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Abstract

We consider a combinatorial problem occurring naturally in a group theo-
retical setting and provide a constructive solution in a special case. More
precisely, in 1999 the author established a logarithmic bound for the de-
rived length of the quotient of a finite solvable group modulo the second
Fitting subgroup in terms of the number of irreducible character degrees
of the group. Along the way, in two key lemmas an inductive process
was used which at its core required a solution of some weak form of the
combinatorial problem studied in this paper. This problem can be stated
and studied without any group theoretical background, and in this pa-
per we present the problem, discuss what is known and what the main
conjecture is, and solve the conjecture in the smallest open case.

1 Introduction

In this paper we want to consider a combinatorial problem whose origin is in group
theory, but which can be considered and studied in a purely combinatorial context.
The task is to fill a grid with k rows and infinitely many columns with integers
according to certain rules. In other words, the goal is to determine whether a matrix
(aij) (i = 1, . . . , k; j ∈ IN) with integer entries exists which obeys some given rules.

While the statement of the problem is quite technical, trying to solve it turns
out to be an intriguing task, particularly because intuitively it seems almost obvious
that a solution is always possible, albeit so far a general proof of the main conjecture
(which is stated below in detail) remains elusive.

Before providing more background information, we now state the problem for-
mally.

1.1 Problem. Let n ∈ IN and k ∈ IN with k ≥ 2. Suppose that we are given
sets of natural numbers Sij = Sij(k) ⊆ IN for i = 1, . . . , k and j ∈ IN such that
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|Sij | = k for all i = 1, . . . , k and j ∈ IN. Is it possible to find aij = aij(k, n) ∈ IN for
i = 1, . . . , k and j ∈ IN such that the following hold.

(1) aij ∈ Sij for i = 1, . . . , k, j ∈ IN.

(2) For any i ∈ {1, . . . , k} we have the following:

(a) ai1, ai2, . . . , ain are mutually distinct.

(b) aij �∈ {ai1, ai2, . . . , ai,n−1} for all j ≥ n.

(3) For any r, s ∈ {1, . . . , k} with r �= s and any j ∈ IN we have

{ar1, ar2, . . . , arj} �= {as1, as2, . . . , asj}.

Being able to answer the problem in the affirmative for n = 5 and k = 9 plays a
crucial role in a group theoretical context in [1] and is first explicitly discussed in [2,
Section 3]. The solution in this case actually provides the skeleton of an inductive
process used to exhibit the existence of many orbits of different sizes in certain linear
group actions, and this process is used in several places in [1]. A solution to the
problem for smaller values of k would therefore improve several results in [1]. We
refer the reader to [2] for more details on the algebraic significance of this problem.

From the discussion in [2] it follows that Problem 1.1 can always be solved in
case that k ≥ 2n − 1, whereas, on the other hand, if k ≤ n, then one can find sets
Sij , such that Problem 1.1 cannot be solved. For the convenience of the reader we
present the easy proofs of these two claims here, but first we want to introduce one
piece of terminology.

Given k, n ∈ IN, we say that Problem 1.1 has a general solution for k and n if
Problem 1.1 can be solved for any choice of the Sij. Otherwise, we say that Problem
1.1 does not have a general solution for k and n.

We now can prove the two claims above. First, we show that Problem 1.1 does
not have a general solution for k = n. (From this it is an immediate consequence
that Problem 1.1 does not have a general solution whenever k ≤ n.) To see this,
simply suppose that Sij = {1, . . . , k} for all i = 1, . . . , k and j ∈ IN. Then (2) forces
that {a11, . . . , a1k} = {1, . . . , k}, and likewise (2) forces {a21, . . . , a2k} = {1, . . . , k},
but this contradicts (3) with r1 = 1, r2 = 2, and j = k.

Second, we show that Problem 1.1 has a general solution for k and n whenever
k = 2n − 1. (From this it follows quickly that Problem 1.1 has a general solution
whenever k ≥ 2n − 1.) To see this, observe that without loss of generality we may
assume that ai1 = i for i = 1, . . . , k. Then we choose the aij ∈ Sij for i = 1, . . . , k
and j ≥ 2 subject to the following conditions: (2) must be satisfied, and aij �∈
{i+ n, i+ n+ 1, . . . , i+ 2n− 2}, where the elements in the latter set are to be read
modulo 2n − 1. As |Sij| = 2n − 1, clearly the aij can indeed be chosen to satisfy
these conditions, and it is then not hard to verify that (3) holds; for example, (3)
holds for Rows 1 and 2, because 1 is the first entry in Row 1, but 1 does not occur
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in Row 2; and (3) holds for Rows 1 and k = 2n − 1, as 2n − 1 is the first entry in
Row k, but does not occur in Row 1, etc.

Therefore the open question now is: What happens when n + 1 ≤ k ≤ 2n − 2
(and n ≥ 3)? Does Problem 1.1 have a general solution then? We believe that the
answer is yes, which we state as the following conjecture.

1.2 Conjecture. Problem 1.1 has a solution whenever k = n + 1. (Thus there
is a solution whenever k ≥ n+ 1.)

The reason for this conjecture is that in the seemingly most difficult and tightest
case, namely when all the Sij are equal, it is easy to show that a solution exists,
as we can see as follows. Let k = n + 1 and suppose that the Sij are all equal. i
Without loss of generality we may assume that Sij = {1, . . . , k} for all i, j. Then let
aij = i+ j − 1 (to be read modulo k) for i = 1, . . . , k and j = 1, . . . , k − 1 = n, and
let aij = ain for i = 1, . . . , k and j ≥ n. Then it is easy to check that this is indeed
a solution.

So in the seemingly hardest case there is an easy solution, but a general proof of
the conjecture is yet to be found.

The purpose of this paper is to prove this conjecture when n = 3 which can be
extended to a general result (see the remark following Theorem 2.1).

2 The proof

In this section we present a solution of the problem in the smallest, as of yet still
open case, of Problem 1.1, namely n = 3. In this case, from the general results
discussed in Section 1 we know that there does not always (i.e., for any choice of the
sets Sij(k)) exist a solution when k ≤ 3, and there is always a solution when k ≥ 5.
So the open question here is: Does there always exist a solution for k = 4? We will
show that the answer is yes, thereby confirming Conjecture 1.2 in this case. We will
assume throughout that the Axiom of Choice is true.

2.1 Theorem. Let n = 3, k = 4 and let Sij (j ∈ IN, i = 1, 2, 3, 4) be subsets of
IN such that |Sij | = 4 for all i, j. Then there exist aij ∈ IN (i = 1, 2, 3, 4; j ∈ IN)
such that (1), (2), (3) of Problem 1.1 hold.

Proof. The hardest rule to verify is (3), because (3) describes very many condi-
tions. Hence we introduce some more notation making it easier to discuss (3). For
i ∈ {1, 2, 3, 4} and j ∈ IN we define

M(i, j) = {ai1, ai2, . . . , aij}.
Next for any i1, i2 ∈ {1, 2, 3, 4} and any j ∈ IN we say that

“P (i1, i2, j) is true”

if and only if
M(i1, j) �= M(i2, j).
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Thus (3) is satisfied if and only if P (i1, i2, j) is true for all i1, i2 ∈ {1, 2, 3, 4} with
i1 �= i2 and all j ∈ IN. We also say, given i1, i2 ∈ {1, 2, 3, 4}, that

“Q(i1, i2) is true”

if and only if P (i1, i2, j) is true for all j ∈ IN.

Hence (3) is satisfied if and only if Q(1, 2), Q(1, 3), Q(1, 4), Q(2, 3), Q(2, 4), and
Q(3, 4) are all true.

We show how to choose aij ∈ Sij (i = 1, 2, 3, 4; j ∈ IN) in several steps.

Step 1: Choose a11 ∈ S11 arbitrarily. Without loss of generality, we may assume
that a11 = 1.

Step 2: We consider two cases:

Case 2a: (S1j ∩ Si1) − {1} = ∅ for all i ∈ {2, 3, 4} and all j ≥ 2. In this case
we choose a1j ∈ S1j for j ≥ 2 in such a way that (2) is satisfied, which is easily
possible since we have at least three choices for a12 and at least two choices for each
a1j for j ≥ 3. Observe that in this case Q(1, 2), Q(1, 3), and Q(1, 4) will be true, as
ai1 �∈ M(1, j) for all j ∈ IN.

So when we continue choosing the aij for i ≥ 2 and j ∈ IN, we do not have to
pay attention to the first row of the matrix (aij).

Case 2b: If we are not in Case 2a, then we can choose r ∈ IN minimal such that

(S1r ∩ Sl1)− {1} �= ∅

for some l ∈ {2, 3, 4}. It is then no loss of generality to assume that l = 2 and that
2 ∈ S1r ∩ S21.

Then pick a1r = 2. The remaining a1j for 2 ≤ j ≤ r − 1 and j ≥ r + 1 will be
chosen later.

Step 3: Now we turn to the second row of the matrix (aij). If we are in Case 2b,
we let a21 = 2. If we are in Case 2a, we may choose a21 ∈ S21 arbitrarily, but then
without loss of generality we may assume that a21 = 2.

Hence in any case a21 = 2.

Now put
S∗
2j = S2j − {1}

for all j ≥ 2.

Then pick a2j ∈ S∗
2j for j ≥ 2 in such a way that (2) is satisfied. This is

easily possible since |S∗
2j | ≥ 3, leaving at least two possibilities for a22 and at least

one possibility for a2j when j ≥ 3, as then any a2j ∈ S∗
2j − {2, a22} will work to

satisfy (2).

At this point we have filled the second row making sure that 1 does not occur in
it, thus obtaining that Q(1, 2) is true.

Step 4: We now once more have to consider two cases:
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Case 4a: a2j �∈ Si1 for all j ≥ 2 and i ∈ {3, 4}.
Then no matter how we later choose a31 and a41 (note that we must choose

them different from 1 or 2 so that P (1, 3, 1) and P (1, 4, 1) hold), we will always have
ai1 ∈ M(i, j) and ai1 �∈ M(2, j) for i ∈ {3, 4} and j ∈ IN, and hence we know that
Q(2, 3) and Q(2, 4) automatically hold in this case. Now we choose a31 ∈ S31−{1, 2}
arbitrarily. So without loss of generality we may assume that a31 = 3.

Case 4b: If Case 4a does not hold, then we may choose s ∈ IN with s ≥ 2 minimal
such that there is an i ∈ {3, 4} with a2s ∈ Si1. Recall that by the way we filled the
second row of the matrix (aij) we know that a2s �∈ {1, 2}. So now without loss of
generality we may assume that a2s = 3 and that i = 3. Then we let a31 = 3.

Hence in any case we have a31 = 3.

Step 5: We next explain how to complete the third row. Let S∗
3j = S3j − {2} for

j ∈ IN. Then in both Cases 4a and 4b we just pick a3j (j ≥ 2) arbitrarily from S∗
3j in

such a way that also (2) is fulfilled; since |S∗
3j | ≥ 3 for all j, this is clearly possible.

So at this point we have completed the third row in such a way that 2 does not
occur in this row. Hence while 2 ∈ M(2, j) for all j ∈ IN, we have 2 �∈ M(3, j) for all
j ∈ IN, which shows that Q(2, 3) holds.

We also claim that Q(1, 3) holds. (∗)
To see this, recall that in Case 2a we already know that Q(1, 3) holds. So we

may assume that we are in Case 2b. Then note that by the choice of r we know
that a1j �= 3 for j = 1, . . . , r (no matter how we will choose those a1j ∈ S1j later),
so we have 3 ∈ M(3, j) and 3 �∈ M(1, j) for j = 1, . . . , r. Thus P (1, 3, j) holds for
j = 1, . . . , r. However, as a1r = 2 (see Step 2, Case 2b), we will have 2 ∈ M(1, j)
for all j ≥ r (no matter how we choose these aij ∈ Sij later), and we made sure
that 2 �∈ M(3, j) for all j ∈ IN. Hence P (1, 3, j) also holds for all j ≥ r, and thus
altogether Q(1, 3) holds, completing the proof of (∗).
Step 6: Let us see what we have accomplished so far. We have completed Rows
2 and 3, and we have chosen at least parts of Row 1 so that in any case Q(1, 2),
Q(1, 3), and Q(2, 3) are true.

If we are in Case 2a, then we have completed Row 1 as well and know that Q(1, 4)
is true, so then it remains to fill Row 4 so that (2) is satisfied and in addition, Q(2, 4)
and Q(3, 4) will hold. (If in addition we are in Case 4a, then Q(2, 4) holds and we
only have to make sure that Q(3, 4) holds.)

If we are in Case 2b, then we have to fill Row 4 and to complete Row 1 in such a
way that (2) holds for both rows and that also Q(1, 4), Q(2, 4), and Q(3, 4) are true.
(If in addition we are in Case 4a, then Q(2, 4) holds and we only need to make sure
that Q(1, 4) and Q(3, 4) hold.)

Step 7: As we start working on the fourth row of (aij), we once more consider two
cases. Recall that a3j �∈ {2, 3} for all j ≥ 2.

Let a41 ∈ S41 − {1, 2, 3}. Since |S41| = 4, that is possible. Note that then
P (i, 4, 1) will be satisfied for i = 1, 2, 3. Without loss of generality, we may assume
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that a41 = 4. Now let S∗
4j = S4j −{3} for j ∈ IN, and then pick i a4j ∈ S∗

4j arbitrarily
for j ≥ 2 in such a way that (2) is satisfied. As |S∗

4j | ≥ 3, this is obviously possible.

So we have completed Row 4 in such a way that (2) holds and 3 does not occur
in it. Hence 3 ∈ M(3, j) for all j ∈ IN and 3 �∈ M(4, j) for all j ∈ IN which shows
that P (3, 4, j) is true for j ∈ IN. Thus Q(3, 4) is satisfied.

Next we claim that Q(2, 4) holds. (∗∗)
To prove this, first assume we are in Case 2a.

If in addition we are in Case 4a, then we already know that Q(2, 4) holds. Hence
we now may assume that we are in Case 4b. Then from the definition of s in Step
4, Case 4b, we know that a2j �= 4 for j = 1, . . . , s − 1 and since a2s = 3, we even
have a2j �= 4 for j = 1, . . . , s. Hence 4 ∈ M(4, j) and 4 �∈ M(2, j) for j = 1, . . . , s,
so P (2, 4, j) holds for j = 1, . . . , s. Moreover, as a2s = 3, we have 3 ∈ M(2, j) for
j ≥ s, whereas we made sure that 3 �∈ M(4, j) for j ∈ IN. Thus P (2, 4, j) holds for
j ≥ s. Altogether we conclude that Q(2, 4) holds and so (∗∗) is proved.
Step 8: We now finish the proof by finally completing Row 1, as needed.

First suppose that we are in Case 2a. By what we saw in Steps 6 and 7, we have
determined the entire matrix such that (1), (2), (3) hold; so that we are done in this
case.

So it remains to consider Case 2b, and by Step 6 and our work done in Step 7, it
remains to choose a1j ∈ S1j for 2 ≤ j ≤ r− 1 and j ≥ r + 1 in such a way that Row
1 satisfies (2) and Q(1, 4) holds.

To do this, let S∗
1j = S1j−{4}. Then pick a1j ∈ S∗

1j for 2 ≤ j ≤ r−1 and j ≥ r+1
in such a way that (2) holds for Row 1. As |S∗

ij| ≥ 3, this is clearly possible. So we
have completed Row 1 in such a way that 4 does not occur in it. Hence 4 �∈ M(1, j)
for j ∈ IN. On the other hand, 4 ∈ M(4, j) for all j ∈ IN. Hence Q(1, 4) holds, and
the proof is complete. �

Remark: It is not too hard to use the ideas in the above proof to establish the
new general upper bound that Problem 1.1 has a solution whenever k = 2n−2. This
is an exercise we leave to the interested reader.
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