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Abstract
Let G be a finite connected graph. The degree distance D'(G) of G is
defined as 3¢, 1cv (@) (degu + degv) dg(u,v), where degw is the degree
of vertex w and dg(u,v) denotes the distance between u and v in G.
In this paper, we give asymptotically sharp upper bounds on the degree
distance in terms of order and edge-connectivity.

1 Introduction

Let G be a simple connected graph with vertex set V(G) and edge set E(G). The
distance, dg(u,v), between u and v, in G, is the length of a shortest u-v path in G.
The degree, degv, of a vertex v of (G, is the number of edges incident with it. The
edge-connectivity, A = A\(G), of G is the minimum number of edges whose removal
results in a disconnected or trivial graph. Vertex-connectivity is defined analogously.

Topological indices and graph invariants based on the distances between the ver-
tices of a graph are widely used in theoretical chemistry for establishing relations
between the structure and the properties of molecules. They give correlations with
physical, chemical and thermodynamic parameters of chemical compounds [4, §].
One such topological index is the degree distance. Formally, the degree distance,
D'(G), is defined as

D'(G)= > (degu+degv)dg(u,v).
{uv}CV(G)
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The degree distance seems to have been considered for the first time by Dobrynin
and Kochetova [5] in 1994 and at the same time by Gutman [6]. After 1994 many
authors reported on the degree distance; for example, Bucicovschi and Cioaba [2],
Dankelmann, Gutman, Mukwembi and Swart [3], Tomescu [11, 12] and Hou and
Chang [7]. Tomescu [11], in 1999, proposed the following attractive conjecture on
the upper bound on degree distance in terms of order.

Conjecture 1 [11] Let G be a connected graph of order n. Then

/ 7”L4 3
D'(G) < — + 0O(n?).
(@) < =t o)
Whilst this 1999 conjecture of Tomescu was completely resolved in [9] by refining the
standard method of dealing with degree distance developed in [3], not much work
has been done on the upper bounds on degree distance in terms of other parameters.
Two of the present authors [10] showed that

n4

D'(G) < ————+0(n?), 1

(©) < g5 575 + O (1)

where 0 is the minimum degree of GG. Moreover, for a fixed 9, the inequality is

asymptotically sharp. The present authors [1] continued this study and improved

the upper bound (1) for graphs with fixed vertex-connectivity. Precisely, they proved
the asymptotically tight upper bound:

/ n' 3
(@) < g+ 0(), &)
for a k-connected graph G of order n. The two bounds, (1) and (2), solve completely
the problem of bounding degree distance in terms of order and two classical connec-
tivity measures, namely, minimum degree, and vertex-connectivity. In this paper,
we are concerned with finding upper bounds on degree distance in terms order and
the third connectivity measure, edge-connectivity.
For A > 8, the bound is a direct consequence of (1) while the cases A < 7 are
more complicated. Thus for A > 8, an application of the inequality, 6 > A, to (1)
yields the following proposition.

Proposition 1 Let G be a \-edge-connected graph, X > 8, of order n. Then

4
D'(G) < ¢ "

S0+ +O0(n?).

Moreover, for a fixed X\, this inequality is asymptotically sharp.

The problem of getting better upper bounds of the degree distance in terms of
order and edge-connectivity A, where 2 < A\ < 7, turns out to be harder and requires
some additional ideas apart from the standard method of treating degree distance
that was introduced in [3]. We will therefore consider this problem separately as
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the subject of this article. Thus here we completely solve the problem of relating
degree distance to order and each of the three classical connectivity measures, namely,
minimum degree, vertex-connectivity and edge-connectivity.

The notation and terminology we use is as follows. The diameter, diam(G) = d,
of G is the largest of the distances between two vertices in GG. The eccentricity,
ecq(v), of a vertex v € V(G) is the maximum distance between v and any other
vertex in G. For a vertex v of G, we denote by D(v) the total distance or the status
of v, ie, D(v) = X, ev(e) da(v,r). The quantity deg vD(v) is denoted by D'(v).
We will often make use of Tomescu’s observation [11] that the degree distance can
equivalently be expressed as

D'(G)= > D'(v).

veV(G)

We denote the open neighbourhood of v by N(v), that is, N(v) = {z € V(G) |
dg(x,v) = 1}. The closed neighbourhood of v in G, i.e., N(v) U {v}, is denoted by
Nv]. Let Gy and G5 be two vertex disjoint graphs. The union, G; U Gy, of Gy and
G, is the graph with vertex set V(G1) UV (G2) and edge set E(G1) U E(Gz). The
join, G + Gq, of G; and Gy, is the graph with vertex set V' (G1) U V(G3) and edge
set E(G1)UE(Ge) U{uv |u e V(Gy),v € V(Gs)}. For k > 3 vertex disjoint graphs
Gy, Go, . .., Gy, the sequential join, G; + Go + - - - + G, is the graph

(G1 4+ Go) U (Gy+ G3) U+ U (Gr_1 + Gi).

For nonempty subsets Vi, Vo C V(G), we denote by E(Vi, V3) the set {e = xy €
E(G) | x € V1,y € Va} of edges with one end in V; and the other end in V5. For any
v € V(@) with eccentricity e, let

Ni(v) == {z € V(G)|dg(x,v) =i}

for all i = 0,1,2,...,¢e, and k;(v) = |N;(v)]. Where vertex v is understood, we
write N; and k; instead of N;(v) and k;(v), respectively. Where there is no danger of
confusion, we simply write d(u, v) instead of dg(u,v).

2 Results

We first illustrate that the bound presented in Proposition 1 is, for a fixed A,
asymptotically sharp. For positive integers n, A and k with & = 1 (mod3), con-
sider the graph Gn,k,)\ = G1 + G2 + -+ Gk, where G1 = Kl—%(n_(k—2)3(>\+1))-|7 Gk =
KL%(n_(k72)3(>\+1))J, Gy =K,=Gp_1and for3<i<k—2,

K if A =2mod3,

3
G, = K% fort=0,2mod3 and K§+1 fort =1mod3 if A =0mod3,
K% for i =0,2mod3 and K% for i = 1mod3 if A = 1mod3.
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nA

9(A+1)
bound presented in Proposition 1 is, for a fixed A\, asymptotically sharp.

Then D'(Gprny) = + O(n?), when k = % + O(1), confirming that the

A+1

The following discussion is useful in this paper:

Discussion 1 Let G be a graph, Vi, Vo C V(G) with ViNV, = (). Clearly, |E(V3, V3)|
< |[Vi||Va]. If E(V4,V3) is a disconnecting set of G, then |E(Vy, V)| > A(G) so that
Vi||Va] > A(G). Let v € V(G). Then k;k; g > X foralli=1,2,... ecq(v) — 1.

The following lemma follows from ab < (‘ZT“’)2 In other words, the geometric
mean of two (positive) real numbers never exceeds their arithmetic mean.

Lemma 1 For positive integers a and b,
(a) ab > 2 implies that a +b > 3.
(b) ab > 3 implies that a + b > 4.
(c) ab > 4 implies that a + b > 4.
(d) ab > 5 implies that a + b > 5.
(e) ab > 6 implies that a +b > 5.

(f) ab > T implies that a + b > 6.
We now present a very simple, but important observation.

Fact 1 Let G be a 2-edge-connected graph of order n and diameter d. If v € V(G),
then

Proof of Fact 1: Let vy be a vertex of G of eccentricity d and let N; = N;(vg). Let
v € V(G). Then v € N; for some i € {0,1,2,...,d}. Thus, N(v) C N;_1 UN;UN;,1,
and recall by Lemma 1 (a) that |[N; UN,4;| >3 forall j =1,2,...,d — 1. Hence,

i—2 d
n > UNj +degv + 1+ U N;
Jj=0 j=i+2
d—2
> degv—i—l—l—?)(?)
3
> degv+§d—2.
Hence d < 2(n — degv) + 3, as required. O

We will need the following useful result.
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Proposition 2 Let G be a 2-edge-connected graph of order n and diameter d. If
v e V(G), then

D(v) <d(n— %d —deg v) + O(n).

Proof: Let v € V(G), denote the eccentricity of v by e. For all i = 1,2,,... ¢, let
N; = N;(v) and |N;| = k;. Clearly, k; = deg v. Since G is 2-edge-connected, then for
alli=1,2,...,e — 1, kik;11 > 2 and thus by Lemma 1 (a), k; + k;11 > 3. Hence,

D(U) = 1/€1+2k2+"'+6/€e
degv+2-143-2+---+(e—2)-14+(e—1)-2
+e(n — 3e — deg v +2) + O(n) if e is even,

IN

degv+2-14+3-2+---+(e—=2)-24+(e—1)-1
+e(n —3e —deg v+ 2) + O(n) if e is odd,

< e (n— ze—deg v) + O(n).

Now consider f(z) := x(n — 22 — deg v), where 2 = e. The function f is increasing

2
on |1, g(n — deg v)] Using Fact 1 and 1 < e < d, we consider two cases. First if
2
d< g(n —deg v), then D(v) < f(d)+O(n) =d (n —3d — deg v) + O(n). Secondly,

2 4 2
if by Fact 1, d = g(n —deg v) + ¢, where 0 < ¢ < 3 then f < f <§(n — deg v)) =
f(d—c). But

fld=c¢) = (d—¢) (n—%(d—c)—degv)

= d(n— %d—deg v) + O(n).

3
Hence, in both cases D(v) < d (n - Ed — deg v) + O(n), as required. O

The standard technique of dealing with bounding degree distance presented in [3]
does not account for the relationship between degree distance and edge-connectivity.
In the next theorem, we will refine the vertex partitions used in [3] to adequately
account for edge-connectivity. The diameter plays a crucial role and provides us with
the following intermediate result.

Theorem 1 Let G be a 2-edge-connected graph of order n and diameter d. Then

Ydn(n —3d)? + O(n®) ifd <%,

D'(G) <
3d%(n — 2d)2 +0(n®) ifd> 2.

Moreover, this inequality is asymptotically sharp.
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Proof: Let vy be a vertex of G of eccentricity d and let N; = N;(vp). Recall that
INjUN,+1| >3 forall j =0,1,2,...,d—1. For each set B; € {NyUNy, NyUN3, NyU

Ns, ...} choose any three elements w;1, w2, u;3 € B; and denote the set {w;1, w2, u;3}
d+1

Claim 1 Let N be as above. Then

> D'(u) < O(n?).

ueN

Proof of Claim 1: Partition N as N =U; UUy U ---U Uy, where

U, = {U117U417U717 -

Uy = {U127 Ug2, U72,y - - -

Us = {U137 U4z, U73,y - - -

Uy = {21, us1, ust, - . .

Us = {U227 Us2, UL, - -

Us = {U237 Us3, U3, - -

Ur; = {U317U617U917 .-

Us = {U327 Up2, U92, - -

Ug == {U33,U63,U93, e
Then,
> D'(w)= > D'(u)+ > D'(u)+...4 Y D'(u).

ueN uelUy ueUs u€ Ny

For each x,y € U;, i = 1,2,...,9, since d(z,y) > 5 we have N(z) N N(y) = 0. Tt
follows that Z deg x <nfori=1,2,...,9. From Proposition 2,

zeU;
3
D(x) < d (n - Ed — deg x) + O(n)
= O(n?).
Thus,

> D'(u) = > D(u)deg u
ueN ueN

< O(n? d degu+ > degu+...+ > degu

uelUs ucUsz u€Uyg
< O(n*)(9n)
O(n?),

and Claim 1 is proven.
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From here on-wards we partition the remaining vertices of G analogously to the
standard partitioning developed in [3]. Let C be a maximum set of disjoint pairs
of vertices from V' — N which lie at a distance at least 3, i.e., if {a,b} € C, then
d(a,b) > 3. If {a,b} € C we say a and b are partners. Finally, let K be the
remaining vertices of G, i.e., K =V — N —{z : x € {a,b} € C}. Let |K| =k, and
|C| = ¢. Then

3“; W+2c+k. (3)

Fact 2 Let {a,b} € C. Then dega +degb < n— 3d+ O(1).

Proof of Fact 2: Note that, since d(a,b) > 3, N[a| N N[b] = 0. Also, each of the two
vertices, a and b, can be adjacent to at most 9 vertices in N. Thus,

n > dega+1+degb+1+|N|—18

> dega—l—degb—i—%d—i—%—m

3
dega + degb + §d+ 0(1),

and rearranging the terms completes the proof of Fact 2.

Now consider two cases.
CasE 1: k < 1. Forx € K, D(z) < (n—1)2 so D'(z) < (n—1)3 Thus
Seex D'(x) = O(n?).

Claim 2 If {a,b} € C, then D'(a) + D'(b) < 2dn(n — 3d) + O(n?).

3
Proof of Claim 2: By Proposition 2, D(a) < d (n — Zd — deg a) + O(n). Hence,

D'(a) < dega (d (n — %d — dega)) +0(n?).

Similarly, D/(b) < deg b (d (n - zd — deg b) + O(n?). Thus,

)
D'(a)+ D'(b) < dega(d(n—zd dega)) degb( (n—%d degb))+0(n2)

i
- d ((dega + degb) ( — zd) dega + (deg b)2)> +0(n?)
)

3

< d((dega—i—degb( ——d) — = dega+degb)>+0(n2).

4
Let © = dega + degb and let f(z) := ( (n— 2 ) — %xz) Then by Fact 2, z <

3
n— §d +0O(1). A simple differentiation shows that f is increasing for all z < n—3d.
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3
Hence, f attains its maximum for z = n — §d + O(1). Thus,

D'(a)+ D'(bh) < f(n—ngrO(l))

1
= idn (n — ;d)) + O(n?),
and Claim 2 is proven.

From (3), we have ¢ = %(n —3[H1] - k:) Hence since k < 1, we have ¢ =

% (n — %d) + O(1). This, in conjunction with Claim 2, yields
/ / 1 3 2
Y (D'(a)+ D'(B) < e <§dn (n - §d> +0(n ))

{a,b}eC
- (3o ro0) (oo ) o)

1 3 \? 3
= Zdn<n—§d> +0(n°).

Hence,

D(G) = > (D'(a)+D'(®)+ > Dx)+ > D(u)

{ab}eC zeK ueN

< %dn (n _ ;d> + O + O(n®) + O

1 3 \? 5
= Zdn<n—§d> +O(n°),

which establishes the bound in the theorem for CASE 1 and for d < % For d >

n
3

— —_ — < — —_ —
4nd(n 2d) d*(n 2d) + O(n?),

and so the theorem is proved for CASE 1.

CASE 2: k > 2. Now the pairs of vertices in C will be partitioned further. Fix a
vertex z € K. For each pair {a, b} € C, choose a vertex closer to z, if d(a, z) = d(b, 2)
arbitrarily choose one of the vertices. Let A be the set of all these vertices closer to
z, and B be the set of partners of these vertices in A, so |A| = |B| = ¢. Furthermore,
let A;(By) be the set of vertices w € A(B) whose partner is at a distance at most 9
from w. Let ¢; = |A{| = | By].

Claim 3 For all u,v € AUK, d(u,v) <8.

Proof of Claim 3: Since C is a maximum set of pairs of vertices of distance at least 3,
any two vertices of K must be at a distance of at most 2. We show that d(a, z) < 4
for all @ € A. Suppose, to the contrary, that there exists a vertex a € A for which
d(a,z) > 5. Let b be the partner of a. By definition of A, d(z,b) > 5. Now
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consider another vertex z' € K, z # 2. Since d(z,2') < 2 we have 5 < d(b, z) <
d(b,2") + d(z,72) < d(b,2') + 2 which implies d(b,z’) > 3. This contradicts the
maximality of C since {a, b} will be replaced by {a, z} and {b, z’}. Hence d(a, z) < 4,
for each a € A. Thus for u,v € A, d(u,v) <d(u,z) +d(z,v) <8.

Claim 4 For all x € K,

D'(m)ﬁd(n—%d—c) (n—c—cl—k—gd>+0(n2).

Proof of Claim 4: By Claim 3, all ¢ + k vertices in A U K lie within a distance of
8 from each vertex x € K. This implies that all the ¢; vertices in By lie within a
distance of 9 + 8 from x. Thus, as in Proposition 2,

8(c+k)+17c; +1842-19+20+---+d—1
+d(n—c—c—k—3d) if disodd,
D(x)

IN

8(c+k)+17c; +1842-194+20+---+2(d—1)
—i—d(n—c—cl—k—%d) if d is even,

= d(n—c—cl—k—§d>+0(n2).

In order to find a bound on the degree of z we use a counting argument. Note
that = can have at most 9 neighbours in N. By definition of A and B, = cannot
be adjacent to two vertices, w and z, where w € A is a partner of z € B since
d(w, z) > 3. Thus, x is adjacent to at most ¢ vertices in AU B. It follows that

n > degx+ |N|—9+]AUB|—c¢

3 3
= d —d+ - — :
egx+2 —1—2 9+c

3 15
Hence degz < n — §d —c+ 5 Therefore,

D'(x) = degxD(x)

< d(n—%d—c) (n—c—cl—k—§d>+0(n2),

and this proves Claim 4.

We now turn to finding an upper bound on the contribution of the pairs in C to
the degree distance. We abuse notation and write {a,b} € A; U By if a and b are
partners, i.e., {a,b} € C, with a € A; and b € By. Note that

>, (D(a+D'(h) = >, (D(a)+D'(h)+ > (D'(a)+D'(b)).

{a,b}EC {a,b}EAluBl {a,b}E(A—Al)U(B—Bl)

We first consider the set A; U B;.
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Claim 5 Let {a,b} € C. Ifd(a,b) <9, i.e., if {a,b} € Ay U By, then
D'(a)+ D'(b) <d (n - ;d) (n —c—c —k— %d) + O(n?).

Proof of Claim 5: We first show that any two vertices in A U K U By lie within a
distance of 26 from each other. By Claim 3, any two vertices in A U K lie within a
distance of 8 from each other. Now assume that b,v € By, and let ¢ and u be the
partners of b and v in Ay, respectively. Then d(b,v) < d(b,a) + d(a,u) + d(u,v) <
9+ 849 = 26. Thus any two vertices in B; are within a distance of 26 from each
other. Now let « € AUK and b € By, and let u be the partner of bin A; C A. Then
d(a,b) < d(a,u) + d(u,b) < 8+ 9 < 26. Hence any two vertices in AU K U By lie
within a distance of 26 from each other.

Now let w € Ay U By. Since w is in AUY U By, all the ¢+ k + ¢; — 1 vertices in
AU K U By lie within a distance of 26 from w. It follows, as in Proposition 2, that

26(c+k+c—1)+274+2-284---+d—1
—i—d(n—c—cl—k—gd) if d is even,

26(c+k+c1—1)+27T+2-284---4+2(d—1)
+d<n—c—cl—k—§d> it dis odd,

= d(n—c—cl—kz—%d>+0(n).
Thus, if {a,b} is a pair in A; U By, then
D'(a)+ D'(b) < dega(d(n—c—cl—k—zd)+O(n)>
+ degb(d(n—c—cl—k—zd)+O(n)>

(dega + degb) (d (n—c—cl —k— %d) +O(n2)> :

By Fact 2, dega + degb < n — 2d + O(1). Therefore,

Da)+ 00 < (n=3d+00) (d(n—c—a—k-3d) +0m)
3

- o) (- o

and Claim 5 is proven.

Now consider pairs {a, b} of vertices in C which are not in A; U B;.

Claim 6 Let {a,b} € C. Ifd(a,b) > 10, i.e., if {a,b} € (A— A;) U (B — By), then

D'(a) 4+ D'(b) < d(c+ k) (n—c—cl—k—2d> —i—cd(n—%d—c) + O(n?).
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Proof of Claim 6: We consider vertices from A — A; and from B — B, separately. Let
a € A— Ay. Then as in Claim 5, all the ¢+ k — 1 vertices in AU K lie at a distance
of 8 from a and all the ¢; vertices in B; lie within a distance of 9 + 8 = 17 from a.
Thus, as in Proposition 2,

8(c+k—1)+17c; +18+2-194+20+2-21 + - +d — 1
+d(n—c—c—k—3d) if dis odd,

IN

D(a)
8(c+k—1)+17¢; +184+2-194+20+2-21 +---+2(d— 1)
+d(n—c—cl— —%d) if d is even,

= d(n—c—cl—k—%d>+0(n).

We now find a bound on the degree of a. By definition of C, a cannot be adjacent
to both w and u, where w € A is a partner of u € B since d(w,u) > 3. Hence a
is adjacent to at most ¢ — 1 vertices in AU B. Further, a is adjacent to at most 9
vertices in NV and has at most £ neighbours in K. Thus,

dega<c—1+94+k=c+k+8.
It follows that
D'(a) = degaD(a)
< (c+k+8)<d<n—c—cl—k—§d>—|—O(n)>
3

= d(c+ k) (n—c—cl—k—1d>+0(n2). (4)

Now let b € B — B;. By Proposition 2, we have

D) <d (n _ Zd _ degb) +0(n),

e D'(b) < degb (d <n - Zd _ deg b)) L Oo(m?). (5)

We first maximize degb (d (n — %d — deg b)) with respect to degb. Let

f(z) :za:(d (n—%d—az)),

where z = degb. A simple differentiation shows that f is increasing for z <
1 3
3 (n — 1d> We find an upper bound on x, i.e., on degb. Note that as above,

b can be adjacent to at most ¢ — 1 vertices in AU B, and has at most 9 neighbours in
N. We show that b cannot be adjacent to any vertex in K. Suppose to the contrary
that y € K and d(b,y) = 1. Recall that a is the partner of b and d(a,b) > 10. By
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Claim 3, d(a,y) < 8. Hence 10 < d(a,b) < d(b,y) + d(y,a) < 1+ 8, a contradiction.
Thus, b cannot be adjacent to any vertex in K. We conclude that

degb<c—1+9=c+38.
We look at two cases separately. First assume that degb = ¢ + 8. Then

f(degb) = flc+8)
3
- (c+8)<d<n—1d—(c+8)>)
= cd(n—%d—c)%—O(nQ). (6)
Second, assume that degb < c. From (3) and the fact that & > 2, we have
1 3 3 1 3 7
< (n-2a-2— D<-(n-2d—=<).
C—2<” 2173 k>+0()—2<n d )

Notice that

and so f is increasing in [1, ¢|. Therefore,
3
F(degd) < f(c) = cd (n - c) ,
for this case. Comparing this with (6), we get that
f(degb) < cd (n — %d — c) + O(n?).
Thus, from (5), we have

D) < ed (n _ %d - c) +O(n?).

Combining this with (4), we get
/ ! 3 3 2
D'(a)+ D'(b) < d(c+ k) (n—c—cl—k— Zd) +cd<n—1d—c> + O(n?),

and Claim 6 is proven.
Using Claims 1, 4, 5, and 6 we have

D'(G) = Y D'(u)+ ) D(z)+ Y (D'(a)+D'(D))

ueEN reK {a,b}eC

3 3
dk(n—yi—c) (n—c—cl—k—1d>

+ cl<d<n—gd> (n—c—cl—k—§d>>

IN
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3 3
+ (c—c1) (d(c—i—k) (n—c—cl—k—1d> —i—cd(n—zd—c))

+0(n?)
3 3
= dk(n—id—c> (n—c—cl—k—1d>

3 3
+ ¢ (d(n—§d> (n—c—cl—k—1d>>
3 3
+ d(c—c1) ((c+k:) (n—c—k— Zd> —cl(c+k)+c<n— Zd—c))
+0(n?).
For easy calculation in maximizing this term, we note that ¢ — ¢; > 0, and that by

3),n—c—k— Ed > 0. Hence the last term in the previous inequalities

d(c— 1) ((c—i—k:) (n—c—k—%d)—cl(c—l—/{:)—i-c(n—%d—c))

is at most
d(c—c1) ((c—i—k:—l—él) (n—c—k—%d) —cl(c—l—k:)—i-c(n—%d—c)).

It follows that

D(G) < dk(n—%d—c) (n—c—cl—k:—%d>

+ cl<d<n—;d> (n—c—cl—k—%d)>

+ d(c— ) ((c+k+4) (n—c—kz—%d) —cafc+k)
+ c(n—%d—c)) +O(n?).

Let g(n,d, ¢, c1) be the function

3

g(n,d,c,c1) = dk(n—%d—c) (n—c—cl—k—1d>

+ cl<d<n—;d> (n—c—cl—k:—%d>>
+ d(c—c) ((c+k+4) (n—c—k—%d) —cac+k)
+ c(n—%d—c)).

We first maximize g subject to c¢q, keeping the other variables fixed. We show that
the derivative of g with respect to c¢; is negative. Note that the derivative is
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d 3 3 3
d—cgl _ —dk<n—§d—c)+d<n—§d> (n—c—cl—k—1d>
3
—cld<n—§d>
3 3
—d[(c+k+4) (n—c—k—zl)—cl(c+k:)+c<n—1d—c>]

—d(c—c1)(c+ k)

3 3
_ —dk:(n—;i—c)—cld{n—id—c—k}

—d[(c+k+4) (n—c—k—%d)ﬂ(n—%d—cﬂ
—d(c—c1)(c+ k)

3 3
+d<n—§d> (n—c—cl—k—1d>

3 3
_ —dk:(n—yl—c)—cld[n—id—c—k}
—dc(n—%d—c—k‘)—dck’

—d(c—c1)(c+ k) —ard (n — gd)

3 3
+d<n—c—k—1d> [n—id—c—k—él]
3 3
_ —dk:(n—yl—c)—cld[n—id—c—k}
—dck
—d(c—c1)(c+ k) —ad (n— ;d)

3 3
—c—k—-— ——d—2c—k—4].
+d<n c—k 4d> n 2d c—k }

From (3), n — %d —2¢—k < 3. Thus, since n —c— k — %d > 0, the last term above
is negative. From (3), n — 2d — 2c — k > 2, and so it follows that the terms
3 3
n—ﬁd—c, n—id—c—k, andn—id,
are all positive. Further, ¢ —¢; > 0.
It follows that the derivative

d 3 3

d—i _ —dk:(n—yl—c)—cld[n—id—c—k}
—dck
—d(c—c1)(c+ k) —ad (n — gd)

3 3
+d<n—c—k—1d> {n—ﬁd—zc—k—zl}
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is negative. Therefore, g is decreasing in ¢;. Thus, in conjunction with (3), we have
g(n,d,c,c;) < g(n,d,c,0)

_ dk(n—%d—c) (n—c—k—%d)

+ dc((c—i—k:—i—él) (n—c—k—%d)—i—c(n—%d—c))

= d ((n— gd—c>2 <c+ %d) +c? (n— %l—c)) +0(n?).

A simple differentiation with respect to ¢ shows that the function

o(c) = (n—;d—c)Q <c+zd> + ¢ (n—%d—c)

3 3 3\?
— _ 2 _ = _ e _Z
= (3d—n)c* + (n 2d> (n—3d)c+ 4d<n 2) ,
has a critical point at ¢ = § (n — %d) Recall that £ > 2 and from (3),
1 3 1 3 3
c 2(n 2d k)+0(1) < 2(n 2d) 5=¢

Hence, we obtain the domain of ¢, 0 < ¢ < ¢*. Now we look at two cases.

SUBCASE A: For d < %, the function ¢ is increasing for ¢ < % (n — %d) and so

o<o(3 o293 0w
and so
D) < idnm - gd)Q +O(n?).
SUBCASE B: If d > %, then ¢ is decreasing over the domain of ¢ so it is maximised
at ¢ = 0, and hence ¢(c) < $(0) = %d (n - ;d). It follows that

! 3 2 3 ? 3
D'(G) < Zd n—§d + O(n°),
and Theorem 1 is proven.
To see that the bound is asymptotically sharp, when d < % and for A = 2,
consider the graph G, 4» = Go+ G + - -+ G4 where Gy = Gy = K(%(n_%dﬂ and for
1=1,2,3,...,d—1

’

G — K, if 7 is odd,
‘] Ky if 4 is even.



P. ALI ET AL./AUSTRALAS. J. COMBIN. 60 (1) (2014), 50-68 65

Then G, 42 is 2-edge-connected and has diameter d and degree distance at least

. N2
idn (n — %d) . For d > %, consider the graph G, 42 = Go + G + -+ - + G4 where

Gd:K((n—%dﬂ and fori:(),l, ,...,d—l,

G — K, if 7 is even,
Y Ky if 4 is odd.

Corollary 1 Let G be a 2-edge-connected graph of order n. Then

2 4
D(G) < 8—7”; + o).

Moreover, this inequality is asymptotically sharp.

Proof: Let d be the diameter of G. By the theorem above,

Tdn(n —3d)? + O(n®) ifd < %,

D'(G) <

3d(n—2d)* +0(n?) ifd> 2.

2
The term idn (n — %d) is maximized, with respect to d, for d = %", to give

1 2 ont
—dn (n — §d> < il
4 2 81
Hence,
2 4
D'(G) < T+ 0(n)

2 N\ 2
The term %d2 (n — éd) is maximized, with respect to d, for d = %, to give

2
3 5 3\ _n* 2nt
e _ 2 < 0
1 (" 2d> T I

Therefore, in both cases
B on?

D,<G) - 8—1 + O<n3)7

as desired.
To see that the bound is asymptotically best possible, consider the graph G, 41
constructed above with d = %". Note that

o2nt

! —_
D<Gn,2?",)\) - 81

+0(n?),

as claimed. O
Using similar proofs as for Theorem 1 we obtain the following results.
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Theorem 2 Let G be a 3-and 4-edge-connected graph of order n and diameter d.
Then ) .
1dn(n —2d)* + O(n®) ifd <2,

D'(G) <
d*(n —2d)> +O(n3) ifd> 1.

Moreover, this inequality is asymptotically sharp.

To see that the bound is asymptotically sharp, for d < 7 and for A = 3,4
consider the graph G, 4\ = Gy + G1 + -+ - + G4 where Gy = Gy = K[%(n_%m and
Gi = Ky fori=1,2,...,d—1. For d > %, and when A = 3, consider the graph
Gn,d,?) = G() + G1 + - F Gd where Gd = K[(n_gd)], G() = Kl, G1 = Kg and Gl = K2
fori =2,3,...,d — 1. For A\ = 4 consider the graph G,, 44 = Go +G; + --- + G4

where Gy = Kfn—24-1)], Go = K1, Gy = Ky and G; = Ky for i =2,3,...,d — 1.

Corollary 2 Let G be a 3-and 4-edge-connected graph of order n. Then

4

D'(G) < T O(n?).

Moreover, this inequality is asymptotically sharp.

To see that the bound is asymptotically best possible, consider the graph G, 41
constructed above with d = %. Note that

n4

D'(Guzn) = 57+ O,

as claimed. O

Theorem 3 Let G be a 5-and 6-edge-connected graph of order n and diameter d.
Then

Tdn(n — 3d)*+0(n®) ifd <%,
D'(G) <

2 (n—2d)* +O(n®) ifd> 2.

Moreover, this inequality is asymptotically sharp.

and for A = 5,6
K" —%dﬂ and for

To see that the bound is asymptotically sharp, for d <
consider the graph G,, 4» = Go+ G + - - - + G4 where Gy = G4
1=1,2,...,d—1,

5
Gi:{ Ks if iis odd,

Ky if i 1is even.

For d > % and for A = 5 consider the graph G, 45 = Go + G1 + - - - + G4 where
Gd:K((n—%dﬂﬂ G():Kl, G1 :K5 and fori:2,3,...,d—17

Ky if i 1is even.

Gi:{ Ks if iis odd,
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For A = 6 consider the graph G,, 46 = Go + G1 + - - - + G4 where Gy = K[(n_gd_m,
G[):Kl, G1:K6 andfori:2,3,...,d—1,

Ky if i 1is even.

Gi:{ Ks if iis odd,

Corollary 3 Let G be a 5-and 6-edge-connected graph of order n. Then

Moreover, this inequality is asymptotically sharp.

To see that the bound is asymptotically best possible, consider the graph G, 41

constructed above with d = % Note that

2 4
D/<Gn2—")\) :

_An 3
y15 - 135 +O<n )7

as claimed. O

Theorem 4 Let G be a T-edge-connected graph of order n and diameter d. Then

Tdn(n —3d)* +0(n?) ifd <%,
D'(G) <
Sd(n—3d)2 + O(n®) ifd > 2.

Moreover, this inequality is asymptotically sharp.

To see that the bound is asymptotically sharp, for d < & and for A = 7 consider
the graph G, 4 = Go + G1 + -+ - + G4 where Gy = G4 = K(%(n_gdﬂ and G; = K3,
fori =1,2,...,d —1. Ford > ¢ and for A = 7 consider the graph G, 47 =
G() + Gl + o+ Gd where Gd = K[(n—Sd—2)]7 G() = Kl, Gl = K7 and Gl = Kg, for

1=2,3,...,d—1.
Corollary 4 Let G be a 7T-edge-connected graph of order n. Then
nA
D(G) < %=+ O(n?).
81
Moreover, this inequality is asymptotically sharp.

To see that the bound is asymptotically best possible, consider the graph G, 4\
constructed above with d = 7. Note that

n4

D'(Guga) = 5 + O,

as claimed. O
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