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Abstract

A heterochromatic spanning tree is a spanning tree whose edges have
distinct colors, where any color appears at most once. In 2001, Brualdi
and Hollingsworth proved that a (2n —1)-edge-colored balanced complete
bipartite graph K, ,, with color set C has a heterochromatic spanning tree,
if for any non-empty subset R C (', the number of edges having a color
in R is more than |R|?/4. In 2013, Suzuki generalized heterochromatic
graphs to f-chromatic graphs, where any color ¢ appears at most f(c)
times, and he presented a necessary and sufficient condition for graphs
to have an f-chromatic spanning forest with exactly w components. In
this paper, using this necessary and sufficient condition, we generalize
the Brualdi-Hollingsworth theorem above.

1 Introduction

We consider finite undirected graphs without loops or multiple edges. For a graph
G, we denote by V(G) and E(G) its vertex and edge sets, respectively. An edge-
coloring of a graph G is a mapping color : E(G) — C, where C is a set of colors. An
edge-colored graph (G,C, color) is a graph G with an edge-coloring color on a color
set C. We often abbreviate an edge-colored graph (G, C, color) as G.

1.1 Heterochromatic spanning trees

An edge-colored graph G is said to be heterochromatic if no two edges of G have the
same color, that is, color(e;) # color(e;) for any two distinct edges e; and e; of G. A
heterochromatic graph is also said to be rainbow, multicolored, totally multicolored,
polychromatic, or colorful. Heterochromatic subgraphs of edge-colored graphs have
been studied in many papers, as in the survey by Kano and Li [4].
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Akbari & Alipour [1], and Suzuki [5] independently presented a necessary and
sufficient condition for edge-colored graphs to have a heterochromatic spanning tree,
and they proved some results by using the condition. Here, we denote by w(G) the
number of components of a graph GG. Given an edge-colored graph G and a color set
R, we define Er(G) = {e € E(G) | color(e) € R}. Similarly, for a color ¢, we define
E.(G) = E;(G). We denote the graph (V(G), E(G) \ Er(G)) by G — Eg(G).

Theorem 1.1 (Akbari and Alipour [1], Suzuki [5]). An edge-colored graph G has a
heterochromatic spanning tree if and only if

w(G — Egr(G)) < |R|+1 for any R C C.

Note that if R = () then the condition is w(G) < 1. Thus, the condition of
this theorem includes a condition for graphs to have a spanning tree, namely, to be
connected. Suzuki [5] proved the following theorem by using Theorem 1.1.

Theorem 1.2 (Suzuki [5]). An edge-colored complete graph K,, has a heterochromatic
spanning tree if |E.(G)| < n/2 for any color ¢ € C.

Jin and Li [3] generalized Theorem 1.1 to the following theorem, from which we
can obtain Theorem 1.1 by taking £ =n — 1.

Theorem 1.3 (Jin and Li [3]). An edge-colored connected graph G of order n has a
spanning tree with at least k (1 <k <n — 1) colors if and only if

w(G — Eg(G)) <n—k+|R)| for any R C C.

If an edge-colored connected graph G of order n has a spanning tree with at least
k colors, then G has a heterochromatic spanning forest with k edges, that is, G has a
heterochromatic spanning forest with exactly n — k components. On the other hand,
if an edge-colored connected graph G of order n has a heterochromatic spanning
forest with exactly n —k components, then we can construct a spanning tree with at
least k colors by adding some n — k — 1 edges to the forest. Hence, we can rephrase
Theorem 1.3 as the following.

Theorem 1.4 (Jin and Li [3]). An edge-colored connected graph G of order n has
a heterochromatic spanning forest with exactly n — k components (1 <k <n—1) if
and only if

w(G — Egr(G)) <n—k+|R)| for any R C C.

Brualdi and Hollingsworth [2] presented a sufficient condition for complete bipar-
tite graphs to have a heterochromatic spanning tree.
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e =1>1%/4

e + ey, =2>2°/4

e, + et e; =4 > 3*/4

e, + eyt egt e, =6 > 4%/4

e, + eyt ext eyt es =9 > 5°/4

Fig. 1: An example of Theorem 1.5.

Theorem 1.5 (Brualdi and Hollingsworth [2]). Let G be an edge-colored balanced
complete bipartite graph K, , with a color set C = {1,2,3, ..., 2n — 1}. Let e,
be the number of edges having a color ¢, namely, e. = |E.(G)|, and assume that
1<e <e << egpq. If 22:1 e; > 7’2/4 for any color r € C, then G has a
heterochromatic spanning tree.

Fig. 1 shows an example of Theorem 1.5. The sum of numbers of edges having
1,2,..., or r is more than r?/4 for any color r, thus, this graph has a heterochromatic
spanning tree.

1.2 f-Chromatic spanning trees

Heterochromatic means that any color appears at most once. Suzuki [6] generalized
once to a mapping f from a given color set C to the set of non-negative integers, and
introduced the following definition as a generalization of heterochromatic graphs.

Definition 1.6. Let f be a mapping from a given color set C to the set of non-
negative integers. An edge-colored graph (G,C, color) is said to be f-chromatic if
|E.(G)| < f(c) for any color ¢ € C.

Fig. 2 shows an example of an f-chromatic spanning tree of an edge-colored graph.
Let C=1{1,2,3,4,5,6,7} be a given color set of 7 colors, and a mapping f is given
as follows: f(1) =3, f(2) =1, f(3) =3, f(4) =0, f(5) =0, f(6) =1, f(7) = 2.
Then, the left edge-colored graph in Fig. 2 has the right graph as a subgraph. It
is a spanning tree where each color ¢ appears at most f(c) times. Thus, it is an
f-chromatic spanning tree.

If f(¢) = 1 for any color ¢, then all f-chromatic graphs are heterochromatic
and also all heterochromatic graphs are f-chromatic. It is expected many previous
studies and results for heterochromatic subgraphs will be generalized.

Suzuki [6] presented the following necessary and sufficient condition for graphs
to have an f-chromatic spanning forest with exactly w components. This is a gen-
eralization of Theorem 1.1 and Theorem 1.4.

Theorem 1.7 (Suzuki [6]). Let f be a mapping from a given color set C to the set
of non-negative integers. An edge-colored graph (G, C, color) of order at least w has



K. SUZUKI / AUSTRALAS. J. COMBIN. 61 (1) (2015), 130-137 133

Fig. 2: An f-chromatic spanning tree of an edge-colored graph.

an f-chromatic spanning forest with exactly w components if and only if

w(G — Er(G)) <w—+ Z f(e) for any R C C.
ceER

By using Theorem 1.7, he generalized Theorem 1.2, as follows.

Theorem 1.8 (Suzuki [6]). A g-chromatic graph G of order n with |E(G)| > ("3")

has an f-chromatic spanning forest with exactly w (1 < w < n — 1) components if
|E(G)|

g(c) < === f(c) for any color c.

In this paper, by using Theorem 1.7, we will generalize the Brualdi-Hollingsworth
theorem (Theorem 1.5).

1.3 A generalization of Brualdi-Hollingsworth Theorem

Under the conditions of Theorem 1.5, if Y7, e; > r?/4 for any color r € C, then for
any non-empty subset R C C we have |Eg(G)| > Zyjl e; > |R|?/4. On the other
hand, if |Er(G)| > | R|?/4 for any non-empty subset R C C, then for any color r and
color subset @ = {1,2,3,...,r} C C, we have

o= Y IBG)] = 1Eo(G)] > |QF/4 =124

Thus, Y ;_,e; > r?/4 for any color r € C if and only if |Er(G)| > |R|*/4 for any
non-empty subset R C C. Hence, we can rephrase Theorem 1.5 as the following.

Theorem 1.9 (Brualdi and Hollingsworth [2]). Let G be an edge-colored balanced
complete bipartite graph K, ,, with a color set C ={1,2,3, ..., 2n—1}. If |ERr(G)| >
|R|?/4 for any non-empty subset R C C, then G has a heterochromatic spanning tree.

In this paper, we generalize this theorem to the following, which is our main
theorem.
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Theorem 1.10. Let G be an edge-colored complete bipartite graph K, ,,, with a color
set C. Let w be a positive integer with 1 < w < n + m, and f be a function
from C to the set of non-negative integers such that ) - f(c) > n+m —w. If
|Er(G)] > (n+m —w =3 co\g [(€))?/4 for any non-empty subset R C C, then G
has an f-chromatic spanning forest with w components.

Theorem 1.9 is a special case of Theorem 1.10 with m = n, w = 1, f(¢) =
1 for any color ¢, and |C| = 2n — 1. The number of edges of a spanning forest
with w components of K, ,, is n + m — w. Thus, in Theorem 1.10, the condition
Y eec f(€) = n+m —w is necessary for existence of an f-chromatic spanning forest
with w components.

The lower bound of |Er(G)| in Theorem 1.10 is sharp in the following sense: Let
R C C be a color subset and p =n+m —w — 3 c\g f(c). Let G be a complete
bipartite graph K, ;,, and H be a complete bipartite subgraph K ¢ of G. Color the
edges in F(H) with colors in R, and the edges in F(G) \ E(H) with colors in C\ R
(Fig. 3). Then, |Er(G)|=p*/4=(n+m —w — ZceC\Rf(c))Q/él.

p/2

Fig. 3: A graph G and R C C with |Egx(G)|=(n+m —w — ZceC\Rf(c))Q/él.

Recall that n+m —w is the number of edges of a spanning forest with w compo-
nents of G, and ¢\ p f(c) is the maximum number of edges having colors in C\ R
of a desired forest. Thus, p is the number of edges having colors in R needed in a
desired forest. However, any p edges of H make a cycle because |V (H)| = p. Hence,
G has no f-chromatic spanning forests with w components, which implies the lower
bound of |Eg(G)| is sharp.

In the next section, we will prove Theorem 1.10 by using Theorem 1.7.

2 Proof of Theorem 1.10

In order to prove Theorem 1.10, we need the following lemma.

Lemma 2.1. Let G be a bipartite graph of order N that consists of s components.
Then |E(G)| < (N — (s —1))?/4.
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Proof. Take a bipartite graph G* of order N that consists of s components so that
(1) |E(G*)| is maximum, and
(2) subject to (1), for the maximum component D, of G*, |V (D;)| is maximum.

By the maximality (1) of G*, each component of G* is a complete bipartite graph.
Let A, and By be the partite sets of Dy. We assume |A,| < |Bs].

Suppose that some component D except D, has at least two vertices. Let A and
B be the partite sets of D. We assume |A| < |B|. If |A| > |B;| then |A| < |Bs| <
|A| < |BJ, which contradicts that D; is a maximum component of G*. Thus, we have
|A| < |Bs|. Let x be a vertex of B, where degq(z) = |A|. Let D' = D—{z}, A’ = A,
B' =B —ux, A, = A;U{z}, B, = B, and D, = (AL UB., E(Ds) U{zz | z € B.}).
Let G™ be the resulted graph. Then, we have

[E(D)+|E(Dy)] = |E(D)| = degg(z) + |E(Ds)| + | B
[E(D)| + |E(Ds)| + |Bs| — |A]
> |E(D)|+|E(Ds)|;

which implies |E(G"™)| = |E(G*)| by the condition (1). However, that contradicts
the maximality (2) because |V(D.)| > |V (D;)| + 1. Hence, every component except
Dy has exactly one vertex, which implies that |V (D) = N — (s — 1).

Suppose that |Bs| — |As| > 2. Let x be a vertex of B, where degq(x) = |Aq.
Let DL = (V(Ds), E(Ds —z)U{zz | z € By —x}). Then, D. is a complete bipartite
graph, and we have

=
S)
|

|E(D;)| — degg () + |Bs —
- |E(Ds)| - |As| + |Bs| -1
> |E(D,)|+1,

which contradicts the maximality (1). Hence, |By| — |As| < 1.
Therefore,

[E(G)] < [E(GY)] = [E(Ds)] = [AJ][ Bl
= [(N=(s=1))/2][(N = (s = 1))/2]
< (N—(s—1)/4
|

Then, we shall prove Theorem 1.10 by using Theorem 1.7 and Lemma 2.1. Sup-
pose that G has no f-chromatic spanning forests with w components. By Theorem
1.7, there exists a color set R C C such that

w(G — Ep(@)) >w+>_ f(e). (1)

ceER
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Let s = w(G — Egr(G)). Let Dy, Dy, ..., Dg be the components of G — Er(G),
and ¢ be the number of edges of G between these distinct components. Note that,

the colors of these ¢ edges are only in R, that is, ¢ < |Er(G)].
If R = C then

s=w(G-Ee(G) >w+ Y fl@)2w+n+m—w=n+m=[V(G),

ceC

by the assumption of Theorem 1.10. This contradicts that s < |[V(G)|. Thus, we
can assume R # C, namely, C\ R # (). Hence, by the assumption of Theorem 1.10,

[Eor(G) > (n+m—w— > f(e)’/4=(n+m—w=> f(c)’/4

ceC\(C\R) cER

Therefore, we have

¢ < |ER(Q)| = |B(Q)| = |Ec\r(G)| < [E(G)] = (n+m —w =) f(e)?/4. (2)

ceER

On the other hand,
q = |E(G)|—|E(Dy)UE(Dy)U---UE(Dy)|.

By Lemma 2.1, |E(D;) U E(Dqg) U---U E(Dy)| < (n+m — (s —1))?/4. Thus, since
s=w(G - Er(G)) 2w+ 143 .x f(c) by (1), we have

¢ = |E(G)| - |BE(D)UE(Dy)U---UE(D,)
> |E(G)| ~ (n+m— (s - 1))*/4
> E(G)| ~ (n+m— (w143 f(e)— 1)/4
= |E@)| - (n+m—w— 3 J(0))*/4,

ceER
which contradicts (2). Consequently, the graph G has an f-chromatic spanning forest

with w components.
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