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Abstract.

In a recent paper, we determined the asymptotic number of labelled connected graphs
with a given number of vertices and edges. In this paper, we apply that result to investigate
labelled weakly-connected digraphs. In particular, we determine the asymptotic number

of them with accuracy uniform over the full range of possibilities for the number of edges.

1. Introduction.

By a weakly-connected digraph we mean a directed graph without loops or multiple
edges, such that the underlying undirected graph is connected. This definition does not
exclude pairs of directed edges of the form (u,v) and (v,u); we will call these pairs digons.

As in [1], let ¢(n,q) denote the number of labelled connected graphs with n vertices
and g edges. Similarly, let w(n, ¢) be the number of labelled weakly-connected digraphs and
let w(n, ¢, d) be the number of labelled weakly-connected digraphs with n vertices, ¢ edges.
and d digons.

The principal result of [1] was an asymptotic estimate of ¢(n,¢). In [2]. we used that
estimate to investigate some of the properties of random connected graphs. In the present
paper, we will use 1t to find asymptotic estimates of w(n,q) and w(n. ¢. d), and some of the
properties of the associated graphs.

This problem seems to have received little attention in the past. For some early exact

enumerations, see [3].
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We begin by recounting some of the notation and theorems from [1]. For any n and q,
define N = (’2’), k =g —n, and = = ¢/n. Define the function y = y(z) by y(1) = 0 and
implicitly for x > 1 by

1 14y 2, 1.4
= —1lo ( 1+ 1 Io#...
55 1o _y) +i2 4+ Ly

Define the function ¢(x) by ¢(1) = —1 + log(2) and, for > 1,

2¢™ 3.‘1 r)
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Also define the function a(z) by a(1) =2+ %log(%) and, for z > 1,

$(a) = log(

a(z) = z(z+1)(1 - y) + log(l — = + zy) — %log(l — x4 z9°).

Finally, define the numbers wg, w,,w,,... by wy = 7/+/6 and, for k > 0,

w. = wl'(k)d;\/8/3 (z’ﬁc_)k/?
k T'(3k/2) 8¢ ’
where -

dhdk h
dy =2, and dpq = dﬁz TFsG] for k > 0.
The paper [1] contains a large number of facts about these functions, and we will refer
to it as these are needed. The principal result we need from [1] is the following asymptotic

estimate of ¢(n, ¢q).

Theorem 1.1. For n < ¢ < N we have uniformly

N k 11/16
c(n, q) :wk(q>exp<n¢( )+ )+O(%§T—~>)- |

2. Asymptotics for weakly-connected digraphs.

If a weakly-connected digraph has n vertices, ¢ edges and d digons, the underlying
undirected graph has n vertices and ¢ — d edges. Considering the number of places that the

d digons might occur, and the possible orientations of the other q—2d edges, we easily have
—d
winegd) = (17 )er-2etn g - ). B
Theorem 2.1. For n < ¢ < 2N we have uniformly

2 A 1/16
w(n,q) = wk< éV) exp(n¢(x) +alz) - %1132(1 -y + ()(%))
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Proof. Since the total number of labelled digraphs with n vertices and g edges is (2(1{\/ ), the
remaining parts of the right side of the theorem can be interpretted as the probability that
a randomly chosen digraph in this class is weakly-connected. This observation easily leads
to a proof of the theorem for g > n8/5 as follows.

Tf a random choice of g edges from the 2N available does not produce a weakly-connected
digraph, then at least one of the weak components produced has n /2 or fewer vertices. Thus,
the probability that the digraph is not weakly-connected is at most equal to the expected

number of such components, which in turn is bounded by

l§J (n) (2N—2";("_m)) B tn/2) (n) (2N — 2m(n —m)),

m=t N (25’) - me1 VT (2N),
n/2)
T m\9q
<2 <n) (1-3)
In/2l o
n mgq
< 3 o)

< exp(Tzexp(—?11/5)) -1
= O(1zexp(-—7‘zl/5)).

Furthermore, as in the proof of Lemma 3.3 of {1],
exp(nd)(m) +a(z)) = exp(—ne"zm + O(nze™) + 0(126“2’”))

as x — oo which, along with the facts that 22(1 —y) = O(z%e™2*) and w;, = 1 + O(1/k) [1,
(3.7), (3.20)], completes the proof of the theorem for this case.
From now on, we will assume that n < g < n8/5. Suppose initially that d satisfies

0<d<kandd®=o0(k-+1). Then we find the following uniform estimates.
qg—d _ qd d?
(*37) = Gew(o(5) (2
N N\ /2z\¢ de &2
(q~d) = (J(‘;) exp (0 + 7)) )

d
Wyq = W}, €XP (O(m» (4)
a(z — d/n) = a(z) + O(d/n*/?) (5)
2
n(z — dfn) = np(z) — d¢/ (z) + o(k(i ) (6)

For (4), we need the expansion wy, = exp(—1/(4k + 1) + O(1/(k + 1)2)) implied by equa-
tion (3.20) of [1]. Similarly, the proofs of (5) and (6) follow from the estimates of o' (x) and
¢ (z) given in Lemmas 3.1 and 3.2 of [1].
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From Theorem 1.1, equations (1)-(6), and the identity y = e=%'(®), we have

1(N 5 ond @ dx d (k4+1)1/16
- q 2 eI T SN S
win,q,d) = i (q)2 wy(z"y/2) exp(m]f)(x)-x‘-a(x)—i—O(k 1ttt o750 )),
(M

again under the conditions 0 < d < k and d? = o(k + 1).
Now assume that 0 < d < k — 1. Since w;, a(z) and the error term of Theorem 1.1 are

uniformly bounded, we have uniformly

—d-1 N
w(n,g,d +1) (“atr) (-a-) |
———e = (1 exp(né(z — d/n — 1/n) — ng(x — d/n)).
w(n,q,d) ) (q;d) (qud) p(nd / /m ¢ / )
Since ¢"(z) < 0 for = > 1, the value of the exponential is less than y. Hence we have
uniformly
w(n,q,d) (d+1}(N—-g+d+1)

2
ZO(dm—Fyl)' (8)

Since ¢(n,n ~ 1) = O(n=3/?)¢(n,n), we find that (8) holds also for d = k. From this we
conclude that, for n < g < n8/5 and 1 < dyg < k+1,

k+1

Z w(n,q,d) = O(w(n,q, do)), (9)
d=do
provided dy > cz?y for some sufficiently large constant c.

We are now ready to estimate w(n, ¢) by summing w(n, ¢, d) over d. For 0 < k < nt/?,
we have 22y = O(k'/?/n!/?) = O(n=%/*%). This means that the sum is dominated by the
term for d = 0, with the term for d = 1 giving the order of magnitude of the error (by (9)).
From (7), we immediately have

3 1/16
w(n,q) = <J;J)2qwk exp(nqﬁ(ac) + a(z) + %xzy e O(%—-)). (10)

Suppose instead that n/? < k& < n%% — n, and define dy = [k2/5]. Using y =
Ok?/nt/?) for 2 < 2 and y < 1 for z > 2, we easily find that 2%y = o(d,), and so

dg—1

w(n,g) =Y win,gd)+O0(w(n,q,dy)), (11)
d=0
where all the terms of the sum lie in the region covered by (7). Using the bounds d! > (d/e)¢
and y = O (min(k*/? /nt/?, 1)), equation (7) easily implies that

w(n,q,dy) = O(exp(—nl/s))uz(v'z7q,O)A (12)
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Using y = O(min(k*/?/n'/2,1)) and the identities 242" /il = ze” and 3 ;2 22t il =
z(1 + z)e?, equations (7), (11) and (12) together imply that

1

do= /
3 agen(o(Sm)

= i M@ + o(kd—:l + ilnf)) +0Q1) i (—”3—2%{—2—)1 +0(exp(—n'/%))

d= =do

= exp(32%y) (1 + O(n™%/%)) + O (exp(—n'/?)),

which shows that equation (10) holds for n/2 < k < n8/% — p also.

To reconcile equation (10) with the theorem statement, it only remains to note that

()= C)onie o

whenever z = o(n'/3). B

Theorem 2.1 immediately provides the following two corollaries, for which the calcu-
lations are exactly the same as for Corollaries 2 and 3 in [1]. Both expansions can be

generalised by using the techniques of [2].

Corollary 2.2. Uniformly for 0 < k < O(n/?), we have

w(n,n+k) = Luwy (3/m)/2(e/(12k)) /Pt E-D/2gn+k
X (1 + O(min(k3/2/nl/2, k2 /m+ (k+ 1)1/16/77,9/50))), B

Corollary 2.3. If € >0 s fized, then

w(n,q) ~ (Q;V) exp(—ne~2)

uniformly for ¢ > (3 +€)nlogn. 8

In proving Thereom 2.1, we have incidentally established the distribution of the numn-
ber of digons in a random weakly-connected digraph with n vertices and ¢ edges. For
n < g < n8/5, this number has a Poisson distribution with mean -%-3122, to the accuracy
given by equation (7). For larger ¢, since all but a minute fraction of digraphs are weakly-
connected, the binomial distribution with probability ¢*>/n* and N degrees of freedom is
a more accurate approximation. We leave the details to the reader. Many other asymp-
totic properties of random weakly-connected digraphs can be established as well, including

digraphical equivalents of all those established in [2] for undirected connected graphs.
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