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Abstract

Let G = (V, E) be a simple graph and let 7' = (P, B) be a Steiner triple
system. Let ¢ be a one-to-one function from V' to P. Any edge e = {u, v}
has its image {¢(u), ¢(v)} in a unique block in B. We also denote this
induced function from edges to blocks by ¢. We say that T' represents
G if there exists a one-to-one function ¢ : V' — P such that the induced
function ¢ : E' — B is also one-to-one; that is, if we can represent vertices
of the graph by points of the triple system such that no two edges are
represented by the same block.

The concept was introduced in a previous paper [Graphs Combin. 30
(2014), 255-266], where various results were proved. When the graph to
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be represented is a complete graph the concept is equivalent to that of an
independent set. In this paper we discuss representing complete bipartite
graphs in Steiner triple systems of small order.

By relating the work to configurations in Steiner triple systems we
prove that the number of representations of a graph having six or fewer
edges in a Steiner triple system of order m is only dependent on the value
of m and so is independent of the structure of the system.

1 Introduction

In a previous paper [1], we began the study of graph representations in Steiner triple
systems. Precisely what is meant by this is as follows. A graph G = (V, E) is a finite
set V(G) of vertices and a finite set F(G) of edges, each edge being an unordered
pair of different vertices. Loops and multiple edges are not allowed but G may be
disconnected. We will use n = |V(G)| for the order of G. A Steiner triple system
T = (P,B) is a finite set P(T) of points and a finite set B(T') of blocks each with
three elements such that each unordered pair of points occur together in exactly one
block. We will use m = |P(T")| for the orderof T. A Steiner triple system of order m,
usually denoted by STS(m), exists if and only if m = 1,3 (mod 6), [5]. Such values
of m are called admissible. Throughout this paper we will require that m > n.

Let ¢ : V(G) — P(T) be an injection. An edge is a pair of vertices {u, v}, so the
pair {¢(u), p(v)} determines a unique block in 7". We will also call this induced map
¢, hopefully without confusion. If the induced ¢ : E(G) — B(T) is also an injection,
then we say that T' represents GG. Representing a complete graph in a Steiner triple
system is equivalent to finding an independent set or arc in the system. This is
defined as a subset of points which contain no block. There is a large literature on
independent sets in Steiner triple systems, see for example Chapter 17 of [2]. Thus
our work is a generalization of this concept. One of the aims in this paper is to
present results on representing complete bipartite graphs in Steiner triple systems of
small order.

One of the main themes in [1] was to determine in which Steiner triple systems,
regular graphs of degree 2 (i.e. unions of cycles), and degree 3 may be represented.
A complete answer was obtained for the former class.

Theorem 1.1 FEvery disjoint union of cycles G where the total number of vertices is
n can be represented in every STS(m) for m > n and admissible except for (G,m) =

(03, 3) and (03 U 04, 7)
For cubic graphs we were able to prove

Theorem 1.2 If G is a cubic graph of order n, then G can be represented in every
STS(m) form > n+9 and admissible.
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In this paper we focus our attention on “small” graphs, i.e. graphs having a small
number of edges, and to the number of representations which such a graph has in a
Steiner triple system. We prove the following theorem, announced in [1].

Theorem 1.3 Let G be any graph with |E(G)| < 6 and let T be any Steiner triple
system of order m. Then the number of representations of G in T is independent of
the choice of T'.

The proof in Section 3 uses the theory of configurations in Steiner triple systems,
see Chapter 13 of [2]. Because all one, two and three-block configurations in Steiner
triple systems are constant (for the precise definition, see later), the theorem is no
surprise for |E(G)| < 3 but it is certainly unexpected for 4 < |E(G)| < 6.

2 Complete bipartite graphs

As we observed in the Introduction, representing a complete graph in a Steiner
triple system is equivalent to finding an independent set in the system. Since any
subset of an independent set is also independent, we can say that a complete graph
K represented in an STS(m) is mazimum if the complete graph K ,; cannot be
represented in the same STS(m). In the same vein, we can define the maximum
complete bipartite graphs that can be represented in a Steiner triple system of some
order. A complete bipartite graph K;; which can be represented in an STS(m) is
said to be mazimum if the complete bipartite graphs K,y ; and Kj; ;i cannot be
represented in the same STS(m). We begin by proving three easy lemmas.

Lemma 2.1 The complete bipartite graphs Ky (mi1)/2 and Ky (m_1y/2 cannot be rep-
resented in any Steiner triple system of order m.

Proof: The complete bipartite graph K (;,11)/2 cannot be represented in an STS(m)
because the valency of the vertex in the left partition is (m + 1)/2 which is greater
than (m — 1)/2, the replication number of the STS(m).

Assume that K5 (m—1)/2 is represented in an STS(m). Let x and y be the representa-
tion of the two vertices in the left partition of K (;,—1)/2. The total number of blocks
through x and through y is m — 2 since they have one block in common. But the
number of edges in K3 (;,—1)/2 is m — 1. Contradiction. m

Lemma 2.2 The complete bipartite graph K m—1)/2 can be represented in every
STS(m) and is maximum.

Proof: Represent the vertex of maximum valency by any point of the system and
the edges by the blocks through that point. The graph is maximum by the preceding

lemma. =

Lemma 2.3 The complete graph Ky (m—3)/2 can be represented in every STS(m).
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Proof: Represent the two vertices in the left partition of the graph by z and y.
Now consider the graph G,, whose vertex set is P\ {z,y, 2z} where {z,y,2} € B
and {u,v} is an edge if either {z,u,v} or {y,u,v} € B. This is the cycle graph of
the pair z,y and is a union of cycles of even length. Represent the vertices in the
right partition by alternate points in each of the cycles. m

Next, we give the maximum representable bipartite graphs for the Steiner triple
systems of order 7, 9, 13, and 15.

Proposition 2.4 The maximum complete bipartite graphs that can be represented
in the STS(7) are K3 and K.

Proof: This follows immediately from the preceding lemmas by putting m = 7.
The graphs are illustrated below, using the Steiner triple system on elements of Z;
obtained by cyclic shifts of {0,1,3}. =

Figure 1: The two maximum complete bipartite graphs in the STS(7).

Proposition 2.5 The maximum complete bipartite graphs that can be represented
in the STS(9) are K14 and Ks 3.

Proof: The graph K; 4 can be represented and is maximum by Lemma 2.2. The
graph K33 can be represented as shown below. In order to be maximum, we must
show that K3, cannot be represented. Assume the converse. Since K34 has 12
edges, each block represents an edge. Consider any two vertices z, y from the same
partition. The block {z,y, 2z} containing the two vertices either represents no edge
if z is in the same partition or both edges {z, z} and {y, z} if z is in the opposite
partition. Contradiction.

The graphs are illustrated below, using the Steiner triple system with block set
{0,1,2}, {3,4,5}, {6,7,8}, {0,3,6}, {1,4,7}, {2,5,8}, {0,4,8}, {1,5,6}, {2,3,7},
{0,5,7}, {1,3,8}, {2,4,6}. m

Proposition 2.6 The maximum complete bipartite graphs that can be represented
in an STS(13) are K16, Kop and K 4.

Proof: The graph K, can be represented and is maximum by Lemma 2.2. The
graph Ky can be represented by Lemma 2.3. To prove that it is maximum we
must show that Ky and K35 cannot be represented in an STS(13). The former
follows from the second part of Lemma 2.1. Let X = {0,1,2},Y = {3,4,5,6,7}
and Z = {8,9,10,11,12}. Assume that K35 is represented in an STS(13) as follows:



D. ARCHDEACON ET AL./AUSTRALAS. J. COMBIN. 67 (2) (2017), 243-258 247

1| o 3
3

0 1 4
4
500 2 5

Figure 2: The two maximum complete bipartite graphs in the STS(9).

the three vertices in the small partition by the elements of X, and the five vertices
in the large partition by the elements of Y. Therefore, there are 15 blocks of the
form {z,y,z}, x € X,y € Y,z € Z, representing the edges of the graph. Since five
blocks through each point 0,1 and 2 have been used, the block {0, 1,2} is forced as
the sixth. The remaining blocks of the system contain elements from the sets Y and
Z only. The minimum number of blocks formed by pairs of elements of Y is six;
for example {3,4,5}, {3,6,7}, {4,6,21}, {4,7, 22}, {5,6, 23}, {5,7, 24}, 2z € Z. The
minimum number of blocks formed by pairs of elements of Z is also six. This brings
the total number of blocks to 28. But an STS(13) has only 26 blocks which leads to
a contradiction.

Next, we prove that K3, is maximum. K35 has already been proven impossible
to represent as above. We must show that K, 4 cannot be represented. Let X =
{0,1,2,3} and Y = {4,5,6, 7}. Represent one partition of K, 4 by elements of X and
the other by elements of Y. Then there are 16 blocks containing the pairs {z,y},
x € X,y €Y. Now consider the blocks containing any two elements from the same
partition. The blocks containing the elements of X must be one of the following,
(1) {0,1,2}, {0,3, 21}, {1,3, 22}, {2,3, 23}, 2 ¢ X, Y, without loss of generality, or
(2) {O, 1, 21}, {0, 2, ZQ}, {0, 3, 2’3}, {]_, 2, 24}, {1, 3, 25}, {2, 3, 26}, Zi ¢ X, Y.

The replication number of an STS(13) is 6. In both of the above possibilities, at
least one element appears more than 6 times in the system. Contradiction.

There are two non-isomorphic STS(13)s and the graphs are illustrated below,
using the 22 blocks which they have in common. One of the STS(13)s is cyclic and
can be obtained by cyclic shifts of {0,1,4} and {0,2,8} on elements of Z;3. The
other non-cyclic STS(13) can be obtained by choosing any Pasch configuration in
the cyclic STS(13) and replacing it with the opposite Pasch configuration. We will
choose the blocks {2,3,6}, {2,4,10}, {3,4,7}, {6,7,10}; replacing them with the
blocks {2,3,4}, {2,6,10}, {3,6,7}, {4,7,10}. =

1 5 2 0 8
0 0 3 9
2 6 6 1
1 7 11
3 9 10| 5 12

Figure 3: The three maximum complete bipartite graphs in the STS(13)s.
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The two Steiner triple systems of order 13 can represent the same maximum
complete bipartite graphs. However, this is not true for the Steiner triple systems
of order 15. There are 80 nonisomorphic Steiner triple systems of order 15, [6]. The
graphs K7, Ko4, K35, and K44 can be represented in all 80 systems. By Lemma
2.1 the graphs K; g and K57 cannot be represented. However, more than half, 54 to
be precise, can also represent K3¢. These graphs, i.e. K7, Kog, K35, K44 or Ky 7,
K36, K44 are the maximum bipartite graphs. To prove maximality we need to show
that K45 cannot be represented.

Proposition 2.7 The complete bipartite graph K5 cannot be represented in any
STS(15).

Proof: Assume that K5 is represented in an STS(15) and without loss of generality
assume that the four vertices in the small partition are represented by 0, 1, 2 and 3.
The blocks containing the pairs {x1, 22}, 21, 22 € {0, 1,2,3}, 1 # x5, are not used in
the representation. These pairs can occur in four or six blocks. If they occur in four
blocks then one of the points appears in three of these blocks. Since the replication
number of an STS(15) is 7, then there are four more blocks through that point in
the system. But this is a contradiction since the valency of the vertex represented
by that point is five. If they occur in six blocks then every point appears in three of
these blocks. The same argument applies as above. =

Using the standard listing of the STS(15)s given in [6], Appendix 1 gives the
number of representations of the complete bipartite graphs K 7, Ko, K35, K36 and
K474.

3 Graphs with few edges

This section is devoted to the proof of Theorem 1.3. But first it will be appropriate to
recall some basic definitions. An ¢-line configuration in an STS(m) is any collection
of ¢ blocks of the Steiner triple system. For some configurations, the number of
occurrences in an STS(m) can be expressed as a rational polynomial in m. Thus,
for any admissible m this number is the same regardless of the structure of the
STS(m). Such configurations are called constant whereas other configurations are
called variable. Information about one, two, three and four line configurations quoted
below can be found in [4].

There is only one one-edge graph, i.e. a single edge. In any STS(m) there are
m(m — 1)/6 blocks which cover all () = m(m — 1)/2 single edges which is the
number of representations.

There are two two-edge graphs; a pair of disjoint edges denoted by B; and a
path of length 2 denoted by Bs. The graph B; can be obtained by adding an
extra edge to the one-edge graph. The number of choices for the extra edge is
(%) = (m — 2)(m — 3)/2. But the graph B; can arise in two ways, hence the

2
number of representations

by = [m(m — 1)(m —2)(m — 3)/4]/2 = m(m — 1)(m — 2)(m — 3)/8.
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The graph By can be obtained by adjoining an extra edge through one of the
two vertices of the one-edge graph. The number of choices for the extra edge is
4[(m —1)/2 — 1] and again the graph Bs can arise in two ways, hence the number of
representations

by =4[(m —1)/2 — 1Jm(m — 1)/4 = m(m — 1)(m — 3) /2.

We now give an alternative way of counting the number of representations which will
be much easier for graphs with more edges. There are two two-line configurations; a
pair of disjoint blocks denoted by Bj and a pair of intersecting blocks denoted by Bj.
These configurations are constant and the number of occurrences in any STS(m) is
given by

by =m(m—1)(m —3)(m —"7)/72, by =m(m —1)(m — 3)/8.
The graph B; occurs in B in nine ways and in Bj in five ways. Therefore,
by = 9b| + b, = m(m — 1)(m — 2)(m — 3)/8.
Similarly, the graph By cannot occur in Bj but occurs in Bj in four ways. Therefore,

by = 4bl, = m(m — 1)(m — 3)/2.

— || AL A

Cy Cy Cs Cy Cs

Figure 4: The three-edge graphs.
There are five three-edge graphs; these are shown in Figure 4 and are denoted

by C1,Cs, ..., C5. There are also five three-line configurations; these are shown in
Figure 5 and are denoted by C1,C5, ..., CL.

Sl Pt e R AN

Ci & Cy Ci Cs

Figure 5: The three-line configurations.

The number of occurrences of each three-line configuration in an STS(m) is

w

dy =m(m —1)(m — 3)(m — 7)(m* — 19m + 96) /1296
m(m —1)(m — 3)(m — 7)(m —9)/48

m(m — 1)(m — 3)(m —5)/48

C

WS NS =S

C
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¢y =m(m—1)(m—3)(m—"7)/8
c=m(m—1)(m —3)/6

In the table below we list the number of occurrences of every graph in each of
the five configurations.

C, Cy C5 Cp Cs
A
|15 12 -
cil7 12 8 -
c,l7 16 - 4 -
cil2 15 - 9 1

Hence, the number of representations of each three-edge configuration in an

STS(m) is

c1 = 27¢) + 15¢, + Tdy + 7y + 2¢5 = m(m — 1)(m — 2)(m — 3)(m — 4)(m — 5) /48
ey = 12¢, + 12¢5 + 16¢, + 15¢5 = m(m — 1)(m — 3)*(m — 4) /4

c3 =8¢ =m(m—1)(m—3)(m—15)/6

ey = 4d, +9ck = m(m — 1)(m — 3)(m — 4)/2

cs =ce =m(m—1)(m —3)/6

We have now shown that the number of representations of every e-edge graph,
when e < 3, in a Steiner triple system of any order m is constant. This is not a
surprise since the number of occurrences of every ¢-line configuration, when ¢ < 3,
in a Steiner triple system of any order m is also constant. However, not all four-line
configurations are constant. We next consider graphs with four edges.

There are 16 four-line configurations. These are shown in Figure 6 and are de-
noted by D}, D}, ...D}s. We know from [4] that five of them are constant and all
the others are variable. The constant four-line configurations are D}, D%, Dg, Di,,
and Dj;.

Note that D}y is the Pasch configuration, the number of which is denoted by p.
The formulae for the numbers of four-line configurations in an STS(m) are given
below.

dy = m(m — 1)(m — 3)(m — 9)(m — 10)(m — 13)(m?® — 22m + 141)/31104 + p
dy = m(m — 1)(m — 3)(m — 9)(m — 10)(m?* — 22m + 129) /576 — 6p

dy = m(m — 1)(m — 3)(m — 9)*(m — 11)/128 + 3p

dy =m(m—1)(m —3)(m —7)(m —9)(m — 11)/288

ds = m(m — 1)(m — 3)(m — 9)(m? — 20m + 103) /48 + 12p

dg =m(m — 1)(m — 3)(m — 9)(m — 10)/36 — 4p

d> =m(m —1)(m —3)(m —5)(m —7)/384

dg =m(m — 1)(m — 3)(m — 7)(m — 9)/16

dy = m(m — 1)(m — 3)(m — 9)*/8 — 12p
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Dy Dig Dy, Diy
Diy Dy, D Dig

Figure 6: The four-line configurations.

dyy = m(m —1)(m —3)(m —8)/8+ 3p

dy, = m(m —1)(m —3)(m —7)/4

diy =m(m—1)(m —3)(m —9)/4+12p

diy = m(m —1)(m — 3)(m? — 18m + 85)/48 — 4p
diy, =m(m—1)(m—3)/4—6p

dis =m(m—1)(m—3)/6

dig =p

The number of occurrences of the Pasch configuration in an STS(m), together
with the order m, determines the number of occurrences of all the other variable
configurations. There are 11 four-edge graphs and these are shown in Figure 7 and
are denoted by Dy, Dy, ..., Dq;. But as we will show, the number of representations
of each of the four-edge graphs in an STS(m) depends only on m and does not involve
p at all.

The table below gives the number of occurrences of every four-edge graph in each
of the four-line configurations. These results were obtained by hand and were later
checked computationally.
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Figure 7: The four-edge graphs.

Dl D2 D3 D4 D5 D6 D7 D8 D9 DlO Dll
Dy 81 . . . . . . . . .
D, |45 36 -
Dy |25 40 16 -
D, 21 36 - 24 -
Dy|21 48 - . 12 .
D6 4 . . 21 3 .
Dil9 24 . 32 - . 16 -
Dil9 32 8 16 8 - - 8 -
D)9 40 12 - 16 - - - 4 .
Djy|2 28 18 - 20 - - . 12 1 .
Dyl 2 23 12 10 15 1 - 12 4 . 2
D,l2 2 8 - 3 3 - . 38
D9 3 - - 36 - L
D, - 10 10 - 3 6 - - 2 1 -
Dl - 9 12 6 21 3 - 12 12 - 6
Dl - - 6 - 24 12 - . 3 3 -

dy =m(m—1)(m —2)(m —3)(m —4)(m —5)(m —6)(m —7)/384
dy = m(m — 1)(m — 3)*(m — 4)(m — 5)(m — 6)/16

ds = m(m — 1)(m — 3)(m> — 13m? + 57m — 87)/8

dy = m(m — 1)(m — 3)(m — 4)(m — 5)?/12

ds = m(m — 1)(m — 3)(m — 4)*(m — 5) /4

ds = m(m — 1)(m — 3)*(m — 4)/12

d7 =m(m—1)(m —3)(m—>5)(m—17)/24

ds = m(m — 1)(m — 3)(m — 5)?/2

dyg = m(m — 1)(m — 3)(m* — 9m + 21)/2

dyo =m(m —1)(m —3)(m —6)/8

Using the formulae for the four-line configurations we can easily obtain the for-
mulae for the numbers of four-edge graphs in an STS(m).
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dy; =m(m—1)(m —3)(m —5)/2

The results show that the number of any four-edge graph in an STS(m) is constant
and thus independent of the number of occurrences of the Pasch configuration in the
Steiner triple system.

We now consider five-edge graphs. There are 26 five-edge graphs denoted by Fj,
Es, ... Es. For each of these five-edge graphs the edges are listed in Appendix 2 in
ascending order of the number of vertices in each graph. Similarly, also in Appendix
2, we list the blocks of each of the 56 five-line configurations denoted by Ej, Ef, ...
ELs. These are ordered, as in [3], by ascending order of the number of points in each.

Of the 56 configurations only five are constant; the formulae are given in [3]. Note
that E is the mitre configuration and EY is the mia configuration. The number of
mitre and Pasch configurations, together with the order m, determine the number of
a variable five-line configuration in an STS(m). The Tables 1 and 2 below give the
number of representations of every five-edge graph in each of the five-line configura-
tions together with the coefficients of the Pasch configuration (p), mp, m?p and the
mitre (p) taken from the formulae.

Using the formulae for the five-line configurations, computational results for the
number of representations of a five-edge graph show that the coefficients of the mitre
and Pasch configuration in the graph formulae sum to zero. For example for the
graph Es, (4 x3)+ (1 x —=12) 4+ (2 x —12) + (1 x =12) + (2 x —6) + (1 x 36) + (1 x
48) + (1 x —=36))p+ ((6x 1) +(2x —6) + (2x —3) + (1 x 6) + (1 x 12) 4+ (1 x —6))u = 0.
For the graph Fj, ((4x3) 4 (2x —12) + (4 x —=21) + (6 x —12) 4 (2 x 6) + (4 x 24) +
(2x108)+ (2x =78))p+ ((4 x3)+(2x —12) + (2 x 6))mp = 0. Hence, the number
of representations of any five-edge graph in an STS(m) is constant.

Finally, we must consider graphs on six edges. There are 68 six-edge graphs
and 282 six-line configurations. Computational results show that the number of
representations of any six-edge graph is also independent of the STS(m). For reasons
of space, we do not give details of our calculations here but refer the reader to [7].
The methods used to obtain the results are as above. Thus, based on the above
results, Theorem 1.3 is proved.

To summarize, the number of times a graph with six or less edges can be repre-
sented in a Steiner triple system is constant even though variable configurations with
four, five and six lines exist; indeed most four, five and six-line configurations are
variable. Naturally, this gives rise to the following question: What is the smallest
number of edges of a variable graph? Clearly it is greater than six but less than or
equal to twelve since Ky is variable (see Appendix 1). However, an investigation
into the number of occurrences of Ky 4 in the two STS(13)s and in the 80 STS(15)s
shows that in fact it is less than or equal to eight. The graph K54 occurs 1989 times
in the cyclic STS(13) and 1974 times in the non-cyclic STS(13). For the STS(15)s,
we find that the number of representations of Ky 4 is 11025 + 3p where p is the num-
ber of Pasch configurations in the STS(15). Hence, the smallest number of edges
of a variable graph is seven or eight. Determination of which value is correct and a
theory to explain the above observation concerning the representation of K54 would
appear to be the priority for future research in this area.
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Appendix 1 Number of representations of the complete bipartite graphs Kz,

K276, [(3757 K376 and K474 in the STS(15)S

# | Ki7 | Koe | K35 | K36 | Kaa
1 1920 | 840 | 840 0 | 1050
2 | 1920 | 648 | 528 0 570
3 | 1920 | 552 | 372 0 330
4 11920 | 504 | 356 0 306
5 | 1920 | 504 | 368 0 370
6 | 1920 | 432 | 324 0 306
7 | 1920 | 408 | 360 0 450
8 | 1920 | 432 | 276 0 206
9 | 1920 | 396 | 268 0 170
10| 1920 | 396 | 274 0 202
11 | 1920 | 356 | 264 4 178
12 | 1920 | 410 | 272 2 166
13 ] 1920 | 408 | 268 0 194
14 | 1920 | 432 | 270 0 174
15 | 1920 | 360 | 258 0 202
16 | 1920 | 504 | 294 0 210
1711920 | 360 | 264 0 234
1811920 | 360 | 252 0 170
19 | 1920 | 320 | 272 3 238
20 | 1920 | 338 | 248 2 130
2111920 | 344 | 254 2 130
2211920 | 326 | 260 8 142
231920 | 324 | 231 0 104
2411920 | 334 | 232 2 100
251920 | 338 | 230 2 112
26 | 1920 | 356 | 231 2 114
2711920 | 304 | 229 2 108
28 1 1920 | 314 | 230 4 104
2911920 | 332 | 230 2 100
30| 1920 | 306 | 231 4 108
31 (1920 | 320 | 234 0 136
3211920 | 306 | 236 4 96
33 | 1920 | 298 | 228 4 86
3411920 | 302 | 231 4 86
35 | 1920 | 308 | 227 2 82
36 | 1920 | 278 | 218 0 80
37 | 1920 | 270 | 246 0 96
38 | 1920 | 290 | 237 4 100
39 | 1920 | 302 | 232 2 86
40 | 1920 | 302 | 224 2 82

# | K17 | Ko | K35 | K36 | Kag
41 | 1920 | 298 | 228 2 86
42 11920 | 298 | 255 8 104
43 | 1920 | 282 | 225 0 96
44 | 1920 | 274 | 227 0 72
45 | 1920 | 288 | 234 2 84
46 | 1920 | 280 | 240 4 76
47 1 1920 | 288 | 233 2 78
48 | 1920 | 278 | 230 4 72
49 | 1920 | 276 | 237 4 76
50 | 1920 | 270 | 245 4 112
511920 | 294 | 239 6 84
52| 1920 | 288 | 230 4 68
53 | 1920 | 288 | 231 4 78
54 11920 | 302 | 239 8 90
5511920 | 294 | 239 6 84
56 | 1920 | 282 | 233 4 72
57 11920 | 262 | 241 4 84
58 | 1920 | 272 | 234 4 86
59 | 1920 | 320 | 239 8 82
60 | 1920 | 288 | 253 10 108
61 | 1920 | 308 | 266 14 154
62 | 1920 | 266 | 230 2 58
63 | 1920 | 266 | 239 2 106
64 | 1920 | 290 | 236 8 94
65 | 1920 | 280 | 240 4 76
66 | 1920 | 274 | 242 4 80
67 | 1920 | 272 | 249 4 84
68 | 1920 | 268 | 234 2 64
69 | 1920 | 268 | 244 6 84
70 1 1920 | 288 | 234 4 84
711920 | 262 | 237 2 68
7211920 | 272 | 249 6 84
731 1920 | 288 | 266 8 128
7411920 | 272 | 230 0 88
7511920 | 282 | 249 8 108
76 |1 1920 | 280 | 220 0 80
771920 | 252 | 246 2 48
78 11920 | 272 | 250 8 128
79 1 1920 | 264 | 258 0 192
80 | 1920 | 240 | 270 0 120
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Appendix 2

E, : 0102031323
E,: 010203 14 23
E,: 0102123435
Eio : 01 02 03 04 05
£ 01 02 13 14 45
£ 01 02 03 45 46
£ 01 02 03 04 56
£ 01 02 34 35 67
£ 01 02 34 56 78

E,: 0104122334
E5: 01020304 34
Es: 01021323 45
£ 01 02 03 04 15
- 01 02 03 14 45
£ 01 02 13 45 46
- 01 02 13 24 56
£ 01 02 03 45 67
£ 01 23 45 67 89

255

E5:01020324 34
Eg: 01020323 34
Ey: 0102032345
E15:01020314 15
10112 23 34 45
: 0102 12 34 56
: 010203 14 56
: 0102134567

: 012 034 135 236 456

: 012 034 135 236 457

: 012 034 135 246 567
: 012 034 135 067 568
: 012 034 135 236 478
: 012 034 135 246 178
: 012 034 156 357 468
: 012 034 135 067 189
: 012 034 135 067 689
: 012 034 135 267 289
: 012 034 156 357 289
: 012 034 056 078 19a
: 012 034 056 178 39a
: 012 034 135 267 89a
: 012 034 156 357 89a
: 012 034 056 178 9ab
: 012 034 156 278 9ab
: 012 034 056 789 abc
: 012 034 567 89a bed

The five-edge graphs.

£,
Es
Ey

The five-line configurations.

: 012 034 135 236 146

: 012 034 135 245 067

: 012 034 135 067 168
: 012 034 135 236 078
: 012 034 135 245 678
: 012 034 135 246 578
: 012 034 056 178 379
: 012 034 135 067 289
: 012 034 135 236 789
: 012 034 135 267 489
: 012 034 156 378 579
: 012 034 056 178 19a
: 012 034 056 178 79a
: 012 034 135 678 69a
: 012 034 156 378 59a
: 012 034 056 789 Tab
: 012 034 156 378 9ab
: 012 034 156 789 abc
: 012 345 678 9ab cde

£y
Eg
Eq

: 012 034 135 236 147

: 012 034 135 246 257

: 012 034 135 067 268
: 012 034 135 236 378
: 012 034 135 246 078
: 012 034 135 267 468
: 012 034 135 067 089
: 012 034 135 067 589
: 012 034 135 246 789
: 012 034 135 267 689
: 012 034 056 078 09a
: 012 034 056 178 29a
: 012 034 135 067 89a
: 012 034 156 278 39a
: 012 034 056 078 9ab
: 012 034 135 678 9ab
: 012 034 156 789 7ab
: 012 034 567 589 abc
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Table 1: Number of occurrences of graphs E; to Ei3 in the five-line configurations.

Ey Ey E3 Ey Es E¢ Ey FEg FE9 FEi9o FEu Eip FEig m’p mp P ©
E7 . 6 . 12 - - 12 9 24 - - - 24 - - - 1
Ej 2 4 4 16 12 12 3 24 2 24 3
B} 1 1 2 8 10 6 16 5 20 —12
E) 2 6 6 3 18 20 —12 -6
El 4 8 5 12 12 3 —21
E§ 1 6 4 8 3 8 10 —12
EL 2 8 9 -6 -3
E} 1 2 4 6 2 4 9 20 6
E{ 1 4 4 8 16 36 6
Efo 4 2 2 2 4 8 24
E1, 2 8 2 12 8 12 12
Ef, 12 12 24
Ef4 2 2 16 12 24 6
El, 9 1/6  —19/6 14
Efg 3 12 16 -3 27 3
Elg 2 4 1 6 6 —12 108
E{, 4 3 -6 66 6
Elg 1 4 3 48 12
Efg 9 6 2
El, 4 4 24
Eb, 4 4 12 8 —12
Ely 6 8 12 —156  —12
E}g 6 6 —66
Eb, 2 2 4 12 —-60  —6
E}g 18 12 -2
Elg 3 -1 22 —123 -3
E}, 4 6 —54
Elg 12 —144  —12
Elg 4 12 —-192  —18
El, 2 1 6 6 —78
Ej, 3 6 —138 —18
El, 1 -36  —6
Ejg 32
El, 16
Ejg 16 3
Elg —6 66 3
Ej}, 8 -6 114 6
Elg —12 132
Ejq 6 —6 102 6
Elo 2 —56 414 18
E), 4 -6 90 6
E), —24 324 24
Ejg 3 1/2  —-25/2 108 6
Ej, —24 432 36
Ejs
Ejg 12 —168  —6
E), 3 —33
Ejg -2/3  56/3 —146 —6
Ej -2/3 74/3  —212 —10
El, —2 80 —810 —42
Ef, 30 —444  —27
Ef, -3 39 1
Els 2 —74 690 30
El, 1/2  —67/2 384 18
Blg -1 40 —381 —15
Elg 1/6  —37/6 56 2
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Table 2: Number of occurrences of graphs Ey4 to Eo in the five-line configurations.

Ei4 FEi5  Eis  Eir  Eig  Eig9g FEao Eo1  Esp FEaz FEay Eas  FEae m2p mp P I
Ei R 66 . 30 R 42 12 R R . . E . R R 1
ES 24 40 4 24 4 28 16 3
E} 20 17 10 35 3 27 32 14 12 —12
Ej 34 42 6 46 26 14 2 18 -12 -6
Ef 24 24 4 24 16 64 16 6 24 3 —21
E{ 20 27 6 41 7 51 16 15 2 18 —12
Ef 46 50 10 78 16 24 -6 -3
E} 12 6 18 34 10 36 43 16 10 10 6
E{ 15 45 2 25 36 39 8 29 11 36 6
Efy | 16 12 12 40 1 32 18 42 8 29 11 24
B, | 16 4 16 24 3 20 42 26 12 27 9 12
Efy | 24 24 12 3 12 24 24 24 12 27 9
Ef4 12 32 7 44 34 26 8 39 9 24 6
E1, 36 108 18 72 1/6  —19/6 14
B 16 32 6 36 40 22 46 10 -3 27 3
Efg | 20 8 10 28 8 42 24 24 46 10 —12 108
E, 16 36 14 76 26 58 10 -6 66 6
Elg 23 49 5 57 41 48 12 48 12
Efg 24 48 60 42 48 12 6 2
E}, 8 24 4 1 20 8 32 32 28 21 31 2
E}, 8 24 12 1 8 40 40 28 21 31 2 —12
E}, 4 24 3 20 44 32 14 53 33 2 12 —156 —12
Els | 16 16 16 3 28 20 36 14 53 33 2 6 —66
Eb, 4 32 1 12 34 58 20 25 35 2 —-60  —6
Ely 9 36 36 36 18 63 27 -12 -2
Elg 18 60 30 102 30 -1 22 -123 -3
El, | 16 16 20 5 16 32 28 8 61 35 2 6 —54
Elg 4 24 9 52 32 85 35 2 12 —144  —12
Elq 8 36 5 32 52 65 39 2 12 —-192  —18
Ely | 12 4 18 24 18 20 56 14 28 38 2 6 —78
El, 8 32 44 54 60 40 2 6 —138 —18
Ej, 15 45 25 75 35 45 2 -36  —6
Ejq 80 80 40 11
Ef, 16 32 24 24 56 12 52 11
El 32 32 32 48 16 56 11 3
Elg 16 48 16 24 68 60 11 -6 66 3
El, 16 4 32 52 32 24 64 11 -6 114 6
Elg 8 24 8 8 16 48 24 28 68 11 —12 132
Ejq 3 12 36 36 30 45 69 6 -6 102 6
Elo 9 24 24 105 75 6 2 —56 414 18
E}, 36 5 60 45 83 10 -6 90 6
Eljy 16 24 40 80 72 11 —24 324 24
El3 36 54 60 84 6 1/2  —25/2 108 6
Ely 4 24 16 68 40 80 11 —24 432 36
El5 48 96 72 27
Elg 24 24 48 24 96 27 12 —168 -6
Ej4; 32 48 40 88 35 3 —-33
Elg 9 81 135 18 —2/3  56/3 —146 —6
El 108 108 27 -2/3  74/3  —212 —10
El, 12 36 48 120 27 -2 80 —810 —42
Ef, 16 64 20 108 35 30 —444  —27
EL, 72 108 63 -3 39 1
Elg 36 144 63 2 —74 690 30
El, 48 120 75 1/2  —67/2 384 18
Els 108 135 -1 40 —381 —15
Elg 243 1/6  —37/6 56 2
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