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Abstract

Let L be a set of lines of an affine space over a field and let S be a set of
points with the property that every line of L is incident with at least N
points of S. Let D be the set of directions of the lines of L considered as
points of the projective space at infinity. We give a geometric construction
of a set of lines L, where D contains an Nn−1 grid and where S has size
2(1

2
N)n plus smaller order terms, given a starting configuration in the

plane. We provide examples of such starting configurations for the reals
and for finite fields. Following Dvir’s proof of the finite field Kakeya
conjecture and the idea of using multiplicities of Dvir, Kopparty, Saraf
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and Sudan, we prove a lower bound on the size of S dependent on the
ideal generated by the homogeneous polynomials vanishing on D. This
bound is maximised as (1

2
N)n plus smaller order terms, for n � 4, when

D contains the points of a Nn−1 grid.

1 Introduction

Let AGn(K) denote the n-dimensional affine space over the field K and let PGn(K)
denote the n-dimensional projective space over the field K.

Let L be a set of lines of AGn(K) and let D be the set of directions of the lines
of L, viewed as points of the projective space PGn−1(K) at infinity. Let S be a set
of points of AGn(K) with the property that every line of L is incident with at least
N points of S.

In the case that K = Fq and N = q, Dvir [1] proved that if D is the set of
all directions then |S| > qn/n!, answering a question posed by Wolff in [8]. Dvir,
and subsequently Saraf and Sudan [5], provided examples where D is the set of all
directions and sets of points S for which |S| = 2(1

2
q)n plus smaller order terms. The

lower bound on |S| was improved for n � 4 to |S| � (1
2
q)n + c(n)qn−1 for some c(n),

by Dvir, Kopparty, Saraf and Sudan in [2].

We define an Nn−1 grid in PGn−1(K) as a point set, which with respect to a
suitable basis, has the form

{〈(a1, . . . , an−1, 1)〉 | ai ∈ Ai},

where Ai is a subset of K of size N for all i = 1, . . . , n − 1. Here, we introduce the
notation that if (a1, . . . , an) is a vector, then 〈(a1, . . . , an)〉 is the corresponding point
in PGn−1(K).

The aim of this article is to reformulate the Kakeya problem in a far more general
setting. There are a couple of recent articles by Slavov in which he formulates the
Kakeya problem in an algebraic geometric setting; see [6] and [7]. Here we consider
any arbitrary finite set of lines in an affine space over any fixed fieldK. We prove lower
bounds on the size of S that depend on I(D), the ideal generated by the homogeneous
polynomials of K[X1, . . . , Xn] which are zero at all points of D. Firstly, we will give
a geometric construction of a set L of Nn−1 lines, whose directions contain a Nn−1

grid and a set S of roughly 2(1
2
N)n points with the property that every line of L is

incident with at least N points of S.

2 A geometric construction of Kakeya sets

For any two non-intersecting subspaces x and y of a projective space we denote by
x⊕ y the subspace that they span.



S. BALL ET AL. /AUSTRALAS. J. COMBIN. 65 (3) (2016), 251–260 253

Let x0, x1, . . . , xn be projective points in general position which will remain fixed
throughout. Let

Σi = x0 ⊕ x1 ⊕ · · · ⊕ xi,

and let
πi = x1 ⊕ x2 ⊕ · · · ⊕ xi,

for i = 1, . . . , n. Then Σn is the entire space PGn(K), πn we consider as the hyper-
plane at infinity and Σn \πn is the affine space AGn(K) where we shall construct the
set of lines L′.

Let yi be a third point on the line xi−1 ⊕ xi, for i = 3, . . . , n, so

(xi ⊕ yi) ∩ πi−1 = xi−1.

Let L be a set of lines of Σ2, incident with distinct points of π2 \ {x2}. So by
interpreting π2 as the line at infinity, all the lines in L have distinct directions. Note
that if K is infinite then we can always find a line which intersects the lines of a
finite set of lines in distinct points. More generally for a set of lines in AGn(K), with
K infinite, we can always find a hyperplane which intersects the lines of a finite set
of lines in distinct points. After a suitable change of basis this hyperplane can be
assumed to be the hyperplane at infinity.

Label the lines of L so that they are �{1}, . . . , �{|L|}, and define

p{i} = �{i} ∩ π2.

By assumption, p{1}, . . . , p{|L|} are distinct points of π2.

For an ordered subset J of {1, . . . , |L|}, |J | < n, we define a line �J of Σ|J |+1

recursively by
�J = (x|J |+1 ⊕ �J\{a}) ∩ (y|J |+1 ⊕ �J\{b}),

where a and b are the last two elements of J , so J = (. . . , b, a).

In the same way, we define points pJ of π|J |+1 recursively by

pJ = (x|J |+1 ⊕ pJ\{a}) ∩ (y|J |+1 ⊕ pJ\{b}).

Lemma 2.1. The lines �J are well-defined and distinct, as are the points pJ . Fur-
thermore, the line �J intersects π|J |+1 in the point pJ .

Proof. By induction on |J |. For |J | = 2, let J = {b, a}. The line �J is well-
defined, since x3⊕�{b} and y3⊕�{a} are two distinct planes in a 3-space and therefore
intersect in a line. For |J | � 3, suppose J = {. . . , b, a}. The lines �J\{a} and �J\{b}
are both contained in the plane �J\{a,b} ⊕ x|J |, so intersect in a point. Moreover
x|J |+1 ⊕ y|J |+1 contains the point x|J | and x|J | is in the plane �J\{a} ⊕ �J\{b}, since
�J\{a}⊕�J\{b} = �J\{a,b}⊕x|J |. Therefore, x|J |+1⊕�J\{a} and y|J |+1⊕�J\{b} are distinct
planes contained in a 3-space. Hence, their intersection is a line.
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By induction, the point pJ is distinct for distinct J since it is the intersection
of the line x|J |+1 ⊕ pJ\{a} and y|J |+1 ⊕ pJ\{b} and J \ {a} and J \ {b} determine J
(knowing they are both ordered (|J | − 1)-subsets of J determines J). Since �J is
incident with the point pJ it follows that �J is also distinct for distinct J .

Lemma 2.2. The set of points

{pJ | J ordered subset of L, |J | = n}
is contained in a |L|n grid of πn+1.

Proof. Fix a basis of πn+2 so that x1, . . . , xn+2 are points derived from the canonical
basis. For i = 3, . . . , n + 2, let yi = 〈(0, . . . , 0, 1, 1, 0, . . . , 0)〉, where the non-zero
coordinates are the (i− 1)-th and i-th coordinate.

Let J = {a1, . . . , an} and define di by

�{ai} ∩ π2 = 〈(1, di, 0 . . . , 0)〉,
for i = 1, . . . , j. Note that {d1, . . . , dj} is a subset of

D = {d | there exists � ∈ L such that � ∩ π2 = 〈(1, d, 0, . . . , 0)〉}.

We will prove by induction that

pJ = 〈(1, d1, . . .)〉
and that the i-th coordinate of pJ for |J |+ 1 � i � 3 is (−1)i(di−1 − di−2) and zero
for i � |J |+ 2.

Let J = {a1, . . . , aj}, J = {a1, . . . , aj, aj+1} and J ′ = {a1, . . . , aj−1, aj+1}. Then
by definition

pJ = (pJ ⊕ xj+2) ∩ (pJ ′ ⊕ yj+2).

Since the first j coordinates of xj+2 and yj+2 are zero, the i-th coordinate of pJ for
i � j is (−1)i(di−1−di−2). Since the (j+1)-st coordinate of xj+2 is zero, the (j+1)-st
coordinate of pJ is (−1)j+1(dj − dj−1). If λ is the (j + 2)-nd coordinate then solving
the equation given by the intersection (comparing the (j + 1)-st coordinate) gives

(−1)j+1(dj − dj−1) = λ+ (−1)j+1(dj+1 − dj−1),

which proves the induction.

By applying a simple change of basis we see that the set

{pJ | J ordered subset of L, |J | = j}
is contained in the |L|j grid,

{〈(1, e1, . . . , ej)〉 | e1, . . . , ej ∈ D}.
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Theorem 2.3. The set of lines

{�J | J ordered subset of L, |J | = j}

is a set of lines in Σj+1 whose directions are distinct and contained in a |L|j−1 grid
of πj+1.

Proof. This follows from the definitions of �J and pJ , Lemma 2.1 and Lemma 2.2.

Let m be a line of Σ2 incident with the point x2 and not the line π2. If the line
�{i} and �{j} meet on the line m then define their intersection to be the point

z{i},{j},m = �{i} ∩ �{j} ∩m.

Let J = {a1, . . . , aj} and J = {a1, . . . , aj} be disjoint ordered subsets of {1, . . . , |L|}
such that

�{ai} ∩ �{ai} ∩m

is a point for all i = 1, . . . , j. For each such occurrence of m, J and J define a point
recursively by

zJ,J,m = (x|J |+1 ⊕ zJ\{a},J\{a},m) ∩ (y|J |+1 ⊕ zJ\{b},J\{b},m)

where J = (. . . , b, a) and J = (. . . , b, a).

Lemma 2.4. The point zJ,J,m is incident with the line �J .

Proof. By induction on |J |. For |J | = 1, this follows directly from the definition.

By the induction hypothesis, we suppose zJ\{a},J\{a},m is incident with �J\{a} and
zJ\{b},J\{b},m is incident with �J\{b}. Then, by the definition of �J , the point zJ,J,m is
incident with the line �J .

Lemma 2.5. Let J and J be disjoint ordered non-empty subsets of {1, . . . , |L|} of the

same size. Suppose J ′ and J
′
are disjoint ordered |J |-subsets of {1, . . . , |L|} where

the i-th element of J ′ and J
′
is either the i-th element of J or the i-th element of J ,

for i = 1, . . . , |J |. Then
zJ,J,m = zJ ′,J ′

,m.

Proof. For |J | = 1 this is clear. It follows from the recursive defintion of zJ,J,m that

switching the i-th element of J and J will not affect the point zJ,J,m.

Theorem 2.6. Suppose that L is a set of N lines of AG2(K) and let S be a set of
points with the property that every line of L is incident with N points of S. Suppose
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Figure 1: The construction of the line �{1,2} and the point z{1,2},{3,4},m
.

that there are N parallel lines mi, which are incident with 1
2
N − εi points of S which

themselves are incident with two lines of L, where ε1, . . . , εN have the property that

N∑
i=1

εi � dN,

for some constant d, not depending on N .

Then there is a set L′ of Nn−1 lines in AGn(K), n � 1
2
N + 1, whose directions

contain a Nn−1 grid and a set of points S ′ with the property that every line of L′ is
incident with N points of S ′ and where S ′ has less than 2(1

2
N)n + cNn−1 points, for

some c = c(n).

Proof. Let
L′ = {�M | M ordered subset of L, |M | = n− 1}

and let

S ′ = {zM,M,m |M,M ordered subsets of L, |M | = |M | = n−1, m = mi, for some i}.
The point zM,M,m is only defined if M and M are disjoint, which imposes the condi-
tion N � 2(n− 1).

By Theorem 2.3, the set L′ contains N(N − 1) . . . (N − n+2) lines and the lines
determine distinct directions contained in a Nn−1 grid.

The set S ′ contains
N∑
i=1

(1
2
N − εi)(

1
2
N − εi − 1) · · · (1

2
N − εi − n + 2)

points. By Lemma 2.4 and Lemma 2.5, a point of S ′ is incident with 2n−1 lines of
L′. Therefore, we have constructed at least Nn − c(n)Nn−1 incidences between lines
of L′ and points of S ′, for some c(n).
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The set L′ contains N(N − 1) . . . (N − n + 2) lines and we would like each line
to be incident with N points of S ′. Therefore we are missing less than c(n)Nn−1

incidences. For a fixed M and m the point zM,M,m does not depend on M , since it is
defined recursively from the points �{i} ∩m, where i ∈ M . Therefore, no line of L′ is
incident with more than N points of S ′ (at most one for each line mi, i = 1, . . . , N).
So we can add less than c(n)Nn−1 points to S ′ so that every line of L′ is incident with
N points of S ′. This does not affect the first order term of |S ′|, which is Nn/2n−1.

Finally, we add lines to L′ and N points to S ′ for each of these lines, so that
we have a line with every direction of the Nn−1 grid. Thus far we have constructed(

N
n−1

)
(n− 1)! lines in L′, so we add less than c′Nn−2 lines to L′ to complete the grid

and add at most c′Nn−1 points to S ′, for some c′ = c′(n). Again, this does not affect
the first order term of |S ′|.
Example 1. If K = Fq and N = q then we can take L to be the lines of a dual conic
(or any oval), where one of the lines is taken to be the line at infinity π2. The points
of S will include the affine points incident with a line of L.

Let x be the point incident with π2 and not incident with a line of L. The lines
m1, . . . , mN will be the q affine lines incident with x. Suppose q is odd. Since each
point not on the conic but incident with a tangent to the conic is incident with
(q − 1)/2 bisecants, we have ε = 1

2
for all i = 1, . . . , q before we add points to S.

Adding N points to S does not affect the fact that the condition on the εi. If q is
even then each point not on the conic but incident with a tangent to the conic is
incident with q/2 bisecants, except one point which is incident with no bisecants.
Therefore, εi = 0 for i = 1, . . . , q− 1 and εq =

1
2
q. Again, adding N points to S does

not affect the condition on the εi.

Example 2. If K = R then we can take L to be the set of lines dual to a regular
N -gon. We dualise in such a way that the line at infinity becomes a point on the
line at infinity. Let S be the set of affine points dual to the bisecants to the N -gon.
This gives N − 1 points on each line of L and we arbitrarily add an additional point
to S incident with �, for each line � ∈ L.

The line joining (cos(2πa/N), sin(2πa/N), 1) and (cos(2πb/N), sin(2πb/N), 1)
meets the line at infinity in the point (− tan(π(a+ b)/N), 1, 0) ([3, Proposition 2.1]),
so there are precisely N points on the line at infinity where the bisecants meet.

Let p1, . . . , pN be the N points on the line at infinity where the bisecants meet.
Let m1, . . . , mN be the N (parallel) lines dual to the points p1, . . . , pN . Before we
add points to S we have that if N is even then εi = 0 for i = 1, . . . , 1

2
N and εi = 1

for i = 1
2
N +1, . . . , N and if N is odd then εi =

1
2
for i = 1, . . . , N , ordering the lines

in a suitable way. Adding N points to S does not affect the condition on ε1, . . . , εN .

In [4], Guth and Katz prove that if L is a set of lines in AG3(R), no N of which
are contained in a plane, and if S is a set of points with the property that every line
of L is incident with at least N points of S, then |S| > cN3 for some (very small)
constant c. Example 2, together with Theorem 2.6, provide an example of such a set
of lines for which |S| = 1

4
N3 plus smaller order terms.
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3 A lower bound for |S|

The proofs in this section are essentially from [2]. Although in [2] they restrict to
the case that the field is finite, in this section we verify that the proofs carry over to
the general case without any issue.

Let J = (Z�0)
n be the set n-tuples of non-negative integers. For any j, c ∈ J ,

we define the j-Hasse derivative of Xc =
∏n

i=1X
ci
i as

∂j(Xc) =

n∏
i=1

(
ci
ji

)
Xci−ji

i ,

where we use the convention
(
a
b

)
= 0 if b > a. This definition extends to polynomials

by linearity.

For a polynomial f ∈ K[X1, . . . , Xn], we define V (f) to be the affine points which
are zeros of f .

For any j ∈ J , let wt(j) =
∑n

i=1 ji. We say that a polynomial f ∈ K[X1, . . . , Xn]
has a zero of multiplicity m at a point u of AGn(K) if u ∈ V (∂jf) for all j ∈ J ,
where wt(j) � m− 1.

If u is a zero of multiplicity m of f and wt(j) = r then u is a zero of multiplicity
at least m− r of ∂jf , see [2].

Let L be a set of lines of AGn(K) and let D be the set of directions of the lines
of L, viewed as points of the projective space PGn−1(K) at infinity. Let S be a set
of points of AGn(K) with the property that every line of L is incident with at least
N points of S.

Let Ir(D) be the ideal of homogeneous polynomials of K[X1, . . . , Xn] which have
zeros of multiplicity at least r at all points of D.

For any f ∈ K[X1, . . . , Xn], let f
∗ denote the polynomial consisting of the terms

of f of highest degree. By degree, we will always mean the total degree.

Theorem 3.1. If U is a subspace of K[X1, . . . , Xn] of polynomials of degree at most
rN − 1 with the property that for all non-zero f ∈ U , f ∗ �∈ Ir(D) then(

2r + n− 2

n

)
|S| � dimU.

Proof. Suppose that
(
2r+n−2

n

)|S| < k, where dimU = k. Let f(X) be a polynomial
of U , so

f(X) =
k∑

i=1

aihi(X),

where {h1, . . . , hk} is a basis for U , for some ai ∈ K.

We wish to show that there is a non-zero polynomial in U which has a zero
of multiplicity at least 2r − 1 at all points x ∈ S. A polynomial f has a zero of
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multiplicity at least 2r− 1 at all points x ∈ S if and only if for every x ∈ S, ∂jf has
a zero of multiplicity 2r − 1 − wt(j) at x. For each j ∈ J , where wt(j) � 2r − 2,
∂jf(x) = 0 is a linear homogeneous equation with unknowns a1, . . . , ak. Thus we
get a system of

(
n+2r−2

n

)|S| linear homogeneous equations and k unknowns. Since(
n+2r−2

n

)|S| < k there must be a non-trivial solution and so there is a non-zero f ∈ U
such that f has a zero of multiplicity at least 2r − 1 at all points x ∈ S.

Let v be a vector of the n-dimensional vector space, such that the subspace
spanned by v is an element of D. By hypothesis, there is a u ∈ AGn(K) and N
distinct values λ ∈ K with the property that u+ λv is a zero of f of multiplicity at
least 2r−1. For any j ∈ J with wt(j) � r−1, u+λv is a zero of ∂jf of multiplicity
at least r. Since d = deg f � rN − 1, it follows that ∂jf(u+ λv) is identically zero
as a polynomial in λ. The coefficient of λd of ∂jf is ∂jf ∗(v). Hence, ∂jf ∗(v) = 0
for all j ∈ J , where wt(j) � r − 1. This implies f ∗ has a zero of multiplicity r at
all points of D and so f ∗ ∈ Ir(D), which is a contradiction, since f ∈ U implies
f ∗ �∈ Ir(D).

Theorem 3.1 allows us to give an explicit lower bound for |S| if D contains an
Nn−1 grid.

Recall that we defined a Nn−1 grid in PGn−1(K) as

{〈(a1, . . . , an−1, 1)〉 | ai ∈ Ai},

where Ai is a subset of K of size N for all i = 1, . . . , n− 1.

Theorem 3.2. If D contains an Nn−1 grid then, for any r ∈ N,

(
2r + n− 2

n

)
|S| �

(
rN + n− 1

n

)
.

Proof. The ideal Ir(D) is generated by products of r (not necessarily distinct) poly-
nomials from the set {g1, . . . , gn−1}, where

gi(X) =
∏
a∈Ai

(Xi − aXn).

Any non-zero polynomial in Ir(D) has degree at least rN , so we can set U to be the
subspace of all polynomials in K[X1, . . . , Xn] of degree at most rN − 1.

Theorem 3.3. If D contains an Nn−1 grid then

|S| �
(
N + n− 1

n

)
.

Proof. Put r = 1 in Theorem 3.2.

The following theorem improves on the lower bound in Theorem 3.3 for n � 4.
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Theorem 3.4. If D contains an Nn−1 grid then |S| � (1
2
N)n.

Proof. By Theorem 3.2 we have

|S| � (rN + n− 1)(rN + n− 2) . . . (rN)

(2r + n− 2)(2r + n− 3) . . . (2r − 1)
.

This gives |S| � (1
2
N)n if we choose r large enough.
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