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ABSTRACT. We study the achromatic number of the Cartesian product of graphs 
G 1 and G 2 and obtain the following results: 

(i) maXl<t<rn min{l mn J, t(m + n - 1) - t2 + I} - - t 
~ w(Krn X Kn} 

>{m+n-~ 
- 2n - f--l if n > m > 2. 

m 1 

if n > m = 2 or m n> 2 ; and 

Moreover, for m 2,3, the bounds give the exact achromatic numbers W(Krn X 

Kn} if not both m and n are equal to 2. 
(ii) W(G1 X G2) ~ W(Krn X Kn} if w(Gt) m and w(G2 ) n. 

(iii) WePt X Krn) ::; (m(m
2 
+ 1) )1/2(W(Pt} + 3) + 1 and 

W(Cl X Krn} ::; (m(m
2 
+ 1) )1/2 (w(Cd + 3) + 1 

where Pk , C k and Kk are the path, the cycle and the complete graph of order k 
respectively. 

1. Introduction 

Let G = (V, E) be a simple graph. A of G is a surjection from V to 
the set {I, 2, ... , k} (which represents colors) so that any two adjacent vertices in 
V receive different colors. Moreover, if for each pair of colors CI and C2 there are 
adjacent vertices VI and V2 so that Vi is colored with Ci, i = 1,2, then the coloring 
is The k such that there exists a complete k-coloring of G is 
the aChrOITlatic number w(G) of G. 

Let Gi = (Vi, i 1,2, be simple graphs. The Cartesian product G1 x G2 

is the graph with X V2 as vertex set, and the two vertices V = (VI, V2) and 
W = (WI, W2) are adjacent in GI X G2 whenever 'VI = WI and V2 is adjacent to W2 

in G2 or symmetrically if V2 = W2 and VI is adjacent to WI in G I . 

Suppose that G (V,E) is a graph where V = {VI,V2, ••. ,vp}. Let r(m) 
{ar,s : 1 ~ l' < 8 ::; m} be a set of (2) permutations aT,S on the set {I, 2, ... ,p}. 
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Then the multipermutation Pr(rn) ( G), is defined to be the graph con­
sisting of m disjoint copies of G, say GI, G2

, ••• , Grn, together with p' ('2) additional 
edges e;'s, t 1,2, ... ,p, where e;'s joins the vertex Vt of Gr with the vertex VaT,sCt) 

of GS. It is clear that PrCrn)(G) is isomorphic to G x Krn if all the ar,s are the iden­
tity permutation on {1,2, ... p}. If there is a W(G)-coloring of G such that vaT,sCi) 

and Vi are in the same color class, i = 1,2, ... ,p, for each pair of T and s, then we 
say the multipermutation graph PrCrn)(G) is class-invariant. For example, if each 
ar,s is the identity permutation on {1,2, ... ,p} then PrCrn)(G) is a class-invariant 
multipermutation graph. 

In [1,3,4]' Bhave, Geller and Kronk, Harary and Hedetniemi gave some excel­
lent results for the achromatic number of general graphs, but to determine the 
exact achromatic number, even for simple structures such as trees, is quite diffi­
cult.[2,5] Milazoo and Vacirca studied, in [6,7], the achromatic numbers of permu­
tation graphs and G x Krn and obtained some results. In this paper, we study the 
achromatic number of the Cartesian product of graphs GI and G2 and obtain the 
following results: 

(i) maXl~t~rn min{ l ~n J, t(m + n - 1) - t 2 + I} 

2 W(Km x Kn) 

{ 

m+n 1 
> n 
- 2n - f--l if n > m > 2. 

m 1 

if n > m = 2 or m = n > 2 ; and 

Moreover, for m 2,3, the bounds give the exact achromatic numbers W(Krn x 
Kn) if not both m and n are equal to 2. 
(ii) 'li(GI x G2 ) 2 W(Krn x Kn) if W(Gd = m and W(G 2 ) = n. 

(iii) 'li(Pe x Km) ::; (m(m
2 
+ 1))I/2(W(Pe) + 3) + 1 and 

'li(Ge x Krn) :s; (m(m
2 
+ 1) )1/2('li(Ge) + 3) + 1 

where Pk, G\ and Kk are the path, the cycle and the complete graph of order k 
respectively. These results improve the works of Milazoo and Vacirca appeared in 
[6,7]. 

2. The main results 

Throughout this section, we assume that m ::; n and the vertex set of Krn X Kn 
is {( i, j) : 1 :s; i :s; m and 1 ::; j :s; 

Lemma 2.1. W(Krn x Kn) ::; 

max min{lmn J, t(m + n -1) t2 + 1} 
l~t~rn t 

Proof. Consider any complete W(Krn x Kn)-coloring of Km X Kn. Suppose that 
the number of vertices in the color class S with the least number of vertices is t. 
Since the independence number of Krn X Kn is m, we have 1 ::; t :s; m. Every vertex 
in S is adjacent to m + n - 2 vertices not in S and each pair of vertices in Shave 
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exactly two adjacent vertices in common. Hence the number of vertices in Km x Kn 
not in S but adjacent to a vertex in Sis t(m + n - 2) 2 . (~) = t(m + n -1) - t2

• 

It follows that 'l!(Km X Kn) ::; t(m + n - 1) - t2 + 1. 

On the other hand, since each color class consists of at least t vertices, we have 
mn . mn 

'l!(Km x Kn) ::; l-t-J. Thus 'l!(Km X Kn) ::; Mm {l-t-J , t(m + n -1) - t2 + I} 

and hence 
. mn 

'l!(Km X Kn) ::; max19~m mm{l-t-J ,t(m + n 1) - t2 + I} 

To see that the upper bound in Lemma 2.1 is best possible, let us consider the 
achromatic number of Km X Kn for m = 2,3. By Lemma 2.1, it is easy to see that 

{ 

5 if n = 3 ; and 
'l!(K2 X Kn) ::; n + 1 if n ~ 3 and 'l!(Ks X Kn) ::; l3

2

n
J if n > 3. 

Theorem 2.1. 

(i) 'l!(K2 X Kn) = n + 1 if n ~ 3; and 

{ 

5 if n = 3 j and 
(ii) 'l!(Ks x Kn) = 3n . 

. l2" J If n > 3. 

Proof. For the proof, we need only give a complete (n + 1 )-coloring and a 

complete l3; J -coloring of Km x Kn for m = 2,3, respectively. 

(i) Suppose m = 2. Let 

(i .)={i ifi=1,2andj=ljand 
I') 2+k ifi=I,2andj=2,3, ... ,n. 

where k == i + j - 2 (mod (n -1)) and 1 ::; k ::; n - 1. By the definition of f, it is 
a routine matter to check that f is a complete (n + I)-coloring of K2 X Kn. 

(ii) Suppose m = 3. 

If n = 3, then let f be defined by 

1(1,1) = 1, f(2,1) = 2, f(3,1) = 3, 

1(1,2) = 4, f(2,2) = 3, f(3,2) = 5, 

1(1,3) 5, f(2,3) = 4, f(3,3) = 2. 
It is clear that f is a complete 5-coloring. 

For n > 3, we give a complete l3n J -coloring for each of the following two cases. 
2 

(a) If n is even, say n = 2r, then 

.. { i + 38 if i = 1, 2, 3 and j = 28 + 1, 8 0, 1, .. 0' r - 1 j and 
f(1"J)= k 3 Of· 123 d· 2 2 01 1 + 8 1 1, = , , an J = 8 + ,8 " .. 0' r - . 
where k i + 1 (mod 3) and 1 ::; k ::; 3. 

(b) If n is odd, say n = 2r + 1, then l3; J = 3r + 1. Let 
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k + 3s if i = 1,2,3 and = 28 + 2,8 = 0,1, ... , T - 1, and 

=I (3,2); 

i+3s ifi=1,2,3andj=2s+1,s O,l, ... ,T 1,and 

f(i,j) = 
3T + 1 

2 

1 

(i,j) =I (2,1); 

if (i, j) = (2, 1), (3, 2) or (1, n); 

if (i,j) = (2,n); and 

if (i, j) = (3, n) . 

where k == i + 1 (mod 3) and 1 ::; k ::; 3. 

Since in both cases (a) and (b), each color class consists of at least two indepen­
dent vertices (i.e. vertices not in the same row and not in the same column), it is 

clear that f is a complete l3; J -coloring. 

For m 2:: 4, we can also get a lower bound for w(Km x Kn). 

Theorenl 2.2. Let m 2:: 4. Then 

{

m+n-l 

\IT{Km X Kn) 2:: 2n _ r--n-l otherwise. 
m-l 

if m = nj and 

Proof. We give complete colorings corresponding to the two cases. 

(i) Suppose m = n. Let 

if i = 1, 2, ... , m and j = 1; 

m+k if i = 1,2, ... ,m - 1 and j 2,3, ... ,n except 

j = n - i + 1; 
f(i,j) 

m if i = 2, 3, ... , m - 1 and j n i + 1; 

m + n -1 if i = m and j = 2; and 

m - j + 2 if i = m and j = 3,4, ... , n. 

where k i + j - 2 {mod (n - 1)) and 1 ::; k ::; n - 1. By the definition of f, we 
can check that the given coloring is a complete (m + n - 1 )-coloring. 

(ii) m =I n. 

(a) If {m -l)ln, say n = q' (m - then 

ifi = 1 andj = 1,2,.,.,n; 

if i = 2 and j = 1,2, ,." q 

if 

l' , 



f(i,j) 

j 

j+l 
1 

(i-2)(q+l)+j 

(i 2)q+1'+j-l 

if i = 1 and j = 1,2, ... , n; 

if i = 2 and j = 1,2, ... , q; 

if (i,j) = (2,q + 1); 

ifi=3, ... ,r+landj 1, ... ,q+l; 

if i = l' + 2, ... , m and j 1, ... , q + 1; and 

n + k if i = 2, ... ,m and j = q + 2, .. "n. 

where k == i + j q - 2 (mod (n - q)) and 1 ~ k ~ n q. 
n 

In both cases (a) and (b), f is a complete (2n - ,--1 )-coloring. 
m-l 

Theorem 2.3. If w( C1 ) = m and w( C2) = n, then w( C 1 x C2) 2:: W(Km x Kn). 

Proof. Consider a complete m-coloring and a complete n-coloring of C 1 and 
C2 respectively, Let the color classes of C1 and C2 be 2:1 = {SI, S2, ... , Sm} and 
2:2 = {Si, S~, ... , S~} respectively. Then the vertex set of C 1 x C 2 is partitioned 
into independent sets Sl X Si, ... , Sl X S~, ... , Sm x Si, .. " Sm X S~. 

Consider a complete w(Km x Kn)-coloring f of Km x Kn. If we color all the 
vertices in Si X Sj with the color f(i,j), 1 ~ i ~ m and 1 ~ j ~ n, then we get a 
complete w(Km x Kn)-coloring of C 1 X C2. This concludes the proof. 

By Theorem 2.2 and Theorem 2.3, we can easily get the following 

Corollary 2.1. If W(C1 ) = m and w(C2 ) = n, then 

{ 

m + n 1 if m = n > 2 or n > m = 2; and 
w( C1 X C 2 ) 2:: 2n _ r __ n_1 

I ifn>m>2. 
m-l 

In [7], Milazzo and Vacirca got a lower bound for the achromatic number of 
CxKm . 

Theorem 2.4. For every graph G and for every m ~ 2, 
m 

, W( C) 1 . W( C) ~ W( C X Km), 

where the bound is best possible.~i.e. When C K2 and m is odd, w( G X Km) 
attains the bound.) 

Comparing it with our result, we find that our bound improves their bound 
except when w( C) = 2 and m is odd or w( C) = 3 and m = 4, in which cases the 
bounds are equal. 

As for a class-invariant multipermutation graph Pr(m)( C), since the edges be­
tween different copies CT and CB do not join the vertices in different color classes, 
the coloring given above is still a proper and complete coloring. So we have the 
following 

Coronary 2.2. Let G be any graph with W( C) 
PrCm)(G) is class invariant, then 
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n ~ 2 and m 2:: 2. If 



m+n-1 if m = n > 2 or either m or n is 

equal to 2 but not both; 
n 

2n - f--1 if n > m > 2; and 
m-1 

2 r m 1 if m > n > 2. m- n-1 

As was indicated by Milazoo and Vacirca in [6,7], there are some graphs G for 
which even for fixed m 2: 2 there does not exist a positive real number r such that 
W(G X Km) ~ r . W(G). However, they gave such number for G = Pl and Cl(Pl 
and Cl are a path and a cycle of order I. respectively). 

Theorem 2.5. For m ~ 2, we have 
(i) W(Pl X Km) ~ m' W(Pl), and 
(ii) W( Cl X Km) ~ m . W( Cl). 
Moreover, these bounds are attainable. 

In [3] and [6], Geller and Kronk and Milazoo and Vacirca determined w(Pl ) and 
w( Cl) independently. 

n-1 
Theorem 2.6. Let M = max{n : r-2-1n ~ I.}. Then 

(i) For I. 2: 2, W(Pl) = { MM - 1 if M is odd and I. = rM;- 11M; 

otherwise. 

{ 
M 1 if M is odd and I. = rM2-11M + 1; 

(ii) For 1.2: 3, W(Cl) = M-
otherwise. 

In [1], Bhave gave an upper bound for the achromatic number. 

Theorem 2.7. Let G be a graph of order p with maximum degree .6.( G). Then 
W(G) -1 

f .6.(G) l·W(G)~p. 

Now, we are ready to state and prove our other results. 

m(m + 1) / 
Theorem 2.8. W(Pl X Km) ~ ( 2 )1 2(W(Pl) + 3) + 1 for I. ~ 3. 

Proof. It is clear that Pl X Krn is a graph of order ml. with maximum degree 
m + 1. If k((m + l)(k - 1) + 2) ~ ml < (k + l)((m + l)k + 2), then 

r((m + l)k + 2) -ll((m + l)k + 2) = (k + l)((m + l)k + 2) > ml. 
m+1 

Hence by Theorem 2.2., W(Pl X Km) ~ (m + l)k + 1, 

B 
. h' k((m+1)(k-1)+2) n (k+l)((m+1)k+2) 

ut In t IS case, ~ .(. < . So, 
m m 

I. > (2(m + 1)/m)1/2k((2(m + 1)/m)1/2(k -1) + 2(2/m(m + 1))1/2) 
- 2 

(2(m + 1)/m)1/2k((2(m + 1)/m)1/2k - (2/m(m + 1))1/2(m -1)) 
2 

1 1 6 



Since (2/m(m + 1))1/2(m - 1) = «2m2 - 4m + 2)/(m2 + m))1/2 < 2, 
o (l(2(m + 1)/m)1/2kJ -1)(L(2(m + 1)/m)1/2kJ - 2) 
~> 2 . 

Hence W(Pl) ~ L(2(m + 1)/m)1/2kJ - 2 ~ (2(m + 1)/rn)1/2k - 3 and 
W(Pl X Km) ~ (m + l)k + 1 ~ «m + 1)m/2)1/2(1JI(Pl ) + 3) + 1. 

For the same reason, we have 

Theorem 2.9. W(Ol X Km) ~ «m + 1)m/2)1/2(W(Ct ) + 3) + 1. 

The best upper bounds that we knew before for Pl X Km and OR. X Km are 
the bounds in Theorem 2.5. Comparing them with ours, we find that our bounds 

improve them asymptotically over ~;:a . lJI(G) for l ~ 50. 
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