subset A of E(G)
such that τ(G[A]) = t.

Proof. Suppose that t ∈ O(G). Then there is a mapping ϕ : E(G) → [0, 1] such that
μϕ(0) = t. Set A = {e ∈ E(G) : ϕ(e) = 0}. As ϕ∗(v) = 0 whenever v is incident
with an edge of A, μϕ(0) = τ(G[A]).

On the other hand, let A be a subset of E(G). Consider the mapping ψ : E(G) →
[0, 1] defined by

ψ(e) =

{
0 when e ∈ A,

1 when e /∈ A.

Clearly, μψ(0) = τ(G[A]). Therefore, τ(G[A]) ∈ O(G).

Example 1. If A ⊆ E(K3) then

τ(G[A]) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 when A = ∅,
3 when |A| = 1,

5 when |A| = 2,

6 when |A| = 3.
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Therefore, O(K3) = {0, 3, 5, 6}.
Example 2. If A ⊆ E(K1,n) then

τ(G[A]) =

{
0 when A = ∅,
2|A|+ 1 when A �= ∅.

Thus, O(K1,n) = {0, 3, 5, . . . , 2n+ 1}.
Lemma 2. Let G be a connected graph different from K3 and K1,n. Then

O(G) = [0, τ(G)]− {1, 2, 4}.

Proof. Evidently, τ(H) /∈ {1, 2, 4} for any graph H without isolated vertices. Thus,
according to Lemma 1, O(G) ∩ {1, 2, 4} = ∅.

On the other hand, denote by p (q) the order (size) of G. As G is different from
K3 and K1,n, it contains a path P of length 3. Denote by e1, e2, e3 the edges of
P in such a way that e1 and e3 are independent edges of P . Clearly, e1 and e3 are
independent edges of G. Moreover, there is a spanning tree T of G which contains P .
Denote by e4, . . . , ep−1 (if p > 4) the edges of E(T )− {e1, e2, e3} in such a way that
the subgraph of G induced by {e1, . . . , ej} is a connected graph for each j ∈ [1, p−1].
The other edges of G denote by ep, . . . , eq (if q ≥ p).

Suppose that t ∈ [0, τ(G)]−{1, 2, 4}. According to Lemma 1, it is enough to find
a set A ⊆ E(G) such that τ(G[A]) = t. Consider the following cases.

A. t = 0. Set A = ∅. Evidently, τ(G[A]) = 0 = t in this case.
B. 1 ≤ t ≤ 2p−1 and t ≡ 1 (mod 2). Then there is a positive integer s such that

t = 2s+1 (clearly, s ≤ p−1). Set A = {e1, e2, . . . , es}. The graph G[A] is connected
and it is a subgraph of T . Thus, it is a tree and so |E(G[A])| = s, |V (G[A])| = s+1,
i.e., τ(G[A]) = t.

C. 1 < t < 2p−1 and t ≡ 0 (mod 2). Then there is a positive integer s such that
t = 2s + 2 (clearly, 2 ≤ s < p − 1 in this case). Set A = {e1, e3, e4, . . . , es+1}. The
graph which we obtain from G[A] by adding the edge e2 is a tree. Therefore, G[A]
is a forest with two connected components and so |E(G[A])| = s, |V (G[A])| = s+ 2,
i.e., τ(G[A]) = t.

D. t ≥ 2p. Then there is a positive integer s such that t = s + p (s ≥ p in this
case). Set A = {e1, e2, . . . , es}. The graph G[A] is a connected spanning subgraph
of G. Thus, |E(G[A])| = s, |V (G[A])| = p, i.e., τ(G[A]) = t.

The union of two disjoint graphs G and H is denoted by G∪H and the union of
m ≥ 1 disjoint copies of a graph G is denoted by mG.

If A is a subset of E(G∪H) then A =
(
A∩E(G))∪(A∩E(H)

)
. Thus, according

to Lemma 1, we have

Observation 3. If G and H are disjoint graphs then

O(G ∪H) = {t+ l : t ∈ O(G), l ∈ O(H)}.
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Lemma 3. Let G1 and G2 be disjoint 2-TEPC graphs. If τ(G1) is even then G1∪G2

is also a 2-TEPC graph.

Proof. The graphs G1 and G2 are both 2-TEPC. Then there are sets A1 ⊂ E(G1),
A2 ⊂ E(G2) such that τ(G1[A1]) = τ(G1)/2 (τ(G1) is even) and τ(G2[A2]) ∈{
τ(G2)/2�, �τ(G2)/2�

}
. For A = A1 ∪ A2 we have

τ(G[A]) = τ(G[A1]) + τ(G[A2]) = τ(G1[A1]) + τ(G2[A2])

∈ {τ(G1)/2 + 
τ(G2)/2�, τ(G1)/2 + �τ(G2)/2�
}

=
{
τ(G)/2�, �τ(G)/2�},

i.e., G is a 2-TEPC graph.

Lemma 4. Let G be a graph and let t ∈ [0, τ(G)]. Then there is a set A ⊆ E(G)
such that |t− τ(G[A])| ≤ 1.

Proof. If G is a connected graph then the assertion follows from Example 1, Exam-
ple 2 and Lemma 2.

Suppose that G = G1 ∪ · · · ∪ Gc, where Gi, i ∈ [1, c], is a connected component
of G. For every j ∈ [0, c] define the set Aj and the integer rj by A0 = ∅, r0 = 0,
Aj = Aj−1 ∪ E(Gj) and rj = rj−1 + τ(Gj). As t ≤ τ(G) = rc, there is an integer
i ∈ [1, c] such that t ∈ [ri−1, ri]. Set t

∗ = t− ri−1. Clearly, t
∗ ∈ [0, τ(Gi)]. The graph

Gi is connected and so there is a set A∗ ⊆ E(Gi) such that |t∗ − τ(G[A∗])| ≤ 1.
Then, the set A = Ai−1 ∪A∗ satisfies

|t− τ(G[A])| = |(ri−1 + t∗
)− (τ(G[Ai−1]) + τ(G[A∗])

)
= |t∗ − τ(G[A∗])| ≤ 1,

because τ(G[Ai−1]) = ri−1.

Lemma 5. Let G be a graph whose each component is a star. If G is neither nK2

nor K1,2 ∪ nK2, for an odd integer n, then it is a 2-TEPC graph.

Proof. Suppose that G is a counterexample with a minimum number c of connected
components. Then G = K1,t1 ∪ · · · ∪K1,tc , where t1 ≥ · · · ≥ tc ≥ 1.

If c = 1 then G = K1,t1 for t1 ≥ 2, because G is not 1K2 = K1,1. Clearly,
τ(G) = 2t1 + 1. Let A be a subset of E(G) such that |A| = 
t1/2�. Thereout
τ(G[A]) = t1 + 1 = �τ(G)/2�, for t1 even, and τ(G[A]) = t1 = 
τ(G)/2�, for t1 odd.
According to Lemma 1 and Observation 2, G is a 2-TEPC graph, a contradiction.

If c = 2 then τ(G) = 2(t1 + t2 +1) �= 8, because G is different from K1,2 ∪ 1K2 =
K1,2 ∪K1,1. If t1 + t2 is even then choose A ⊂ E(K1,t1) such that |A| = (t1 + t2)/2.
Thereout τ(G[A]) = t1+t2+1 = τ(G)/2 and by Lemma 1 and Observation 2, G is a 2-
TEPC graph, a contradiction. If t1+t2 is odd then t1+t2 ≥ 5 and there are sets A1 ⊂
E(K1,t1), A2 ⊂ E(K1,t2) such that |A1| ≥ |A2| ≥ 1 and |A1|+ |A2| = (t1 + t2 − 1)/2.
For A = A1 ∪ A2 we have τ(G[A]) = τ(G[A1]) + τ(G[A2]) = t1 + t2 + 1 = τ(G)/2.
Therefore, G is a 2-TEPC graph, a contradiction.

Thus, c ≥ 3. If tc−1 = 1 then set G1 = K1,tc−1 ∪ K1,tc = 2K2 and G2 =
K1,t1∪· · ·∪K1,tc−2 . AsG1 andG2 have both less components than c, they are 2-TEPC.
Moreover, τ(G1) = 6 is even. By Lemma 3, G is a 2-TEPC graph, a contradiction.
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Therefore, tc−1 ≥ 2. If t1 ≥ 3 then set G1 = K1,t1 ∪K1,tc and G2 = K1,t2 ∪ · · · ∪
K1,tc−1 . They have both less components than c and τ(G1) is even. According to
Lemma 3, G is a 2-TEPC graph, a contradiction.

So, t1 = · · · = tc−1 = 2. Set G1 = K1,t1∪K1,t2 = 2K1,2 and G2 = K1,t3∪· · ·∪K1,tc .
The graph G1 is 2-TEPC and τ(G1) is even. If G2 is a 2-TEPC graph then, by
Lemma 3, G is also 2-TEPC, a contradiction. Therefore, G2 is either K2 or K1,2∪K2.
Consequently, G is either 2K1,2 ∪ K2 or 3K1,2 ∪ K2. It is easy to see that both of
them are 2-TEPC graphs. This means that there is no counterexample.

Theorem 1. A simple graph with no isolated vertex is 2-TEPC if and only if it is
neither of the following graphs:

(i) an unicyclic graph of order 4,

(ii) K3 ∪K1,2 ∪K2,

(iii) nK2, for an odd integer n,

(iv) K1,2 ∪ nK2, for an odd integer n.

Proof. Let G be a graph. Consider the following cases.
A. τ(G) = 3. Then G = K2 = K1,1, i.e., a graph of type (iii). According to

Example 2, {1, 2} ∩O(G) = ∅. By Observation 2, G is not 2-TEPC.
B. 5 ≤ τ(G) ≤ 7. Let A be a subset of E(G) such that |A| = 1. As τ(G[A]) =

3 ∈ {
τ(G)/2�, �τ(G)/2�}, by Observation 2, G is 2-TEPC.
C. τ(G) = 8. As τ(G)/2 = 4 and τ(H) �= 4 for any graph H without isolated

vertices, the graph G is not 2-TEPC. However, G is either an unicyclic graph (type
(i)) or K1,2 ∪K2 (type (iv)) in this case.

D. τ(G) ≥ 9 and every component of G is either a star or K3. Consider the
following subcases.

D1. Every component of G is a star. By Lemma 5, G is a 2-TEPC graph except
for G is either nK2 or K1,2 ∪ nK2, for an odd integer n.

If G = nK2, for odd n, then τ(G) = 3n. As n is odd, 
τ(G)/2� ≡ 1 (mod 3)
and �τ(G)/2� ≡ 2 (mod 3). However, τ(G[A]) = 3|A| ≡ 0 (mod 3) for any set
A ⊂ E(G). Therefore, G is not a 2-TEPC graph in this case.

If G = K1,2 ∪ nK2, for an odd integer n, then τ(G) = 3n + 5 and τ(G)/2 =
3(n + 1)/2 + 1 ≡ 1 (mod 3). However, τ(G[A]) = 3|A| ≡ 0 (mod 3) for any set
A ⊂ E(G) containing at most one edge of K1,2 and τ(G[A]) = 3|A| − 1 ≡ 2 (mod 3)
for any set A ⊂ E(G) containing both edges of K1,2. Therefore, G is not a 2-TEPC
graph.

D2. Every component of G is K3. Thus, G = rK3. Let A be a subset of E(G)
such that A contains exactly one edge of each its component. Clearly, |A| = r. As
τ(G[A]) = 3r = τ(G)/2, by Observation 2, G is 2-TEPC.

D3. G = rK3 ∪ S, where r ≥ 1 and every component of S is a star.
If S is a 2-TEPC graph then, by Lemma 3, G is also a 2-TEPC graph.
If S = nK2, for odd n, then τ(G) = 6r+3n. As n is an odd integer, �τ(G)/2� =

3r + 2 + 3(n − 1)/2. Let A1 be a subset of E(rK3) such that A1 contains at least
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one edge of each component of rK3 and |A1| = 1+ r. Similarly, let A2 be a subset of
E(S) such that |A2| = (n− 1)/2. For A = A1 ∪A2 we have τ(G[A]) = τ(rK3[A1]) +
τ(S[A2]) = 3r + 2 + 3(n− 1)/2. Therefore, G is a 2-TEPC graph.

If S = K1,2 ∪ nK2, for an odd integer n, then τ(G) = 6r + 5 + 3n. As n is odd,
τ(G)/2 = 3r+4+3(n−1)/2. Set G∗ = G−K1,2 (i.e., G

∗ = rK3∪nK2). In the same
way as above we choose a set A∗ ⊂ E(G∗) such that τ(G∗[A∗]) = 3r+2+3(n−1)/2.
If G[A∗] contains an isolated edge e ∈ A∗ then for A = (A∗ − e) ∪ E(K1,2) we have

τ(G[A]) = τ(G∗[A∗])− 3 + 5 = τ(G)/2,

therefore, G is a 2-TEPC graph. G[A∗] contains no isolated edge when r = 1 and
n = 1. In this case G = K3 ∪K1,2 ∪K2, i.e., a graph of type (ii). It is easy to see
that 7 /∈ O(G). According to Observation 2, G is not 2-TEPC.

E. τ(G) ≥ 9 and G contains a component C different from K3 and a star. Note
that τ(C) ≥ 7.

If G is connected (i.e., G = C) then �τ(G)/2� ≥ 5. By Lemma 2, �τ(G)/2� ∈
O(G). Thus, G is a 2-TEPC graph.

If C �= G then set H = G − C (i.e., G = C ∪ H). If τ(C) ≥ τ(H) then
5 ≤ �τ(G)/2� = �(τ(C) + τ(H))/2� ≤ τ(C). According to Lemma 2, �τ(G)/2� ∈
O(C) ⊂ O(G), i.e., G is a 2-TEPC graph. If τ(C) < τ(H) then set t = �τ(G)/2�−6.
As τ(H) > τ(C) ≥ 7, t ∈ [0, τ(H)]. By Lemma 4, there is a set AH ⊂ E(H) such
that |t− τ(H [AH ])| ≤ 1. Similarly, by Lemma 2, there is a set AC ∈ E(C) such that

τ(C[AC ]) =

⎧⎪⎨
⎪⎩
5 when t− τ(H [AH ]) = −1,

6 when t− τ(H [AH ]) = 0,

7 when t− τ(H [AH ]) = 1.

For A = AC ∪AH we have τ(G[A]) = τ(C[AC ]) + τ(H [AH ]) = �τ(G)/2�. Therefore,
G is a 2-TEPC graph

3 Dense graphs

A matching in a graph is a set of pairwise nonadjacent edges. A matching is per-
fect if every vertex of the graph is incident with exactly one edge of the matching.
A maximum matching is a matching that contains the largest possible number of
edges. The number of edges in a maximum matching of a graph G is denoted by
α(G). An edge cover of a graph G is a subset A of E(G) such that every vertex of
G is incident with an edge in A. The smallest number of edges in any edge cover of
G is denoted by ρ(G). Note that only graphs with no isolated vertices have an edge
cover. For such graphs Gallai [3] proved that α(G) + ρ(G) = |V (G)|.
Theorem 2. Let k be an integer greater than 1 and let G be a simple graph with no
isolated vertex. If |E(G)| > (2k − 1)|V (G)| − k

(
α(G) + 1

)
then G is a k-total edge

product cordial graph.
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Proof. For G we have

τ(G) = |V (G)|+ |E(G)| > k
(
2|V (G)| − α(G)− 1

)
= k

(|V (G)|+ ρ(G)− 1
)
.

Therefore, �τ(G)/k� ≥ |V (G)|+ ρ(G). Thus, there exists an edge cover A0 ⊂ E(G)
such that |A0| = �τ(G)/k� − |V (G)|. Then

|E(G)−A0| = τ(G)− (|V (G)|+ |A0|
)
= τ(G)− �τ(G)/k�

and there is a partition A1, . . . , Ak−1 of E(G)−A0 such that

�τ(G)/k� ≥ |A1| ≥ · · · ≥ |Ak−1| ≥ 
τ(G)/k�.
Now consider the mapping ϕ : E(G) → [0, k − 1] given by

ϕ(e) = i when e ∈ Ai.

As every vertex of G is incident with an edge in A0, ϕ
∗(v) = 0 for each v ∈ V (G).

So, μϕ(0) = |V (G)| + |A0| = �τ(G)/k�. Similarly, for i ∈ [1, k − 1], μϕ(i) = |Ai| ∈{
τ(G)/k�, �τ(G)/k�}. According to Observation 1, the mapping ϕ is a k-TEPC
labeling of G.

We consider only graphs without isolated vertices. So α(G) ≥ 1 and we have
immediately:

Corollary 1. Let G be a graph of size at least (2k − 1)
(|V (G)| − 1

)
. Then G is

a k-TEPC graph.

For a composite number k we are able to prove a stronger result. First we prove
the following auxiliary assertion.

Lemma 6. Let G be a connected graph with minimum degree δ(G) ≥ 2 which is
different from an odd cycle. Then G contains two disjoint edge covers where each of
them has size at most |V (G)| − 1.

Proof. If A is an edge cover of G and G[A] contains a cycle then the set which we
get from A by deleting an edge of the cycle is also an edge cover. Thus, any edge
cover contains a subset A′ which is also an edge cover and G[A′] is acyclic, i.e.,
|A′| ≤ |V (G)| − 1. Therefore, it is sufficient to find two disjoint edge covers.

If G is a regular graph of degree 2 then it is an even cycle. Two perfect matchings
of G are desired edge covers in this case.

If the maximum degree of G is at least 3 then choose a vertex v ∈ V (G) of
maximum degree. Suppose that G has 2s vertices of odd degree. Let G∗ be a graph
which we get from G by adding s new pairwise nonadjacent edges joining vertices of
odd degree (G∗ = G when s = 0). Clearly, G∗ is an Eulerian graph. Therefore, there
is an ordering e1, e2, . . . eq of E(G∗) which forms an Eulerian trail of G∗ starting
(and finishing) at v. Moreover, we can assume that e1 is an adding (new) edge when
v is of odd degree in G. For p ∈ {0, 1}, set Ap := {ei ∈ E(G) : i ≡ p (mod 2)}.
Evidently, A0∩A1 = ∅. Also, any vertex of G is incident with two consecutive edges
(belonging to E(G)) of the Eulerian trail. One of the consecutive edges belongs to
A0, the other to A1. Thus, A0 and A1 are desired edge covers.
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Theorem 3. Let k be a composite number greater than 4. Let G be a graph of
minimum degree δ(G) ≥ 2. If |E(G)| ≥ (k−1)

(|V (G)|−1
)
then G is a k-total edge

product cordial graph.

Proof. As k > 4 is a composite number, there are integers p, q such that k > p >
q > 1 and pq ≡ 0 (mod k).

Let G1, . . . , Gc be connected components of G. For all i ∈ [0, c] and s ∈ [1, 3],
define the set Bs

i recursively in the following way.
Set Bs

0 = ∅, for all s ∈ [1, 3].
If Gi is an odd cycle then we choose its edge ei. The set E(Gi) − {ei} can

be partitioned into disjoint matchings M2
i and M3

i of Gi, where |M2
i | = |M3

i | =(|V (Gi)| − 1
)
/2. Set B1

i = B1
i−1 ∪ {ei}, B2

i = B2
i−1 ∪M2

i , and B
3
i = B3

i−1 ∪M3
i .

If Gi is not an odd cycle then, by Lemma 6, there are disjoint edge covers C2
i and

C3
i of Gi, where |C2

i | ≤ |C3
i | ≤ |V (Gi)| − 1. Set B1

i = B1
i−1, B

2
i = B2

i−1 ∪ C2
i , and

B3
i = B3

i−1 ∪ C3
i .

Clearly, the sets B1
c , B

2
c , B

3
c are disjoint subsets of E(G), |B1

c | = r where r denote
the number of components of G isomorphic to an odd cycle, |B2

c | ≤ |V (G)| − c− r
and similarly |B3

c | ≤ |V (G)| − c− r.
Let t0, . . . , tk−1 be integers such that

�τ(G)/k� ≥ t0 ≥ · · · ≥ tk−1 ≥ 
τ(G)/k� and t0 + · · ·+ tk−1 = τ(G).

Evidently, tj ∈ {
τ(G)/k�, �τ(G)/k�} for each j ∈ [0, k − 1].
For G we have

τ(G) = |V (G)|+ |E(G)| ≥ |V (G)|+ (k − 1)
(|V (G)| − 1

)
= k|V (G)| − k + 1 > k

(|V (G)| − 1
)
.

Therefore, �τ(G)/k� ≥ |V (G)|. Thus, there is a partition A0, . . . , Ak−1 of E(G)
satisfying

(i) |A0| = t0 − |V (G)|+ 2r,

(ii) B1
c ⊂ A1 and |A1| = t1,

(iii) B2
c ⊂ Ap and |Ap| = tp − r,

(iv) B3
c ⊂ Aq and |Aq| = tq − r,

(v) |Aj | = tj for j ∈ [2, k − 1]− {p, q}.
Now consider the mapping ϕ : E(G) → [0, k − 1] given by

ϕ(e) = j when e ∈ Aj.

If a vertex v is incident with a chosen edge ei then deg(v) = 2 and it is also incident
with the second edge e′ where ϕ(ei) = 1 and ϕ(e′) is equal to either p or q. Therefore,
ϕ∗(v) ∈ {p, q}. Moreover, if v and v′ are incident with ei then {ϕ∗(v), ϕ∗(v′)} =
{p, q}. If u ∈ V (G) is not incident with any chosen edge then it is incident with
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an edge belonging to B2
c and another belonging to B3

c . As the values of these edges are
p and q (and pq ≡ 0 (mod k)), ϕ∗(u) = 0. Since there are precisely r chosen edges,
we have: μϕ(0) = |A0|+ |V (G)|−2r = t0, μϕ(p) = |Ap|+r = tp, μϕ(q) = |Aq|+r = tq
and similarly μϕ(j) = |Aj| = tj for all j ∈ [1, k − 1] − {p, q}. This means that ϕ is
a k-TEPC labeling of G.

We are able to prove a similar result also for k = 4.

Theorem 4. Let G be a graph with a 2-factor. If |E(G)| > 3
(|V (G)| − 1

)
then G

is a 4-total edge product cordial graph.

Proof. A 2-factor of a graph G denote by F . For G we have

τ(G) = |V (G)|+ |E(G)| ≥ |V (G)|+ 3
(|V (G)| − 1

)
+ 1

= 4
(|V (G)| − 1

)
+ 2.

Therefore, �τ(G)/4� ≥ |V (G)| and there is a partition A0, . . . , A3 of E(G) satisfying

(i) |A0| = �τ(G)/4� − |V (G)|,
(ii) E(F ) ⊂ A2 and |A2| ≥ |V (G)|,
(iii) �τ(G)/4� ≥ |A2| ≥ |A1| ≥ |A3| ≥ 
τ(G)/4�.
Now consider the mapping ψ : E(G) → [0, 3] given by

ψ(e) = j when e ∈ Aj .

As every vertex v ∈ V (G) is incident with two edges belonging to F ⊂ A2, we have:
ψ∗(v) = 0 and consequently μψ(0) = |V (G)| + |A0| = �τ(G)/4�. Similarly, for each
i ∈ [1, 3] we have: μψ(i) = |Ai| ∈ {
τ(G)/4�, �τ(G)/4�}. Thus, ψ is a 4-TEPC
labeling.

We conclude this paper with the following result.

Theorem 5. Let k be an integer greater than 2. Then any regular graph of degree
2(k − 1) is a k-total edge product cordial graph.

Proof. As G is a regular graph of degree 2(k − 1), it is decomposable into k − 1
edge-disjoint 2-factors F1, . . . , Fk−1. Moreover, |V (G)| ≥ 2k − 1 and |E(G)| =
(k−1)|V (G)|. According to Theorems 3 and 4, the assertion is true for any composite
number k.

Suppose that k ≥ 3 is a prime number. F1 is a 2-regular graph of order at least
5 and, by Theorem 1, it is a 2-TEPC graph. Therefore, there is a 2-TEPC labeling
η : E(F1) → [0, 1]. Clearly, μη(0) = μη(1) = |E(F1)| = |V (G)|. Now consider the
mapping ϕ : E(G) → [0, k − 1] given by

ϕ(e) =

{
η(e) when e ∈ E(F1),

j when e ∈ E(Fj), j ∈ [2, k − 1].
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As each vertex v ∈ V (G) is incident with precisely two edges belonging to Fj , j ∈
[1, k − 1], we have:

ϕ∗(v) ≡ η∗(v) ·
(
k−1∏
j=2

j2

)
≡ η∗(v) (mod k).

Therefore, μϕ(0) = μη(0) = |V (G)| = μη(1) = μϕ(1) and similarly for all j ∈ [2, k−1]
we have: μϕ(j) = |E(Fj)| = |V (G)|. So, ϕ is a k-total edge product cordial labeling
of G.
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Eötvös Sect. Math. 2 (1959), 133–138.

[4] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2016),
#DS6.

[5] S.K. Vaidya and C.M. Barasara, Total edge product cordial labeling of graphs,
Malaya J. Mathematik 3(1) (2013), 55–63.

[6] S.K. Vaidya and C.M. Barasara, On total edge product cordial labeling, Int. J.
Math. Scientific Comput. 3(2) (2013), 12–16.

[7] S.K. Vaidya and C.M. Barasara, On embedding and NP-complete problems of
equitable labelings, IOSR J. Math. 11 (2015), 80–85.

(Received 30 Aug 2016)


