
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 62(2) (2015), Pages 172–183

Sharp bounds on the size of pairable graphs
and pairable bipartite graphs

Zhongyuan Che

Department of Mathematics
Penn State University, Beaver Campus

Monaca, PA 15061
U.S.A.

zxc10@psu.edu

Zhibo Chen

Department of Mathematics
Penn State University, Greater Allegheny Campus

McKeesport, PA 15132
U.S.A.

zxc4@psu.edu

Abstract

The k-pairable graphs, introduced by Chen in 2004, constitute a wide
class of graphs with a new type of symmetry, which includes many graphs
of theoretical and practical importance, such as hypercubes, Hamming
graphs of even order, antipodal graphs (also called diametrical graphs, or
symmetrically even graphs), S-graphs, etc. Let k be a positive integer. A
connected graph G is said to be k-pairable if the automorphism group of
G contains an involution φ with the property that the distance between
x and φ(x) is at least k for any vertex x of G. The pair length of G is
k if G is k-pairable but not (k + 1)-pairable. It is known that any graph
of pair length k > 0 has even order at least 2k. In this paper, we give
sharp bounds for the size of a graph G of order n and pair length k for
any integer k > 0 and any even integer n ≥ 2k, when G is bipartite and
when G is not restricted to be bipartite, respectively.

1 Introduction

All graphs considered in this paper are finite simple connected graphs unless other-
wise specified. Motivated by an elegant result of Graham, Entringer and Székely [11]
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on spanning trees of a graph with an antipodal isomorphism, Chen [5] introduced
the following concept of k-pairable graphs in 2004.

Definition 1.1 [5] Let k be a positive integer. A graph G is said to be k-pairable if
its automorphism group contains an involution φ such that each vertex v has distance
at least k from its image φ(v).

An involution on a set is a bijective map that is the inverse of itself. In Definition
1.1, the involution φ is also called a k-pair partition of G, and φ(v) is called the mate
of vertex v under φ (and vice versa).

A k-pairable graph is briefly called a pairable graph if there is no need to specify
the positive integer k, and a graph is said to be non-pairable if it is not k-pairable for
any positive integer k. The k-pairable graphs constitute a wide class of graphs with
a new type of symmetry, which includes many graphs of theoretical and practical
importance, such as hypercubes, Hamming graphs of even order, antipodal graphs
(also called diametrical graphs, or symmetrically even graphs), S-graphs, etc. (cf.
[1, 3, 10, 12, 13]).

A new graph parameter called the pair length of a graph G was also introduced
by Chen [5] to further study the k-pairable graphs.

Definition 1.2 [5] The pair length of a graph G, denoted as p(G), is the maximum
integer k such that G is k-pairable; p(G) = 0 if G is not k-pairable for any positive
integer k.

This parameter measures the maximum distance, in some sense, between a sub-
graph induced by half the vertices of G and its isomorphic image induced by the
other half of V (G). Thanks to a referee, we got informed that if we drop the require-
ment that the automorphism be an involution, then the above definition for the pair
length of a graph becomes the same as the absolute mobility of a graph, a concept
defined in [14] by Potočnik, Šajna, and Verret.

Chen [5] obtained a result involving spanning trees and cycles, which seems to
have the potential to be applied to the study of networks. That is, if G is a k-
pairable graph (k > 1), then for every spanning tree T of G, there exists an edge
e of G outside T whose addition to T forms a cycle of length at least 2k. This
extends a result by Graham et al. [11] on graphs with antipodal isomorphisms to
this larger class of k-pairable graphs. Chen [5] also showed that the pair length of a
Cartesian product graph is at least the sum of pair lengths of its factors and posted
the question that if the equality is always true in general. Christofides [9] answered
the question affirmatively.

Many interesting results [5, 6, 7, 8] have been obtained on k-pairable graphs
since Definitions 1.1 and 1.2 were introduced. A necessary and sufficient condition
for a graph to have pair length equal to a positive integer k was given by Che and
Chen in [8], But it remains open on the characterizations of graphs with pair length
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k, which was raised by Chen [5] in 2004. Special types of pairable graphs have
been studied by many researchers. A characterization of uniquely k-pairable graphs
in terms of the prime factor decomposition with respect to Cartesian product was
given by Che [7]. Another special type of pairable graphs which are called S-graphs
has also been studied, see [1, 3, 12] and the references therein. Since prime graphs
are building blocks of all graph structures, Che and Chen [8] gave the minimum
order of an r-regular prime graph with pair length k, and constructed such a graph
with the minimum order for any given integers r, k ≥ 2 (excluding r = k = 2). With
this approach, the minimum order of an r-regular graph with pair length k for any
integers r, k ≥ 2 was also obtained.

When we study a class of connected simple graphs of given order n, one of the
basic questions is to find bounds for the size of those graphs. In this paper, we give
the sharp bounds for the size of a pairable graph G of order n and pair length k for
any positive integer k and any even integer n ≥ 2k, when G is bipartite and when
G is not restricted to be bipartite, respectively.

2 Preliminaries

We follow [4] for basic terminologies and notations. The vertex set and the edge set
of a graph G are denoted by V (G) and E(G), respectively. The cardinality of a set
S is denoted by |S|. The degree of a vertex x of G is the number of vertices adjacent
to x in G and denoted as degG(x). The distance dG(u, v) between two vertices u and
v of G is the length of a shortest path between u and v in G.

If G is a pairable graph, then the automorphism group of G contains an involution
which is fixed-point free, and so the order of G must be a positive even integer. Pair
lengths of simple graphs such as cycles, complete graphs can be obtained by definition
immediately: p(Cn) =

n
2
and p(Kn) = 1 if n is even, p(Cn) = p(Kn) = 0 if n is odd,

see [5]. Pair lengths of some special bipartite graphs were also given in [5]. For
example, hypercubes Qn have pair lengths p(Qn) = n, complete bipartite graphs
Kn,n have pair lengths 2 or 1 depending on whether n is even or odd, and the pair
length of a tree is at most 1. Moreover, a tree T has p(T ) = 1 if and only if there
is an edge e = xy in T such that there exists an isomorphism f between the two
connected components of T − e satisfying f(x) = y, see [6]. The pair length of
a complete bipartite graph Km,n is at most 2, and a characterization for complete
bipartite graphs with pair length 1 or 2 is provided later in this section.

An induced cycle C of a graph G is called a strongly induced cycle if dC(x, y) =
dG(x, y) for any two vertices x, y of C. It is clear that if n = 3, 4, 5, then an induced n-
cycle of G is just a strongly induced n-cycle of G, but this is not necessarily true when
n > 5. The concept of a strongly induced cycle was introduced in [8]. It should be
noted that this concept is very useful when studying structures of k-pairable graphs.

Below, we present some basic results on pairable graphs.

Theorem 2.1 [8] Let G be a connected graph with pair length p(G) > 0. Then
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(i) p(G) = 1 if and only if G is 1-pairable and for any 1-pair partition φ of G
there is an edge e of G such that φ maps e onto itself.

(ii) p(G) = k(> 1) if and only if G is k-pairable and for any k-pair partition φ
of G there is a strongly induced 2k-cycle C of G such that φ maps C onto itself.

Note: In general, the above edge e and the strongly induced 2k-cycle C are not
fixed, they depend on the pair partition φ considered.

If G is a graph of pair length k > 0, then by Theorem 2.1, the order of G must
be an even integer at least 2k. In particular, if n = 2k, then the graph G of order
n and pair length k is unique and bipartite, i.e., G = K2 when k = 1 and G = Cn

when k > 1.

If the k-pairable graphs are also bipartite, then they have the following property.

Theorem 2.2 Let G be a connected bipartite graph of pair length p(G) = k > 0.
Assume that φ is a k-pair partition of G. Then for any vertex x of G,

(i) if k is even, then x and φ(x) are in the same color class of G;

(ii) if k is odd, then x and φ(x) are from distinct color classes of G.

Proof. In a connected bipartite graph, the unique color classes are clearly preserved
setwise by any automorphism and so the theorem immediately follows. �

Recall that any pairable graph has even order. It follows that the cardinalities of
two color classes of a pairable bipartite graph must have the same parity. By Theorem
2.2, the following property of pairable bipartite graphs follows immediately.

Corollary 2.3 Let G be a connected bipartite graph with color classes B and W .
Assume that G has order n and pair length p(G) = k > 0. Then n is an even integer
at least 2k. Moreover,

(i) if k is even, then both |B| and |W | are even and G is a subgraph of Kn
2
−t,n

2
+t

where t ≥ 0 has the same parity as n
2
;

(ii) if k is odd, then |B| = |W | = n
2
, and G is a subgraph of Kn

2
,n
2
.

The pair length of any complete bipartite graph Km,n can be determined by the
above corollary with the trivial observation that p(Km,n) ≤ 2.

Corollary 2.4 A complete bipartite graph Km,n has its pair length

p(Km,n) =

⎧⎨
⎩

2, if both m and n are even;
1, if m = n is odd;
0, otherwise.
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We conclude this section with two well known trivial results on the bounds of
graph sizes (see [4] and [2], for example):

1. Let G be a connected graph of order n. Then n−1 ≤ |E(G)| ≤ n(n−1)/2. The
bounds are attained by a tree of order n and the complete graph Kn, respectively.

2. Let G be a bipartite graph of order n. Then n− 1 ≤ |E(G)| ≤ ⌊
n
2

⌋ ⌈
n
2

⌉
. The

bounds are attained by a tree of order n and the complete bipartite graph K�n
2 �,�n

2 �,
respectively.

Although these two results are easy to establish, the situation often becomes quite
different when the graphs in concern have some specific restrictions. In next section,
we shall give the sharp bounds for the size of a pairable graph G of order n and pair
length k for any positive integer k and any even integer n ≥ 2k, when G is bipartite
and when G is not restricted to be bipartite, respectively.

3 Main Results

3.1 Pairable Graphs

Let k be a positive integer and n be an even integer at least 2k. In this section, we
give sharp bounds for the size of a pairable graph of order n and pair length k.

Theorem 3.1 Let G be a connected pairable graph of order n. Then

|E(G)| ≥
{
n− 1, if p(G) = 1;

n, if p(G) > 1.

And

|E(G)| ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2
n(n− 1), if p(G) = 1;

1

2
n(n− 2), if p(G) = 2;

1

2
(n− 2k)(

n

2
− k + 5) + 2k, if p(G) = k ≥ 3.

Both bounds are sharp.

Proof. Let G be a pairable graph of order n. Then n is a positive even integer.

The sharp lower bounds on |E(G)| can be easily seen as follows. If p(G) = 1, then
it is trivial that |E(G)| ≥ n−1 and a tree of order n has size n−1. If p(G) = k > 1,
then G cannot be a tree by the fact [5] that the pair length of a tree is at most 1 as the
center of a tree is either a vertex or an edge and it is fixed by every automorphism.
Hence, |E(G)| ≥ n and a cycle of order n has size n.

We then show the sharp upper bounds on |E(G)| based on the pair length p(G).

Case 1. p(G) = 1. It is well known [4] that |E(G)| ≤ 1
2
n(n − 1). This upper

bound is sharp, since a complete graph of even order n has pair length p(Kn) = 1.
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Case 2. p(G) = 2. Since there is no edge between a vertex x and its mate
x′ = φ(x) for any 2-pair partition φ of G, the complement of G contains a perfect
matching M . Hence, |E(G)| ≤ |E(Kn −M)| = 1

2
n(n − 2). This bound is attained

by the size of Kn −M , which has order n and pair length 2.

Case 3. p(G) = k ≥ 3. Let φ be a k-pair partition of G. By Theorem 2.1, G
contains a strongly induced 2k-cycle C such that the mate of any vertex of C under φ
belongs to C. Let H = G−C be the induced subgraph of G obtained by removing all
vertices of C together with their incident edges. (H might be disconnected.) Then,

the mate of any vertex of H under φ belongs to H , and so V (H) = ∪
n
2
−k

i=1 {hi, h
′
i}

where h′
i = φ(hi). Note that E(G) = E(H,C) ∪ E(H) ∪ E(C), where E(H,C)

denotes the set of edges between H and C. Since |E(C)| = 2k, an upper bound for
|E(G)| can be obtained by considering upper bounds on |E(H,C)| and |E(H)|.

Since C is a strongly induced cycle, any vertex of H can be adjacent to at most
three vertices of C, and those three vertices must form a path of length two along
C. So |E(H,C)| ≤ 3(n − 2k). We claim that each vertex hi of H is adjacent to at
most one vertex of hj , h

′
j where j 	= i and 1 ≤ j ≤ n

2
− k. Otherwise, if hi is adjacent

to both hj and h′
j for some j 	= i and 1 ≤ j ≤ n

2
− k, then h′

i is adjacent to both hj

and h′
j and so dH(hi, h

′
i) = 2. This is impossible since dH(hi, h

′
i) ≥ dG(hi, h

′
i) ≥ 3.

Hence, each vertex of H can be adjacent to at most n
2
− k − 1 vertices of H and so

|E(H)| ≤ 1
2
(n− 2k)(n

2
− k − 1). It follows that

|E(G)| ≤ 3(n− 2k) +
1

2
(n− 2k)(

n

2
− k − 1) + 2k

=
1

2
(n− 2k)(

n

2
− k + 5) + 2k.

To show that the above upper bound is sharp, we can construct a desired graph
G as follows. Let C = u1u2u3 · · ·uku

′
1u

′
2u

′
3 · · ·u′

k be an induced 2k-cycle where k ≥ 3.
Replace each of u1 and u′

1 by a clique with 1
2
(n − 2k + 2) vertices, denoted as V1

and V ′
1 respectively. Then join all vertices of V1 with two vertices u2, u

′
k, and join all

vertices of V ′
1 with two vertices uk, u

′
2. It is easy to verify that the resulted graph G

is a pairable graph of order n, pair length k ≥ 3, and size 1
2
(n− 2k)(n

2
− k+5)+ 2k.

�

3.2 Pairable Bipartite Graphs

Let k be a positive integer and n be an even integer at least 2k. In this section, we
give sharp bounds for the size of a bipartite graph of order n and pair length k.

Theorem 3.2 Let G be a connected pairable bipartite graph of order n. Then we
have the following sharp bounds for |E(G)|:

|E(G)| ≥
{
n− 1, if p(G) = 1;

n, if p(G) > 1.
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And

|E(G)| ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n2

4
, if p(G) = 1 and n ≡ 2 (mod 4),

or p(G) = 2 and n ≡ 0 (mod 4);

n2

4
− 1, if p(G) = 1 and n ≡ 0 (mod 4),

or p(G) = 2 and n ≡ 2 (mod 4);

n2

4
− n

2
, if p(G) = 3;

2

⌊ n
2
− k

2

⌋⌈ n
2
− k

2

⌉
+ 2n− 2k, if p(G) = k > 3.

Proof. Let G be a pairable bipartite graph of order n. Then n is a positive even
integer. The proof for the sharp lower bounds for |E(G)| is trivial and so omitted.
To obtain the upper bound for the size of a pairable bipartite graph G of order n
and pair length k is much more complicated. We distinguish four cases based on
p(G) = 1, 2, 3 or larger than 3.

Case 1. p(G) = 1. By Corollary 2.3 (ii), G is a subgraph of Kn
2
,n
2
.

If n
2
is odd, that is, n ≡ 2 (mod 4), then |E(G)| ≤ n2

4
. This bound is sharp, since

the complete bipartite graph Kn
2
,n
2
has pair length 1 and size n2

4
.

If n
2
is even, that is, n ≡ 0 (mod 4), then by Corollary 2.4, G cannot be a

complete bipartite graph. Hence, |E(G)| ≤ n2

4
− 1. This bound is sharp, since the

graph Kn
2
,n
2
− e obtained by removing an edge e from Kn

2
,n
2
has pair length 1 and

size n2

4
− 1.

Case 2. p(G) = 2. By Corollary 2.3 (i), G is a subgraph of Kn
2
−t,n

2
+t where t ≥ 0

has the same parity as n
2
. So |E(G)| ≤ (n

2
− t)(n

2
+ t) ≤ n2

4
− t2.

If n
2
is even, that is, n ≡ 0 (mod 4), then t is even and so t ≥ 0, we have

|E(G)| ≤ n2

4
. This bound is sharp, since Kn

2
,n
2
has pair length 2 and size n2

4
.

If n
2
is odd, that is, n ≡ 2 (mod 4), then t is odd and so t ≥ 1, we have |E(G)| ≤

n2

4
− 1. This bound is sharp, since Kn

2
−1,n

2
+1 has pair length 2 and size n2

4
− 1.

Case 3. p(G) = 3. By Theorem 2.2, we may write the two color classes of G as
B = {x1, x2, . . . , xn

2
} and W = {x′

1, x
′
2, . . . , x

′
n
2
}, where x′

i = φ(xi) is the mate of xi

under a 3-pair partition φ of G. Then xi is not adjacent with x′
i since dG(xi, x

′
i) ≥ 3.

Thus the degree of each vertex of G is at most n
2
− 1 and so |E(G)| ≤ 1

2
n(n

2
− 1) =

n2

4
− n

2
. This bound is sharp, since it can be reached by the graph Kn

2
,n
2
−M obtained

by deleting a perfect matching M from Kn
2
,n
2
.
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Case 4. p(G) = k > 3. Recall that n is an even integer at least 2k. If n = 2k, then
it is trivial since G is a 2k-cycle by Theorem 2.1. Assume that n ≥ 2k+2. Let φ be a
k-pair partition of G. Then by Theorem 2.1, G contains a strongly induced 2k-cycle
C such that the mate of any vertex of C under φ belongs to C. Let H = G− C be
the induced subgraph obtained from G by removing all vertices of C together with
their incident edges. (H might be disconnected.) Then the mate of any vertex of H
under φ belongs to H . Note that E(G) = E(H) ∪ E(C) ∪ E(H,C), where E(H,C)
denotes the set of edges between H and C. It is clear that |E(C)| = 2k. Since C is
a strongly induced 2k-cycle of G where k > 3 and since G is bipartite, any vertex of
H can be adjacent to at most two vertices on C, and those two vertices must be in
distance 2 on C. So |E(H,C)| ≤ 2(n − 2k). Then it remains to show the following
upper bound for |E(H)|:

|E(H)| ≤ 2

⌊ n
2
− k

2

⌋⌈ n
2
− k

2

⌉
.

Assume that B and W are two color classes of G. Let HB = H ∩ B and HW =
H ∩W . We distinguish two subcases based on the parity of p(G) = k.

Subcase 4.1. p(G) = k > 3 is even. We first show that each vertex of HB can be
adjacent to at most half of the vertices in HW . By Corollary 2.3(i), G = G(B,W ) is a
subgraph of Kn

2
−t,n

2
+t where t ≥ 0 has the same parity as n

2
. Without loss generality,

we may assume that |B| = n
2
− t and |W | = n

2
+ t, both of them are even. Then

H = G− C is a subgraph of Kn
2
−k−t,n

2
−k+t, where both n

2
− k − t and n

2
− k + t are

even since k is even. By Theorem 2.2, any pair of mates under φ are contained in
the same color class of G. Since the mate of any vertex of H under φ is contained in
H , it follows that each of HB and HW is a union of pairs of mates under φ. Let x
be an arbitrary vertex in HB. Suppose that x is adjacent to both vertices of a pair
of mates y, y′ = φ(y) ∈ HW . Then its mate x′ = φ(x) in HB is adjacent to both
y, y′ ∈ HW . It follows that xyx′ is a path of length 2 in H(⊆ G). This is impossible
since dH(x, x

′) ≥ dG(x, x
′) ≥ k > 3. Therefore, x ∈ HB can be adjacent to at most

one vertex of each pair of mates in HW , and so x ∈ HB can be adjacent to at most
half of the vertices in HW . Then

|E(H)| ≤ (
n

2
− k − t) ·

n
2
− k + t

2
=

1

2
[(
n

2
− k)2 − t2].

Recall that k is even and t has the same parity as n
2
. If n

2
− k is even, then both

n
2
and t are even, so t ≥ 0; if n

2
− k is odd, then both n

2
and t are odd, so t ≥ 1.

Therefore, |E(H)| ≤ 1
2
[(n

2
− k)2 − δ], where δ = 0 when n

2
− k is even; and δ = 1

when n
2
− k is odd. That is, |E(H)| ≤ 2

⌊
n
2
−k

2

⌋ ⌈
n
2
−k

2

⌉
.

Subcase 4.2. p(G) = k > 3 is odd. By Corollary 2.3 (ii), G is a subgraph of
Kn

2
,n
2
. Then H = G − C is a subgraph of Kn

2
−k,n

2
−k. By Theorem 2.2, any pair of

mates under φ are from distinct color classes of G. Since the mate of any vertex of
H under φ is contained in H , it follows that the mate of any vertex in HB under φ
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is in HW . So we can write HB = {x1, x2, · · · , xn
2
−k} and HW = {x′

1, x
′
2, · · · , x′

n
2
−k}

where x′
i = φ(xi) is the mate of xi under φ for 1 ≤ i ≤ n

2
− k. Hence, H has an

involution φ switching its two color classes and dH(xi, x
′
i) ≥ dG(xi, x

′
i) = k > 3 for

each 1 ≤ i ≤ n
2
− k.

Below, we give the following claim which will enable us to get the desired upper
bound for |E(H)|.

Claim. Let Q be a bipartite graph (connected or disconnected) of order 2p with
p ≥ 1. If the automorphism group of Q contains an involution φ such that φ switches
its two color classes QB and QW and dQ(u, φ(u)) > 3 for each vertex u of Q, then

(i) there is a vertex of QB adjacent to at most half of the vertices in QW , and

(ii) |E(Q)| ≤ 2
⌊
p
2

⌋ ⌈
p
2

⌉
.

The claim can be proved as follows.

Proof of (i): It is trivial when p = 1 or 2. Let p ≥ 3. Suppose for contradiction
that each vertex of QB is adjacent to more than half of the vertices in QW . Then
any two vertices in QB have a common neighbor in QW . Without loss of generality,
we can write that QB = {ui|1 ≤ i ≤ p} and QW = {u′

i|1 ≤ i ≤ p} where u′
i = φ(ui)

for 1 ≤ i ≤ p. Assume that u1 ∈ QB is adjacent to a vertex u′
j ∈ QW . Then their

mates u′
1 ∈ QW and uj ∈ QB are adjacent. Note that since dQ(u1, u

′
1) > 3, we have

j 	= 1 and uj 	= u1. Moreover, u1, uj ∈ QB have a common neighbor u′
i ∈ QW by the

assumption. Clearly, u′
i 	= u′

1 and u′
i 	= u′

j. It then follows that u1u
′
iuju

′
1 is a path

of length 3 in Q. This contradicts the condition that dQ(u1, u
′
1) > 3. Thus, (i) is

proved.

Proof of (ii): To show that |E(Q)| ≤ 2
⌊
p
2

⌋ ⌈
p
2

⌉
, we apply induction on p =

|QB| = |QW |. If p = 1, then QB = {u1} and QW = {u′
1}. So |E(Q)| = 0 since

u1, u
′
1 are not adjacent. If p = 2, then QB = {u1, u2} and QW = {u′

1, u
′
2}. The only

possible edges among vertices in Q are u1u
′
2 and u2u

′
1. So |E(Q)| ≤ 2. Thus, the

desired upper bound holds for p = 1, 2. For the case when p ≥ 3, by (i) we may
assume that vertex u1 ∈ QB is adjacent to at most

⌊
p
2

⌋
vertices in QW . Clearly,

similar conclusion holds for the vertex u′
1 ∈ QW . Now we consider the subgraph

Q − {u1, u
′
1} of order 2(p − 1). Note that the restriction of φ on Q − {u1, u

′
1} is an

automorphism and involution of Q−{u1, u
′
1} switching its two color classes QB \{u1}

and QW \ {u′
1}. Moreover, dQ−{u1,u′

1}(u, φ(u)) ≥ dQ(u, φ(u)) > 3 for each vertex u

of Q− {u1, u
′
1}. By induction hypothesis, |E(Q− {u1, u

′
1})| ≤ 2

⌊
p−1
2

⌋ ⌈
p−1
2

⌉
. Recall

that degQ(u1) = degQ(u
′
1) ≤

⌊
p
2

⌋
. Then

|E(Q)| = |E(Q \ {u1, u
′
1})|+ degQ(u1) + degQ(u

′
1)

≤ 2

⌊
p− 1

2

⌋⌈
p− 1

2

⌉
+ 2

⌊p
2

⌋
= 2

⌊
p− 1

2

⌋⌊p
2

⌋
+ 2

⌊p
2

⌋

= 2
⌊p
2

⌋
(

⌊
p− 1

2

⌋
+ 1) = 2

⌊p
2

⌋ ⌈p
2

⌉
.

This ends the proof of the claim.
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Now, applying the claim to the graph H where H has order 2p (p = n
2
− k), we

obtain the same upper bound for |E(H)| as in Subcase 4.1.

So, we get |E(H)| ≤ 2
⌊

n
2
−k

2

⌋ ⌈
n
2
−k

2

⌉
when p(G) = k > 3. Thus, we see that when

p(G) = k > 3, |E(G)| = |E(H)|+ |E(C)|+ |E(H,C)| ≤ 2
⌊

n
2
−k

2

⌋ ⌈
n
2
−k

2

⌉
+ 2n− 2k.

To show that the above upper bound is sharp, we construct a desired graph G as
follows. (See Figures 1 and 2).

T’
u

u

u

u

1  

2

3

4
u’

u’

u’

1  

2

3

u u

u’u’ 56

5 6

u’
4S

S’T

Figure 1: Example of a bipartite graph G with p(G) = 6 constructed in Theorem 3.2
for the case when p(G) > 3 is even, where any pair of mates under a 6-pair partition

are in the same color class of G, |S| = |S ′| =
⌈

n
2
−k

2

⌉
and |T | = |T ′| =

⌊
n
2
−k

2

⌋
.

T’u’
4

u’
3

u’
2

u’
1  

u
7u

6

u
5

u
4

u
3

u
2

u’
5

6u’u’
7

u
1  S

T S’

Figure 2: Example of a bipartite graph G with p(G) = 7 constructed in Theorem 3.2
for the case when p(G) > 3 is odd, where any pair of mates under a 7-pair partition

are from distinct color classes of G, |S| = |S ′| =
⌈

n
2
−k

2

⌉
and |T | = |T ′| =

⌊
n
2
−k

2

⌋
.

Let C = u1u2u3 · · ·uku
′
1u

′
2u

′
3 · · ·u′

k be a 2k-cycle and H = (S, T ), H ′ = (S ′, T ′) be

two complete bipartite graphs with |S| = |S ′| =
⌈

n
2
−k

2

⌉
and |T | = |T ′| =

⌊
n
2
−k

2

⌋
. By

adding edges to join all the vertices of S (respectively, S ′) with the two vertices u1, u3

(respectively, u′
1, u

′
3) on C, and adding edges to join all the vertices of T (respectively,

T ′) with the two vertices u2, u4 (respectively, u
′
2, u

′
4 ) on C, we get the desired graph

G. It is easy to verify that G is a bipartite graph of order n and pair length k, and

its size reaches the upper bound 2
⌊

n
2
−k

2

⌋ ⌈
n
2
−k

2

⌉
+ 2n− 2k. �
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Finally, we make a remark that for the case n = 2k where k = p(G), the lower
bound and the upper bound given in Theorem 3.1 (respectively, Theorem 3.2) for the
size of a bipartite graph G of order n and pair length k are equal. This is consistent
with the fact that if n = 2k, then the graph G of order n and pair length k is unique
and bipartite, i.e., G = K2 when k = 1 and G = Cn when k > 1.
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