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Abstract

Let LD(G) denote the minimum cardinality of a locating-dominating
set for graph G. If T is a tree of order n with [ leaf vertices and s
support vertices, then a known lower bound of Blidia, Chellali, Matf-
fray, Moncel and Semri [Australas. J. Combin. 39 (2007), 219-232] is
LD(T) > [(n+1+1—s)/3]. In this paper, we show that LD(T) >
[(n+1+2(l—s))/3] and these bounds are sharp. We constructively
characterize the trees achieving the lower bounds.

1 Introduction

For various safeguard applications that use graphical models of facilities or mul-
tiprocessor networks, various types of protection sets have been studied where the
objective is to precisely locate an “intruder.” Examples include identifying a malfunc-
tioning processor in a multiprocessor network and a thief, saboteur or fire in a facility
network. Being concerned with determining an intruder location in a network system,
one is interested in dominating sets. For a graph G = (V, E) of order n = |V(G)],
the open neighborhood of a vertex v is N(v) = {z € V(G) : vo € E(G)}, and the
closed neighborhood is N[v] = N(v)U{v}. The degree of vertex v is deg(v) = |N(v)].
Vertex set D C V(@) is dominating if U,epN[v] = V(G), that is, every x € V(G) is
in D or is adjacent to at least one vertex in D. The domination number v(G) is the
minimum cardinality of a dominating set. If D is a dominating set with x € D and
N[w] N D = {z}, then z is called a sole dominator of w and w is called a private
neighbor of x. See Haynes, Hedetniemi and Slater [2, 3] for an extensive treatment
of domination theory.

* Also at Computer Science Department, University of Alabama in Huntsville, Huntsville, AL
35899. U.S.A.
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As introduced in Slater [12, 13], we consider that a detection device at a vertex
v is able to determine if the intruder is at v or if it is in N(v), but which vertex
in N(v) cannot be determined. A locating-dominating set L C V(G) (an LD-set
L) is a dominating set with the property that for each vertex x € V(G) \ L the set
N(z) N L is unique. That is, any two vertices x,y in V(G) \ L are distinguished in
the sense that there is a vertex v € L with |[N(v) N {x,y}| = 1. The minimum size
of a locating-dominating set for a graph G is the locating-dominating number of G,
denoted LD(G). A locating-dominating set L C V(G) with |L| = LD(G) is called
an LD(G)-set. We interpret the set L as the set of locations at which the detection
devices are placed. Note that if L is an LD-set with z € L, then x can be its own
private neighbor and x can be the sole dominator of at most one vertex in N(z).

As an example, for the path P, : vy, vg,...,v, a y(P,)-set is D = {vq, v5,vs,...}
and v(P,) = [n/3]. Note, for example, that vy,vs € V(P,) \ D and N(vy) N D =
{vs} = N(vg) N D. In fact, as in Slater [13], LD(P,) = [2n/5], and an LD(P,)-set
using two fifths of the vertices is L = {wvy, vy, v7, Vg, V12, V14, . . . }.

There are trees T with LD(T')-sets containing less than 40% of the vertices. For
tree 1), of order n = 3k + 3 in Figure 1, we have LD(T,) = k + 2 with LD(T,)-
set {x1,z9,..., x5, v,w}. Also, {1, z9,..., 2%, v} is an LD-set for both T;, — w and
T, — {w,u}, with LD(T,, — w) = LD(T,, — {w,u}) = k + 1. These examples show
the lower bound in the next theorem is sharp, where it is shown that any locating-
dominating set for any tree must contain more than one-third of the vertices.

Theorem 1 (Slater [12]). For any tree T' of order n > 2, [(n+1)/3] < LD(T)
n— 1.

IRVA

We note that other types of distinguishing sets include identifying codes as in-
troduced in Karpovsky, Chakrabarty, and Levitin [6] and open-locating-dominating
sets as described for the n-cubes in Honkala, Laihonen and Ranto [5] and defined for
general graphs in Seo and Slater [10, 11]. See also, for example, [4, 8, 9, 10, 14]. A
bibliography for papers about distinguishing sets, currently with over 250 citations,
is maintained by Lobstein [7].

In Section 2, we demonstrate that for any n and any k& within the bounds of
Theorem 1 (that is, [(n+1)/3] < k < n — 1) there is a tree T of order n satisfying
LD(T) = k and give an explicit family of interpolating trees based on this result.
We also improve the lower bounds for LD(T') of Blidia, Chellali, Maffray, Moncel
and Semri [1], stated in Theorem 3, and show our bound, stated in Theorem 5, to be
sharp. For this lower bound, consider tree 7519 = T3;13 —w in Figure 1. Note that
v and x; adequately locate u, v, y1, x1 and z;. Thereafter, each {y;, x4, z;} forms a Py
attached to v. For n = 3k+1, the lower bound is achieved for tree T3, = T30 —u.
Blidia, et al. [1], present another family of trees achieving the absolute lower bound
of [(n+1)/3], namely, the caterpillars in Figure 2. Both families of trees illustrate
the following observation.
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Figure 1: Tree T, with |V(T,)| = n achieves the lower bound of LD(T,) >
[(n+1)/3].
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Figure 2: Caterpillar Csp 0.

Observation 2 If G is a graph with LD(G) =t containing an LD(G)-set L with
v € L and G’ is the graph obtained from G by adding a P3 : y,x,z and the edge yv,
then LD(G') = LD(G) + 1 and LU {z} is an LD(G’)-set. O

In Sections 3 and 4 we use operations of this type to constructively characterize
the trees satisfying the improved lower bounds in Theorem 5.

2 Bounds for LD(T)

The bounds for LD(T) in Theorem 1 can be improved if, for example, one considers
the leaf/support structure of the tree. In a tree T', a vertex of degree one is called an
endpoint or a leaf; each vertex adjacent to a leaf vertex is called a support vertex;
and a support vertex adjacent to at least two leaves is a strong support verter. As
in Blidia, et al. [1], we let {(T") and s(T"), respectively, denote the number of leaf
vertices and support vertices.

Theorem 3 (Blidia et al. [1]). For a tree T' of order n > 3,
[(n+14UT)—s(T))/3] <LD(T) < (n+U(T)—s(T))/2.
U

Further, Blidia et al. [1] constructively characterize the trees satisfying the upper
bound LD(T) = (n+ I(T) — s(T'))/2 for a tree T' of order n. Note that the trees
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in Figures 1 and 2 satisfy {(T') = s(T'), that is, they have the same number of leaf
and support vertices. The lower bound of Theorem 3 is sharp when I(T) = s(7),
but it can be improved for [(T") > s(T), that is, when there is at least one strong
support vertex v. Specifically, assume v is a support vertex adjacent to leaves w
and z. Clearly, any LD-set L must contain at least one of z and w. We can say
something much stronger for any graph with two leaves having a common neighbor.

Lemma 4 Assume v is a (support) vertex adjacent to leaves w and x in graph G.

Then LD(G) = LD(G —w) + 1.

Proof. Let Ly be an LD(G — w)-set. Let Ly = Ly U{w}. Given any two vertices y
and z in V(G) — Ly = V(G — w) — Ly, some vertex s € Ly has |[N(s) N {y,z}| = 1.
Trivially, Ly is an LD-set for G, and LD(G) < LD(G — w) + 1. Now, start with an
LD(G)-set Ly. Without loss of generality, we can assume w € Lo. If v € Lo, then
each vertex y € V(G) — Ly has N(y) N Ly = N(y) N (Ly — w). It follows that Ly —w
is an LD-set for G —w. If v is not in Lo, then likewise given any two vertices y and
z in V(G) — (Le U{v}), some vertex s € Ly —w has |[N(s) N{y, z}| = 1. Also, v is
not in Ly implies x € Ly in order for x to be dominated, and then x distinguishes
v from any other vertex y not in Ls. Again, it follows that Ly — w is an LD-set for
G —w. Hence, LD(G —w) < LD(G) — 1. O

Now given a tree T' of order n, we can successively remove a leaf that has a com-
mon neighbor with another leaf and do this I(7') — s(7") times to produce a tree 1"
of order n — ({(T") — s(T")) with {(T") = s(1"). By Lemma 4, we have LD(T) =
LD(T") + (T) — s(T'), and by Theorem 1 we have LD(T") > [(|[V(T")| +1)/3].
Hence, LD(T) = LD(T")+U(T)—s(T) > (n— ((T) — s(T)) + 1) /3+U(T) —s(T) =
(n+2(UT)—s(T))+ 1) /3, proving the following theorem that strengthens Theo-
rem 3.

Theorem 5 If T is a tree of order n > 3, then
LD(T) > [(n+2((T)—s(T))+1)/3].

O

Showing this lower bound is, indeed, best possible, in Sections 3 and 4 we present
a constructive characterization of the trees T' of order n achieving LD(T') = (n +
1+2(U(T)—s(T)))/3. First, we observe that any value of LD(T') within the bounds
[(n+1)/3] < LD(T) < n —1 is achievable by some tree of order n. To see this,
consider any graph G of order n with leaf v. If uv € E(G) (that is, u is the support
vertex of v) and w € V(G) \ {u, v}, then the graph G’ derived from G by removing
the edge uv and adding the edge vw corresponds to moving a leaf of G from one

support vertex, u, to any vertex w. The following lemma bounds the amount LD(G)
can differ from LD(G’).
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Lemma 6 If G is a graph of order n with leaf v, then G', as defined above, satisfies
|ILD(G) — LD(G")| < 1.

Proof. Let L C V(G) be an LD(G)-set.

Case 1. Suppose v € L. With respect to both G and G’, L locates all vertices in
V(G)\ {v} = V(G") \ {v}. Hence, LU {v} locates all vertices with respect to G’;
whence, LD(G") < LD(G) + 1.

Case 2. Suppose v € L. If u € L, define L' = (L \ {v})U{u}. If u € L, then u must
be the sole dominator of a vertex x € V(G) \ L. Otherwise, L \ {v} is a locating-
dominating set of G which contradicts that L is an LD(G)-set. In this case, define
L' = (L\ {v})U{x}. L is now a locating-dominating set of G. LD(G’) < LD(G)+1
follows by using L’ with case 1.

Since the roles of G and G’ may be interchanged, we have the desired result. 0

Consider the tree T), achieving the lower bound LD(T,,) = [(n + 1)/3] in Figure 1.
Now iteratively apply Lemma 6 to T},, moving each leaf z;, x;,one at a time, to the
common support vertex. The final result is a star, which achieves the upper bound
LD(K; 1) =n— 1. We use this method to prove the following theorem.

Theorem 7 Forn > 2, if [(n+1)/3] < k < n—1, then there exists a tree T of
order n with LD(T) = k.

Proof.  For n = 2,3 the result is immediate. For larger n, consider T3;,3 from
Figure 1. Let T, = Tsgy3, Tskrs — w, or T3 — w — u as appropriate. Define
T° = T,, and iteratively form T*"! from T? as follows. Select a vertex t € V(T%)
with deg(t) = 1 adjacent to vertex s # v. Define T**! = T% — st + vt. Note that T*
is well defined for i = 0,1,...,1, where I = n — |Ng,[v]|. For n = 3k + 3 we have
I =2k + 1, and for n = 3k + 2,3k + 1 we have I = 2k. For all n, the difference
between upper and lower bounds for LD(T},) is (n — 1) — [(n 4+ 1) /3] < I. Since, by
Lemma 6, [LD(T") — LD(T**')| < 1, this shows that for each k from [(n + 1) /3] to
n — 1, there is some ¢ from 0 to [ satisfying LD(T") = k. O

Based on this above procedure, we now show an explicit family of trees that in-
terpolate the locating-dominating bounds for trees of order n. Let n > 2 and k be
between [(n +1)/3] and n — 1. We will construct tree T" of order n and LD(T')-set
L with LD(T) = k. Begin with vertices u,v € V(T') and edge uv € E(T). For
each 7 from 1 to [(n —k —1)/2], add Py = w; — z; — y; and edge uw;. If 2 does
not divide n — k — 1, then also add vertices wq, zg and edges uwg, wozg. For each j
from 1 to k — [(n—k —1)/2] — 1, add vertex z; and edge uz;. Finally, LD(T')-set
L consists of vertices u, the z;’s (including x¢ if it is in V(7)) and the z;’s. Fig-
ure 3(a) shows the general form of this construction, where I = |(n —k —1)/2],
J=k—|(n—k—1)/2] —1, vertices wy and x( are included if and only if 2 does not
divide n—k—1, and L is indicated by darkened vertices. For n = 8, this construction
yields the trees in Figure 3(b)—(f) with k ranging from [(n+1)/3] =3ton—-1=7,
respectively.
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Figure 3: (a) Tree T," of order n with LD(Ték)) = k. (b)-(f) Trees TéS) through
Tgm, respectively.

e

3 Trees Achieving LD(T) = [(n+1)/3]

In this section, we are interested in both the structure of trees that achieve the
lower bound of Theorem 1 and the locating-dominating sets of these trees. Defining
LDT(n) = [(n+ 1)/3], we say the ordered pair (T, L) achieves the Theorem 1 lower
bound when 7' is a tree of order n and L is an LD(T)-set with |L| = LDT(n). First,
we examine some special restrictions on the structure of such ordered pairs. Then, we
present five extension operations (including the one from Observation 2) that each
preserve the property of achieving the Theorem 1 lower bound. That is, applying
an extension operation to an ordered pair (7, L) that achieves the Theorem 1 lower
bound produces an ordered pair (Tﬁ, Lﬁ) that achieves the same Theorem 1 lower
bound with 7" a strict subgraph of 7% and L a subset of L. In Theorem 10, we show
these operations are exhaustive. That is, given the tree T} consisting of the single
vertex v, any ordered pair (7', L) that achieves the Theorem 1 lower bound can be
constructed from (77, {v}) via successive applications of the extension operations.
Using Lemma 4, this work is extended in Section 4 to a constructive characterization
of trees achieving the Theorem 5 bound LD(T) = [(n+ 1+ 2(I(T) — s(T)))/3] with
no restriction on the relation of [(T") to s(7T).

Consider an ordered pair (7', L) that achieves the Theorem 1 lower bound where T°
is of order n = 3k+2. In this case, LDT'(n+1) = LDT'(n)+1. Thus, given any tree
T* formed from T by adding a single vertex v, more than |L| vertices are required
for an LD(T*)-set L. If u € L has no private neighbor, then tree T* formed from T
by adding vertex v and edge uv is locating-dominated by L = L. This contradiction
leads to the following proposition.
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Proposition 8 If T is a tree of order n = 3k +2 and L C V(T) is an LD(T)-set
of size [(n+ 1)/3], then every vertex in L has a private neighbor in V(T)\ L. O

For pair (T, L), above, notice that n = 2 (mod 3). If [(T") > s(T"), then LD(T') =
LDT(n) < [(n+2(I(T) — s(T)) + 1)/3]. By Theorem 5 this implies I(T') = s(T).
Also, for pair (T%, L), above, the Theorem 5 bound is the same for [(T*) = s(T*) as
for {(T*%) = s(T%) + 1. That is, [(n+1)+2-0+1)/3] = [(n+1)+2-1+1)/3].
Indeed, if vertex u is a support vertex of T, then it is a strong support vertex of T*%.

The following lemma is used in the proof of Theorem 10 and specifies when a
Theorem 1 lower-bound-achieving tree can have a strong support vertex. We show
that no such tree can have more than one strong support vertex. To see a family of
examples of this type, let n > 3 with n =0 (mod 3) and k£ = [(n + 1)/3]. Then the
tree T,, constructed according to Figure 3(a) is a Theorem 1 lower-bound-achieving
tree with a strong support vertex.

Lemma 9 IfT s a tree of ordern and L C V(T) is an LD(T)-set of size [(n+1)/3],
then I(T) — s(T) < 1. Moreover, [(T) — s(T) = 1 implies n =0 (mod 3).

Proof. First, we show T has at most one strong support vertex. Suppose distinct
vertices vy, vy € V(T) are strong support vertices with leaves w; and x; adjacent to
v, and leaves wy and x5 adjacent to vy. Let ¢ be 1 or 2. We cannot have v;, w;, and
x; in L. Otherwise, we can form tree 7" from T by removing edge v;x; and adding
edge w;z;. Then L' = L\ {z;} is an LD-set of 7" with |L'| < |L| = LDT(n), a
contradiction. If v; ¢ L, then (L \ {w;}) U {v;} is an LD-set of 7. Thus, we can
assume vy, 1, Vs, To € L and wy,ws & L.

Since L is an LD-set and v; sole dominates w;, we cannot have v; sole dominate
any other vertex in N(v;) — and likewise for vs, ws, and xs. Form tree T" from T
by removing edge vowsy and adding edge x1wy. Then T” also has order n and L' = L
is an LD-set of T”. Notice in T" vertex x; sole dominates ws and wv,, which sole
dominates ws in T', now does not have a private neighbor. Thus, L” = L'\ {x5} is
also an LD-set of 7. But |L"| < |L'| = |L| = LDT(n), a contradiction.

Now we use a similar technique to show a strong support vertex of T', if it exists,
has at most two adjacent leaves. Suppose v € V(T is a strong support vertex with
adjacent leaves w, x,y € V(T'). As above, we can assume, without loss of generality,
that v,w,r € L and y € L. Form tree 7" from T by removing edges vw and vx and
adding edges yw and wz. Then 7" also has order n and L' = L\ {z} is an LD-set of
T'. But |L'| < |L|=[(n+1)/3] = LDT(n), a contradiction.

To see that [(T") — s(T) = 1 implies n = 0 (mod 3), suppose v € V(T is a strong
support vertex with adjacent leaves w, z € V(T'). Without loss of generality, assume
v,w € L and z € L. Since L is an LD-set and v sole dominates z, it follows that v
cannot sole dominate any other vertex in N(v). Form tree 7" from 7" by removing w.
Then 7" has order n—1 and L' = L\ {w} is an LD-set of 7" of size [(n +1)/3| —1. If
n # 0 (mod 3), then |L'| =[(n+1)/3]-1=[((n—1)+1)/3]-1= LDT(n—1)—1,
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a contradiction. If, however, n = 0 (mod 3), then there is no contradiction since
[L[=T(n+1)/3] =1=[((n—1)+1)/3] = LDT(n — 1). O

As noted, Figures 1 and 2 demonstrate infinite families of trees achieving the
lower bound LD(T) = [(n+ 1)/3] by iteratively adding Pj’s per Observation 2.
This can be applied more generally as a family of lower bound preserving extension
operations. This notion will be made precise in Theorem 10, below. First, we present
the following extension operations. Note that Operation O5 corresponds to adding
a P; as discussed above.

Let T be a tree of order n = |V(T)| with LD(T)-set L of size |L| = LDT(n) =
[(n+1)/3]; that is, (T, L) is a Theorem 1 lower-bound-achieving ordered pair. The
five operations below are presented with the conditions under which they can be
applied and the justification that the operation is bound preserving. In each case,

(Tﬁ, Lﬁ) is the Theorem 1 lower-bound-achieving ordered pair that results from ex-
tending (7, L).

O1 Condition. n =2 (mod 3) and u € V(7).
Extension. V(T%) = V(T) +v. E(T*) = E(T) + uwv. L* = L +v.
Justification. Since n = 2 (mod 3), any increase in n also increases [ (n+1)/3].
So, introducing v as a vertex of 7% permits including v in L* while maintaining
the lower bound. That is, |L*| = |L| + 1 = LDT(n) + 1 = LDT(n +1). Also,
L distinguishes V(T%) \ {v} in T*. Thus, L* distinguishes V (T%).

02 Condition. n # 2 (mod 3), u € L, and u does not have a private neighbor in
V(T)\ L.
Extension. V(T%) = V(T) +v. E(T*) = E(T) + uv. L* = L.
Justification. Strictly speaking, the condition n # 2(mod 3) is superfluous,
since Proposition 8 implies this is a consequence of the remaining conditions.
Because u does not have a private neighbor in V(T') \ L, L is itself a locating-
dominating set of T%. Also, since n # 2 (mod 3), we have |Lf| = |L| =
LDT(n) = LDT(n + 1). This shows L* is an LD(T*)-set.

O3 Condition. n # 0 (mod 3) and u € V(7).

Extension. V(T*) = V(T) +v+w. E(T*) = E(T) + uwv+vw. L* = L +v or

L' =L +w.

Justification. Since n Z 0 (mod 3), an increase in n by 2 increases [(n + 1)/3]

by 1. So, introducing v and w as vertices of 7% permits including v or w in L
. = |L|+1=LDT(n) +1 =
LDT(n +2). To see that L* is an LD(T*)-set, first note that L distinguishes
V(T*)\{v,w} in T*. Suppose v is added to L*. Then v distinguishes w from all
other vertices in V(T%) \ L* except, perhaps, u. If u ¢ L, then 3z € N(u) N L.
In this case, x distinguishes w from w. If w is added to L* instead of v, the
argument is similar.

O4 Condition. v € L, N(v) = {u}.
Extension. V(Tﬂ) V(T)+w+x+y. E(T*) = E(T)+ vw + ur + zy.
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Lf =L+

Justification. An increase in n by 3 increases [(n + 1)/3] by 1. So, introduc-
ing w, x, and y as vertices of T* permits including x in L* while maintaining the
lower bound. That is, |L*| = |L|+1 = LDT(n)+1 = LDT(n+3). To sce that
L*is an LD(T*)-set, first note that L distinguishes all vertices in V (T*) except
w, x, y, and perhaps u. If u is not a private neighbor of v in T', then L distin-
guishes u in T%. If u is a private neighbor of v in T, then u is not distinguished
by L in T% because N(u)NL = {v} = N(w)N L. However, N (u)NL* = {v, x},
which is unique. This leaves w as the private neighbor of v and y as the private
neighbor of z. Since x € L*, this shows L! is a locating-dominating set of T*.

O5 Condition. u € L.
Extension. V(T%) = V(T) +v+w +z. E(T*) = E(T) + uv + vw + wz.
LF =L+ w.
Justification. Following the justification of O4, ‘Lﬁ| =|L|4+1=LDT(n)+1 =
LDT(n + 3). Since N(v) N LF = {u,w} is unique and x is a private neighbor
of w, we have L* is an LD(T*)-set.

Notice that Operations O1 and O2 extend T by one vertex, Operation O3 extends
T by two vertices, and Operations O4 and O5 extend T by three vertices. As an
example of using these operations, Figure 4 shows two constructions of the same
bound achieving ordered pair (T, L).

We now precisely state and prove that the five extension operations O1 through
O5 are exhaustive when starting from the Theorem 1 lower-bound-achieving ordered
pair (71, {v}), where T is the tree consisting of the single vertex v.

Theorem 10 Let T be a tree of order n and L C V(T) an LD(T)-set. Then L
is an LD(T)-set of order [(n+1)/3] if and only if the ordered pair (T, L) can be
constructed from (11, {v}) using a sequence of extensions, where each member of the
sequence is one of the five extensions O1 through OJ.

Proof. Let T be a tree of order n with LD(T) = LDT(n) = [(n+1)/3]; let L C
V(T) be an LD(T)-set; and let z € V(T') be a leaf of a diametric path P of T" with
N(z) = {y}. In what follows, we describe an iterative decomposition approach. Each
iteration describes how 7" can be reduced to a subtree 7° C T  and L can be reduced
to a subset L’ C L, where L’ is an LD(T”)-set with LD(T”) = LDT(|V(T")]). Also,
the original tree T and LD(T)-set L can be recovered from 7” and L’ with one of
the operations O1 through O5. The reduction chosen depends on the structure of
the tree near leaf z. In the cases below, we consider these structures one at a time.
In general, though, we do not have to apply the chosen reduction (or recovering
extension operation) at or near a leaf of a diametric path.

Case 1: deg(y) =1. T is the path on two vertices. Without loss of generality,
assume y € L. Define 7° =T — z and L’ = L. Then 7" is the single vertex tree, and
L’ = V(T"). Clearly, T” satisfies LD(T”) = LDT(|V(T")|) = 1. Now T and L can
be recovered from 7 and L’ by applying Operation O2.
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Figure 4: Two constructions for the same tree T" with the same locating-dominating
set L. The transition arrows are labeled with the operation used. Construction (a)
uses Operations O2 through O5 once each. Construction (b) uses Operation O1 once
and Operations O2 and O3 multiple times.

Case 2: deg(y) > 2. Since P is diametric, at most one neighbor of y is not a
leaf of 7. By Lemma 9, at most two neighbors of y are leaves. So, deg(y) = 3
and, also by Lemma 9, n = 0 (mod 3). Let z, € N(y) be the leaf distinct from z.
Without loss of generality, assume z, € L. Define 7° = T — 2, and L’ = L — z,.
Then 17 is a tree of order n — 1 = 2 (mod 3) with locating-dominating set L. Since
|L’| = LDT(n — 1) = LDT(n) — 1 we have LD(T”) = LDT(|V(1")|). Now T and
L can be recovered from T and L’ by applying Operation O1.

Case 3: deg(y) =2 and y ¢ L. Since L dominates z and y ¢ L, z € L. Define
T" =T —z2—yand I’ = L — 2. Since I’ is a locating-dominating set of T°
and |L’| < |L| we cannot have LDT(|V(T°)|) = LDT(n — 2) = LDT(n). Thus,
n # 2 (mod 3) so that n — 2 # 0 (mod 3). Now T and L can be recovered from 7”
and L’ by applying Operation O3.

Case 4: deg(y) =2, and y,z € L. Define 7° =T — z and I’ = L\ {z}. Since L’
is a locating-dominating set of 7 and |L’| < |L| we cannot have LDT(|V(T")]) =
LDT(n—1) = LDT(n). Thus, n—1 = 2 (mod 3) so that LDT(n) = LDT(n—1)+1.
Now T and L can be recovered from 7% and L’ by applying Operation O1.

For the remaining cases, let z € N(y) be distinct from z.

Case 5: deg(y)=2, x,y<€L, and z¢ L. Define 7" =T — z —y and L’ =
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L —y. Since L’ is a locating-dominating set of 7” and |Lb‘ < |L| we cannot have
LDT(|V(T")|) = LDT(n — 2) = LDT(n). Thus, n # 2 (mod 3) so that n — 2 #
0 (mod 3). Now T and L can be recovered from 7% and L’ by applying Operation O3.

Case 6: deg(y) =2,y €L, x,z¢ L, and deg(x) < 2. Define I’ =T —z —y —x
and L’ = L—y. Since L’ is a locating-dominating set of 7° with ‘Lb| =LDT(n-3) =
LDT(n) —1 we have LD(T") = LDT(‘V(Tb)D. Now T and L can be recovered from
T° and L’ by applying Operation O5.

Case 7: deg(y)=2, yeL, x,z¢ L, deg(x) >2, and x does not have a
sole dominator in L\ {y}. Note that the last condition does not consider y as a
dominator of z. Define 7° = T — z —y and I’ = L —y. Then, L’ is a locating-
dominating set of 7° with |Lb‘ < |L|. Hence, we cannot have LDT(|V(Tb)‘) =
LDT(n —2) = LDT(n); whence, n # 2 (mod 3) so that n — 2 # 0 (mod 3). Now T’
and L can be recovered from 7” and L’ by applying Operation O3.

Case 8: deg(y) =2,y € L, x,z ¢ L, deg(x) > 2, and x has a sole dominator
in L\ {y}. Note that the last condition does not consider y as a dominator of .
Let y5 be a neighbor of x not on diametric path P. We consider three subcases based
on the degree of ys.

Case 8.1: deg(yz2) = 1. Since = ¢ L, we must have y, € L for y, to be dominated.
Define 7° =T — 2z —y and I’ = L — y. Since 1, sole dominates only z in 77, it
follows that L’ is a locating-dominating set of T” with |L’| < |L|. Hence, we cannot
have LDT(|V(T°)|) = LDT(n — 2) = LDT(n); whence, n # 2 (mod 3) so that
n—2 # 0 (mod 3). Now T and L can be recovered from 7 and L’ by applying
Operation O3.

Case 8.2: deg(y2) = 2. Let 2o € N(y2) be distinct from z. Since P is diametric,
zo must be a leaf of T. To dominate zy, at least one of 2z, and y, must be in
L. Suppose y3,22 € L. Then L' = L — z5 is a locating-dominating set of T" with
|L'| < |L| = LDT(n), a contradiction.

Suppose 2, € L and ys &€ L. Define T° = T — 2z, — y» and L’ = L — z,. Then
L’ is a locating-dominating set of T with |L’| < |L|. Hence, we cannot have
LDT(|V(T")|) = LDT(n — 2) = LDT(n); whence, n # 2 (mod 3) so that n — 2 #
0 (mod 3). Now T and L can be recovered from 7% and L’ by applying Operation O3.

Now suppose ¢ € L and 2o & L. Define T° = T — 2 — 2 — 4o and L* = L — 1.
Then L’ is a locating-dominating set of 7" with |L’| = |[L| —1 = LDT(n) — 1 =
LDT(n—3) = LDT(‘V(Tb)‘). Now T and L can be recovered from 7° and L’ by
applying Operation O4.

Case 8.3: deg(yz2) > 2. Let zp € N(y2) be a leaf. Define a new diametric path
P'=...,x,y2, 2 and apply Case 2 to T and L using P’ instead of P.

This completes our examination of possible structures near leaf z. In each case
a reduction is chosen that can be reversed via one of the extension operations O1
through O5. Starting with any tree T" and LD(T)-set L with LD(T') = LDT(|V(T)|),
iteratively apply a reduction until only the single vertex tree remains. The extensions
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that correspond to the sequence of reductions can be applied in reverse order to the
single vertex tree to construct the original ordered pair (T, L). 0

4 Trees Achieving LD(T,) = [(n+ 1+ 2(I(T) —s(T)))/3]

Theorem 10 constructively characterizes all ordered pairs (T, L) where T is a tree of
order n achieving the Theorem 1 lower bound — given by LD(T) > [(n+1)/3]—
and L is an LD(T)-set. For [(T) = s(T), this is the same as achieving the more
general Theorem 5 bound given by LD(T') > [(n+ 1+ 2(I(T) — s(T)))/3]. In fact,
these bounds are also equal when n = 0(mod 3) and {(T") — s(7") = 1. This explains
both the “moreover” part of Lemma 9 and how Theorem 10 applies to some trees
with {(T) — s(T) > 0. In this section, we use Lemma 4 to constructively characterize
ordered pairs (T, L) achieving the Theorem 5 bound without restriction on I(T") —
s(T).

Let a T be a tree of order n with strong support vertex v € V(7T') and leaves w, x €
N(v). Let L C V(T) be an LD(T)-set with LD(T) = [(n+ 1+ 2({(T) — s(T )))/31
Without loss of generality, we assume w € L. Form tree 7° from T and vertex set L’
from L by removing vertex w from each. By the proof of Lemma 4, L is an LD(T")-
set and LD(T?) = LD(T) — 1. This reduction operation, which we call Operation
RO, corresponds to removing one leaf from a strong support vertex.

In the special case that n = 0 (mod 3) and I(T') — s(T") = 1, both the original
ordered pair (T, L) and the ordered pair (77, L?), resulting from applying Operation
RO to (T, L), achieve the Theorem 1 lower bound. Here, (7, L) can be exactly re-
covered by applying Extension Operation O1 to (17, L’). With Reduction Operation
RO, we are ready to constructively characterize the ordered pairs that achieve the
Theorem 5 bound without restriction on I(T") — s(T).

Theorem 11 Let T be a tree of ordern and L C V(T') an LD(T)-set. Then L is an
LD(T)-set of size [(n+ 14 2(I(T) — s(T)))/3] if and only if (T') — s(T") successive
applications of Operation RO to (T, L) result in an ordered pair (T', L") such that
(T") = s(T") and L' is an LD(T")-set of size [(|V(T")| +1)/3].

Proof. Let T be a tree of order n and L C V(T') an LD(T')-set of size [(n + 1 +
2((T) — s(T)))/3]. It (T) = s(T), then zero applications of Operation RO result
in ordered pair (7", L) = (T, L) and the result holds in the forward direction. Sup-
pose [(T') — s(T') > 0. Since this is the only condition required to apply Operation
RO, it can be applied successively {(T') — s(T) times to (7', L). Let ordered pair
(T",L') be the result of these [(T)) — s(T") operations. Clearly, {(T") = s(T"). By
repeated applications of Lemma 4, one for each application of Operation RO, we see
LD(T') = LD(T) = ((T) — s(T)) = [(n+ 14 2((T) — s(T)))/3] = (UT) — s(T)) =
[(n+1—(UT)—s(T)))/3] = [(JV(T")|+1)/3]. By repeated applications of the
proof of Lemma 4, L' is an LD(T")-set.

Now suppose (17, L') is the result of I(T") — s(T") applications of Operation RO to
(T, L) such that [(T") = s(T") and L' is an LD(T")-set of size [(|[V(T")]+1)/3].
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If (T) = s(T), then (T,L) = (17", L') and the result holds in the reverse direc-
tion. Suppose I(T) — s(T) > 0. Again by repeated applications of Lemma 4 and
its proof, we have L is an LD(T)-set of size [(|V(T")|+1)/3] + ((T) — s(T)) =
[([n = (U(T) = s(T))] +1)/3] + (UT) = s(T)) = [(n+1+2(UT) — s(T)))/3]. O

5 Summary

For a tree T, the new lower bound of Theorem 5 takes into account the number
of leaves, [(T), compared to the number of support vertices, s(T'), and is sharp
for any value of [(T) — s(T"). Theorems 10 and 11 constructively characterize all
trees attaining the Theorem 5 bound. Moreover, these two theorems constructively
characterize all locating-dominating sets for all such trees.

Further examination of the quantity {(7')—s(T") is being undertaken with respect to
graphical parameters related to locating-domination. In particular, the authors are
investigating improved bounds on the identifying code number of a tree, IC(T'), along
with a constructive characterization of trees achieving the bounds. Note that for the
related parameter open locating-domination, I(7") — s(T") must be zero. Otherwise,
the tree T" would have two vertices, leaves in this case, that have the same open
neighborhood. Such a graph does not admit an open locating-domination set.
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