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Abstract 

Let GH(n; G) denote a generalised Hadamard matrix of order n over 
the group G, and let EA( q) denote the elementary abelian group of 
prime power order q. We use a computer to investigate the applicabil­
ity of a recently discovered general construction for GH (4tq; E A( q)) 
in the case t = 2. In particular, we prove that G H (8p; Zp) exist for 
all primes p > 19, and obtain GH(8q; EA(q)) for all prime powers q 
between 19 and 200 except 27. Vve also obtain a result on the num­
ber of "solutions" of a specific form, which suggests there are many 
inequivalent G H (4q; E A( q)). A consequence of our argument is a re­
casting of the Hadamard conjecture in terms of the behaviour of the 
discrete Fourier transform. 

1 Preliminaries 

Let q denote an odd prime power, p denote an odd prime, EA(q) denote the 
elementary abelian group of order q, GF[q) denote the Galois field of order q, and 
let X denote the quadratic character on GF[q); so x(a) a(q-l)!2. 
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1.1 Definition: Let G be a finite group and X = (Xij) be an n x n matrix over 
G such that each element appears n/IGI times in each of the lists 

Then X is a generalised HadamaTd matTix GH(ni G). 0 

We construct generalised Hadamard matrices of order 4tq for t = 1, 2. In partic­
ular, we prove the following theorem. 

1.2 Theorem: TheTe exist GH(8pi Zp) JOT all odd pTimes P > 19. 0 

Designs which can be directly derived from these designs include complete re­
solvable transversal designs, near complete transversal designs, group divisible 
designs, orthogonal arrays, large sets of mutually orthogonal F-squares, balanced 
incomplete block designs, extremal equidistant codes. 

2 A Construction for GH(4tq; EA(q)) 

Generalising work by Jungnickel [4] and Street [5], Dawson [1] constructed 
GH(4q; EA(q)) of the form (Hij) where each matrix Hij is a GH(q; EA(q)) and 
each of the following submatrices are GH(2q; EA(q)) matrices: 

for all 

{ 

(1,2;1,2), (1,3;1,3), (1,4;1,4), (3,4;3,4), } 
(s,t;v,w) E S = (2,4;2,4), (2,3;2,3), (1,2;3,4), (1,3;2,4), . 

(1,4; 2, 3), (3,4; 1,2), (2,4; 1,3), (2,3; 1,4) 

Specifically, Dawson set 

(2.1) 
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and solved the following set of equations over GF[q]: 

Osv - Otv 

f3sv.f3tv 
ISv -,sw 

f3sv.f3sw 

0sv - Otv ISV - ISW 
f3sv.f3tv . f3sv.f3sw 

x (f3svf3swf3tvf3tw ) 

= 
0sw - Otw 

f3sw.f3tw ' 
ltv -,tw 

f3tv.f3tw ' 
f3svf3tw - f3swf3tv 

f3svf3swf3tvf3tw ' 
-:1, 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

where (s,t;v,w) E S, under the constraint that no denominator or numerator is 
zero. The possibility of extending this approach to obtain GH(2sq; EA(q)) of the 
form (Hij ), where 

(2.6) 

was discussed in [2]. (Any such attempt would require the solution of the equa­
tions over a set S' containing at least (2s - 1 )S2 4-tuples.) It was noted that 
equation (2.5) would then force the matrix 

B = (X(f3ij)) 

to be a Hadamard matrix; so that s = 2t must be even. In [2], the following 
conjecture was made. 

2.1 Conjecture: There exists a GH(4tq; EA(q)) for all prime powers q and 
integers t > O. 0 

Recently [3], the following asymptotic result was proved. 

2.2 Theorem: Suppose there exists an Hadamard matrix of order k 2: 8. 

Then for all odd prime powers q 2: ((k - 2)2k
-

2 
- k(k 1)/2 + 3f there exists 

a GH(kq; EA(q)). 0 

3 Two General Solutions to the First Three of 
Dawson's Equations 

A crucial step in proving Theorem 2.2 was the discovery of the following two 
general solutions to the first three of Dawson's equations. 
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3.1 First solution: Let fll f2,"', fb 9}' 92, ... ,9t be elements of GF(q) such 
that, for all i,j = 1,2", . ,t, /i9j =I- 1 and, for i =I- j, fi =I- fj and 9i =I- 9j. Set 

These satisfy equations {2.2} - {2.4}, and, if the matrix 

(3.7) 

is an Hadamard matrix, they also satisfy equation {2.5}. 0 

3.2 Second solution: Let fbf2,···,ft,91,92,···,gt be distinct elements of 
GF(q) such that, for all i = 1,2"" ,t, fi =I- O. Set 

These satisfy equations (2.2) - (2.4), and, if the matrix 

(3.8) 

is an Hadamard matrix, they also satisfy equation (2.5). 0 

The generalised Hadamard matrices presented in the next section are the result 
of computer searches for Hadamard matrices of one of the forms (3.7) and (3.8). 

4 Results for GII(8q; EA(q)) 

The second form allows the problem of finding a solution to be transformed 
into a problem about the distribution of the quadratic character of the field 
GF(q). When q = p is a prime, the Legendre sequence {X(i)}i=1,2, ... ,p-l becomes 
important. In particular, if it is possible to find each of the rows of an 8 x 
8 Hadamard matrix embedded as contiguous subsequences of length 8 in the 
Legendre sequence of p, then there is a solution of the second form for p. Let us 
sayan 8-tuple is exceptional for a prime p if neither itself nor its negation appears 
in the Legendre sequence of p. 

The asymptotic result Theorem 2.2 gives GH(8q; EA(q)) for any odd prime power 
q ~ 128,881. Matrices given by this result are all of the second form. However, 
using a computer we found that the largest prime for which there is an exceptional 
8-tuple is 1621. So for primes p greater than 1621 every 8 x 8 (1, -I)-matrix is 
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P. Poly. Gen. Exp. for Y2' .. Ys Exp. for h ... is 
25 1,3 1,2 0 1 4 7 13 15 17 2 4 1 10 15 22 21 
49 1,4 1,1 0 1 2 3 4 37 45 30 31 34 35 25 4 22 
81 1,2,1,2,1 1,1 0 1 2 3 4 8 12 39 40 43 73 11 51 47 
121 1,9 1,2 0 1 2 3 4 5 42 94 48 49 54 8 56 10 
125 1,3,1,2 1,0 0 1 2 3 4 7 10 98 34 2 36 65 87 58 
169 1,11 1,2 0 1 2 3 4 5 8 69 70 138 65 37 95 9 

Table 1: Solutions of the first form for prime powers 25 '5:q '5: 200 

equivalent to a matrix which can be written in the second form over G F(p). 
Therefore, for all primes p ~ 1621, there is a GH(8pi EA(p)). 

Moreover, we found that for primes p where 1000 '5: p '5: 130, 000 the first 1300 
terms of the Legendre sequence contained E or -E for all but one or two 8-tuples 
E. Indeed, we found that generally solutions of the second kind with 9i = i 
(i = 0, ... , 7) could be found by examining no more than the first 200 bits in the 
Legendre sequence. The .largest prime for which this is not possible is 139. The 
next largest is 197. So finding solutions could be done very quickly. 

More exhaustive tests yielded solutions of the first form for all prime powers q be­
tween 16 and 200 inclusive, except 17,19 and 27. All but the design with p = 23 
are tabulated in Tables 1 and 2. To obtain a GH(8.23; Z23) put 91," . 98,j1,'" js 
equal to 0,1,2,3,4,7, la, 12,4,9,11,13,14,15,21,22, respectively. Complete com­
puter searches showed there is no solution of either form for q = 17,19 and 27. 

4.1 Notes on Tables 1 and 2: 

(i) The first entry in each row is the prime or prime power. 

(ii) In Table 1, the second entry is the coefficients of the polynomial used to 
define the extension field. 

(iii) The next is a generator v for the multiplicative group of the field. 

(iv) The final twelve entries are the powers to which v is raised to give 92, ... 9s, 

!2,···js. 

(v) The quantities !I and 91 are zero. 

o 
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Prime Gen. Exp. for g2' .. g8 Exp. for h ... fs 
29 2 0 1 2 3 8 9 22 15 16 1 7 8 9 10 
31 3 0 1 6 9 17 20 27 5 17 22 25 28 1 7 
37 2 0 1 2 5 9 18 28 22 23 9 20 12 14 26 
41 6 0 1 2 3 5 6 28 28 19 1 2 3 5 11 
43 3 0 1 2 5 9 17 21 35 31 16 15 19 7 29 
47 5 0 1 2 5 8 24 26 42 9 24 27 31 18 32 
53 2 0 1 2 3 4 31 34 2 3 8 24 15 26 27 
59 2 0 1 2 3 5 6 31 20 38 54 8 33 45 15 
61 2 0 1 2 3 6 29 55 49 40 43 3 51 52 53 
67 2 0 1 2 3 4 6 41 1 24 27 31 32 54 55 
71 7 0 1 2 3 5 28 29 28 47 64 22 10 4 27 
73 5 0 1 2 3 4 5 6 29 9 10 11 12 13 14 
79 3 0 1 2 3 4 12 50 23 60 61 62 41 42 22 
83 2 0 1 2 3 4 5 16 33 34 35 16 4 5 6 
89 3 0 1 2 3 6 8 26 40 41 63 49 21 24 55 
97 5 0 1 2 3 4 5 20 73 35 14 69 70 71 20 
101 2 0 1 2 3 4 5 17 42 64 76 4 10 6 34 
103 5 0 1 2 3 4 6 41 57 3 6 10 43 38 29 
107 2 0 1 2 3 4 5 6 22 23 37 57 71 28 73 
109 6 0 1 2 3 4 8 12 91 95 23 47 63 86 87 
113 3 0 1 2 3 4 5 6 74 92 50 51 52 53 73 
127 3 0 1 2 3 4 5 103 84 53 73 74 43 31 45 
131 2 0 1 2 3 4 9 14 51 118 15 58 59 81 33 
137 3 0 1 2 3 4 6 86 45 46 47 84 17 52 103 
139 2 0 1 2 3 4 5 24 128 101 25 103 117 93 94 
149 2 0 1 2 3 4 5 8 50 21 44 29 17 48 25 
151 6 0 1 2 3 4 6 11 5 95 75 20 9 23 101 
157 5 0 1 2 3 4 6 7 148 30 33 93 77 96 53 
163 2 0 1 2 3 4 6 9 33 7 10 11 63 42 115 
167 5 0 1 2 3 4 5 7 3 133 90 85 92 105 81 
173 2 0 1 2 3 4 5 28 65 142 96 43 56 103 64 
179 2 0 1 2 3 4 7 11 94 61 42 136 26 27 28 
181 2 0 1 2 3 4 5 9 63 1 2 83 40 61 114 
191 19 0 1 2 3 4 5 22 19 20 51 52 113 17 18 
193 5 0 1 2 3 4 5 6 95 127 73 74 104 93 94 
197 2 0 1 2 3 4 5 6 11 54 126 127 128 9 10 

Table 2: Solutions of the first form for primes 23 < p < 200 
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5 Results for GH(4q; EA(q)) 

In this section, we prove the following result. 

5.1 Theorem: For t = 2 and odd prime powers q the number of solutions of 
the second form is O( q8). Indeed, let M( 4, q) denote the number of the solutions 
of the second form; then, for any t > 0 and sufficiently large odd prime powers q, 

M(4,q) > 2-11 _ 
8 Eo q 

o 

The proof relies on the following lemma which will be proved later. 

5.2 Lemma: (Four Rows Lemma) Any 4 X n (1, -I)-matrix whose rows are 
pairwise orthogonal contains at least 2-11 n4 distinct 4 X 4 submatrices which are 
Hadamard. 0 

Proof of Theorem 5.1. Pick any four distinct elements a, b, c, d of G F( q). For 
y =f:. a, b, c, d, put 

C(Y a)) 
L- X(y-b) 

- X(y c) , 

X(y - d) 

and 

Au = (~ 
u X(b - a) X(c - a) X(d - a) ) 

x(a - b) u X(c - b) Xed - b) 
x(a - c) X(b - c) u x(d-c) . 
x(a - d) x(b - d) X(c d) u 

The number of solutions of the second form where the sequence go, gl, g2, g3 equals 
the sequence a, b, c, d is the number of 4 X 4 submatrices of L which are Hadamard. 
The rows of the following 4 x 2( q + 1) (1, -1) matrix are orthogonal. 

(AI A_l L -L). 

Hence it contains at least 2-1l(2(q+I))4 submatrices which are Hadamard. More­
over, the number of these submatrices not containing one of the first 8 columns 
is at least 

a=2-11(2(q+l))4- (2(q:l)) + (2Q,;-8). 
Hence L contains at least 2-4 a Hadamard matrices of order 4. 0 
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6 An Hadamard Transform Pair 

In this section we discuss a pair of integer vectors which are of combinatorial 
interest and which are related by the Hadamard Transform. We use this pair to 
prove Lemma 5.2. 

Let k be a positive integer, and let V k be the vector space of k-tuples over GF[2]. 
Let X = (Xij) be a k X n (0, 1 )-matrix, and let X* denote the related (1, -1)­
matrix (( -1 yiJ). 

We now introduce the transform pair. Let c( v) be the number of columns of X 
which is equal to v, and set C(X) equal to the 2k -dimensional vector (c(v)). To 
define the other vector we need the following definition. 

6.1 Definition: Let u E V k . The uth generalised inner product of X* is the 
sum 

1 n (k ) pCu) = k I: II(-ItijU
; • 

2 j=l i=l 

D 

Now let P(X) be the 2k-dimensional vector (p( u)) (u E Vk). We observe that 

6.2 Theorem: Let H = ((-1 )u'V)u,VEyk be the Sylvester Hadamard matrix of 
orde1' 2k. Then for any k x n (0,1 )-matrix) 

P(X) = H C(X). 

Proof. 0 bserve that 
1 

p(u) = 2k c(v)( -It·v
. 

vEyk 

D 

7 Proof of the Four Orthogonal Rows Lemma 

We now use Theorem 6.2 to prove the four rows lemma. 
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Proof of Lemma 5.2. Let X* satisfy the hypothesis of the lemma. Consider 

Y* = (X* - X* ) . 

Note the number of 4 x 4 Hadamard matrices in X* is 2-4 x the number of 4 x 4 
Hadamard matrices in Y*. Observe that 

where 

Hence 

P(Y*) = (2n, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2x), 

n 4 

X = L:IIXij. 
j=l i=O 

C(Y) = l(n + x, n - x, n - x, n + x, n - x, n + x, n + x, n - x 
,n - x,n + x,n + x,n - x,n + x,n x,n - x,n + x). 

Now note that any four columns will comprise an order 4 Hadamard matrix if 
and only if they all contain an even number of ones or they all contain an odd 
number of ones. It follows that y* contains precisely 

Hadamard matrices. This quantity is minimised when x = 0, and then its value 
is2-7n4.D 

8 A Comment on the Hadamard Conjecture 

It is conjectured that there is an Hadamard matrix of order 4t for all integers 
t > 0. Theorem 6.2 transforms this conjecture into a conjecture about the 
(4t - 1 )-dimensional Hadamard transform. Each Hadamard matrix of order 4t 
corresponds to an integer vector C whose transform P has its "impulse" and 
"doublet" components equal to zero and its "null" component equal to 4t. The 
Hadamard transform has a number of striking algebraic properties which may 
provide a way of proving such integer vectors, and hence their corresponding 
Hadamard matrices, exist 

It is well known that a Hadamard matrix corresponds to a non-negative integer 
solution of 4t(4t - 1)/2 linear constraints in 24t-l unknowns. Theorem 6.2 gives 
a succinct formulation of these linear constraints. Moreover, the theorem might 
be useful in classifying Hadamard matrices of the same order. 
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