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ABSTRACT. We study the achromatic number of the Cartesian product of graphs
G4 and @, and obtain the following results:

. . ., mn .

(i) maxi<i<m mln{LTj,t(m +n-1)—#+1}

> U(Km % Kn)
m+n-—1 fn>m=2o0orm=mn>2;and
2 2n—1'———n—'[ ifn>m>2.
m ~1

Moreover, for m = 2, 3, the bounds give the exact achromatic numbers ¥{Km X
K,) if not both m and n are equal to 2.
(i) ¥(G1 x G2) > ¥(Km X Ky) if ¥(G1) = m and ¥(G3) = n.

(i) (P x K) < (P72 (0() 1) + 1 and

¥(Cy x Km) < (M Dyi2(9(0) +3) +1

where Py, Cy, and K} are the path, the cycle and the complete graph of order k
respectively.

1. Introduction

Let @ = (V, E) be a simple graph. A k-coloring of G'is a surjection from V to
the set {1,2,...,k} (which represents colors) so that any two adjacent vertices in
V receive different colors. Moreover, if for each pair of colors ¢; and c; there are
adjacent vertices v, and vy so that v; is colored with ¢4, ¢ = 1,2, then the coloring
is complete. The largest k such that there exists a complete k-coloring of G is
the achromatic number ¥(G) of G.

Let G; = (Vi, E;), i = 1,2, be simple graphs. The Cartesian product Gy X Gy
is the graph with Vi x Vi as vertex set, and the two vertices v = (v1,v2) and
w = (wi,w,) are adjacent in G1 X G whenever v; = w; and vy is adjacent to wy
in G or symmetrically if vy = wy and v; is adjacent to wy in G;.

Suppose that G = (V,E) is a graph where V = {v1,va, ..., vp}. Let T'(m) =
{a;; 1 <r <s<m}beaset of (V) permutations o, on the set {1,2,...,p}.
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Then the multipermutation graph, Pr(m)(G), is defined to be the graph con-
sisting of m disjoint copies of @, say G', G?,..., G™, together with p-(7*) additional
edges e’ ¢ = 1,2, ..., p, where e}"* joins the vertex vy of G™ with the vertex vy, (1)
of G*. It is clear tha.t Pr(1)(G) is isomorphic to G x K, if all the o, , are the iden-
tity permutation on {1,2,...p}. If there is a ¥(G)-coloring of G such that Vo, (i)
and v; are in the same color class, i = 1,2, ..., p, for each pair of 7 and s, then we
say the multipermutation graph Pr(,)(G) is class-invariant. For example, if each
@y is the identity permutation on {1,2,...,p} then Pr(m)(@) is a class-invariant
multipermutation graph.

In [1,3,4], Bhave, Geller and Kronk, Harary and Hedetniemi gave some excel-
lent results for the achromatic number of general graphs, but to determine the
exact achromatic number, even for simple structures such as trees, is quite diffi-
cult.[2,5] Milazoo and Vacirca studied, in [6,7], the achromatic numbers of permu-
tation graphs and G' x K,, and obtained some results. In this paper, we study the
achromatic number of the Cartesian product of graphs (1 and G5 and obtain the
following results:

(i) max; <i<m min{ L.’f‘t_’fj,t(m tn—1)— 41}

> UK, x K,)

m+4n-—1 fn>m=20orm=mn>2;and
>

2n~[—2—~] ifn>m>2

Moreover, for m = 2,3, the bounds give the exact achromatic numbers (K, x
K,) if not both m and n are equal to 2.
(i) ¥(G1 X G2) > U(Km x Ky) if ¥(G1) =m and ¥(G3) =n
(

iii) U(Pp x Kp) < (Tilnzi—l—))l/z(\lv(ﬂ) +3)+1 and

W(Cx Kn) < (P Dyaraa(cy) 4 3) 41

where Py, Ci and K}, are the path, the cycle and the complete graph of order k
respectively. These results improve the works of Milazoo and Vacirca appeared in

[6,7].
2. The main results

Throughout this section, we assume that m < n and the vertex set of K,, x K,
is {(4,7): 1 <i<mand 1 <j<n}

Lemma 2.1. ¥(K,, x K,) <

. ., mn g2
lrgzgﬁzmm{LTJ,t(m—i—n - +1}

Proof. Consider any complete ¥(K,, x K, )-coloring of K, x K. Suppose that
the number of vertices in the color class S with the least number of vertices is ¢.
Since the independence number of K,, x K, is m, we have 1 < ¢ < m, Every vertex
in S is adjacent to m + n — 2 vertices not in § and each pair of vertices in S have
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exactly two adjacent vertices in common. Hence the number of vertices in Kp, x K,
not in § but adjacent to a vertex in S is t(m+n—2)—2-(}) =t(m+n—1)—t>
It follows that ¥(K,, x K,) <t(m+mn—1)— >+ 1.

On the other hand, since each color class consists of at least ¢ vertices, we have
U(Kp x Kp) < L?J‘ Thus U(Kom x Kn) < Min {LTt-"-J Jt(m+n—1)— 2 +1}
and hence .

V(K x Ky) < max;<i<m min{’_?_{,t(m +n—1)—t* +1}

To see that the upper bound in Lemma 2.1 is best possible, let us consider the

achromatic number of K,, x K, for m = 2,3. By Lemma 2.1, it is easy to see that
5 ifn=3;and

‘II(szKn)Sn+11fn23and‘Il(K3xKn)S In .
|—=—] ifn>3.
2
Theorem 2.1.
(1) ¥(K; x Kp)=n+1if n > 3; and

' 5 if n =3 ; and
i) U(K3 x K,) =
(if) ¥(Ks x Ka) { [%?J ifn>3.

Proof. For the proof, we need only give a complete (n + 1)-coloring and a
complete L%J-coloring of K, x Ky, for m = 2,3, respectively.
(i) Suppose m = 2. Let

. 1 ifi=1,2and j=1; and
f,5) = e .
2+k ifi=1,2andj=2,3,..,n

where k=4i+j— 2 (mod (n —1)) and 1 <k < n —1. By the definition of f, it is
a routine matter to check that f is a complete (n + 1)-coloring of K3 x K.
(ii) Suppose m = 3. ’

If n = 3, then let f be defined by

f(lal) =1, f(zal) =2, f(371) =3,

f(l,z) =4, f(2a2) =3, f(312) =3,

f(]-ag) =5, f(za'?’) =4, f(3a3) =2

It is clear that f is a complete 5-coloring.

3 . .
For n > 3, we give a complete [—;J-colormg for each of the following two cases.

(a) I n is even, say n = 27, then

. 14+3s #fi=1,2,3andj=2s+1,5=0,1,...,r —1; and
f(z”)"{k+3s fi=1,2,3andj =25 +2,8 =0,1,...,7 — 1.
where k=1 + 1 (mod 3) and 1 < k < 3.

(b) If n is odd, say n = 2r + 1, then Lg—;zj =3r+1. Let
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k+3s ifi:1,2,3andj=23+2,s:0,1,.,.,r—1,and
(5,5) # (3,2);
1+3s f1=1,2,3 andj:2s+1,s:0,l,...,rf1, and
f(i,5) = (4,7) # (2,1); , ,
3r+1 i (,5) = (2,1),(3,2) or (1,n);
2 if (1,7) = (2,n); and
L1 if (4,7) = (3,n).

where k =i+ 1 (mod 3) and 1 < k < 3.

Since in both cases (a) and (b), each color class consists of at least two indepen-
dent vertices (i.e. vertices not in the same row and not in the same column), it is

clear that f is a complete L%EJ -coloring,.

For m > 4, we can also get a lower bound for (K, x Ky).

Theorem 2.2. Let m > 4. Theh
m+n—1 if m =n; and

>
U(Km x Ky) > { o — [;n_] otherwise.
m—1

Proof. We give complete cdlorings corresponding to the two cases.

(i) Suppose m =mn. Let

1 ifi=1,2,...,mand j =1;
m+k ifi=1,2,..,m—1and j=2,3,..,n except
. j=n—i+]
10,3) = m fi=238,..,m—landj=n-i+1;
m+n—1 ifi=mand j = 2; and
m—j+2 ifi=mandj=34,..,n.

where k =i 4-j — 2 (mod (n — 1)) and 1 < k <n — 1. By the definition of f, we
can check that the given coloring is a complete (m +n — 1)-coloring.

{(ii) Suppose m # n.
(a) If (m —1)|n, say n = g - (m — 1), then

7 ifi=1andj=1,2,..,n;

J+1 fi=2andj=1,2,..,g—-1;
fi,i)=41 if (4,5) = (2,9);

(—-2)g+5 fi=3,..,mandj=1,..q and

n+k fi=2,...,mandj=q+1,..,n

where k=44 j—g—2(mod (n—¢g))and 1 <k <n—q.

(b) ¥ (m—~1) fn,sayn =g (m—1)+» where 1 <7 < (m — 1), then
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J ifi=1land j=1,2,..,n;

j+1 ifi:2andj=1,2,...,q;’

1 i (5,7) = (2,0 + 1)

-2 (g+1)+7J ifi=3,.,7r+1landj=1,...,9+1;
(i—2)g+r+j—1 ifi=r+2,..,mandj=1,..,¢+1;and
n+k ifi=2,..,mand j=¢q¢+2,...,n.

where k=i4+j—qg—2(mod(n—gq))and1<k<n—g. ‘

In both cases (a) and (b), f is a complete (2n — |‘mn_ 7

f("’aj) =

1)-coloring.

Theorem 2.3. If ¥(G;) = m and ¥(G3) = n, then ¥(G1 xG2) > ¥(Km x Kp).

Proof. Consider a complete m-coloring and a complete n-coloring of G; and
G respectively. Let the color classes of Gy and Gy be Y-, = {51,853, ..., Sm} and
>, = {5},54,..., 5.} respectively. Then the vertex set of G1 x G is partitioned
into independent sets S1 X S1,..., S1 X 8%, ..ey Sm X 81,..., Sm X 5.

Consider a complete ¥(K,,, X K,)-coloring f of Ky X K. If we color all the
vertices in §; X S with the color f(G,7), 1 <i<mand 1 <j<n,then we get a
complete ¥(K,, x Ky)-coloring of G1 X Gs. This concludes the proof. -

By Theorem 2.2 and Theorem 2.3, we can easily get the following

Corollary 2.1. If ¥(G1) = m and ¥(G3) = n, then
m+n-—1 fm=n>2o0rn>m=2;and
‘I’(G1 X Gz) >

n .
2n—(.—m_~—i] ifn>m>2

In [7], Milazzo and Vacirca got a lower bound for the achromatic number of
G x K.

Theorem 2.4. For every graph G and for every m > 2,

f@%—ﬂ L U(Q) < U(G X Knm),

where the bound is best possible.fi.e. When G = K, and m is odd, (G x Km)
attains the bound.)

Comparing it with our result, we find that our bound improves their bound
except when ¥(G) = 2 and m is odd or ¥(G) = 3 and m = 4, in which cases the
bounds are equal.

As for a class-invariant multipermutation graph Pp(m,)(G), since the edges be-
tween different copies G™ and G* do not join the vertices in different color classes,
the coloring given above is still a proper and complete coloring. So we have the
following ‘

Corollary 2.2. Let G be any graph with ¥(G) = n > 2and m > 2. If
Pr(m)(G) is class invariant, then
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m+n-—1 if m=mn > 2 or either m or n is
equal to 2 but not both;
Y(Prm)(F) 2 { 2n - f——i-i] if n > m > 2; and ‘
m —

2m — f;?—l] fm>n>2

As was indicated by Milazoo and Vacirca in [6,7], there are some graphs G for
which even for fixed m > 2 there does not exist a positive real number r such that
¥(G x Kpm) < - ¥(G). However, they gave such number for G = Py and Cy( P,
and C¢ are a path and a cycle of order ¢ respectively).

Theorem 2.5. For m > 2, we have
(1) Y(Prx Kp) <m- ¥(P,), and
(11) ‘I’(C[ X Km) <m-: ‘I’(Cg)

Moreover, these bounds are attainable.

In (3] and [6], Geller and Kronk and Milazoo and Vacirca determined U(P;) and
¥(C}) independently.

Theorem 2.6. Let M = max{n : ’.n —2— l'ln < ¢}, Then
: . M-1
(i) For £> 2, ¥(P) = { M~1 if Misodd and ¢ = (“?]M,
M otherwise.

. . M1
(i) For £ 2 3, ¥(C,) = { M—1 it Misoddand £=[——1M +1;

M otherwise.

In [1], Bhave gave an upper bound for the achromatic number.

Theorem 2.7. Let G be a graph of order p with maximum degree A(G). Then

e uE) <.

Now, we are ready to state and prove our other results.

m(m + 1)
2

Theorem 2.8. ¥(P; x K,,,) < ( )1/2(\I'(Pz) +3)+1forf>3.

Proof. It is clear that P; x K, is a graph of order m{ with maximum degree
m+1 I k((m+1)(k~1) +2) <ml < (k+1)((m + 1)k + 2), then

[((m"i'fln)]:im_l]((m—{»l)k +2) = (k+1)((m + 1)k +2) > m.

Hence by Theorem 2.2., ¥(P; x K,,) < (m+ 1)k + 1,
But in this case, k((m 4+ 1)(k ~ 1) +2) <f< (k+1)((m +1)k +2)

0> (2(m +1)/m) 2 k((2(m +n;)/m)1/2(k — 1) +2(2/m(m T1))1/2)

. So,

2
_ 2(m +1)/m)!2k((2(m + 1) /m)* 2k — (2/m(m + 1))/2(m — 1))
2 .
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Since (2/m{m + 1))/2(m ~ 1) = ((2m? — 4m + 2)/(m?* +m)}"/? <2,
, (2m  1)/m ) = 1)@+ 1)/ =)

Hence ¥(P;) > |(2(m + 1)/m)1/2k_[ —2> (2(m+1)/m)*/?k — 3 and
U(Py x Km) < (m + 1)k +1 < ((m +1)m/2)1/2(¥(P) + 3) + 1.

For the same reason, we have
Theorem 2.9. ¥(Cy x Kp) < ((m 4 1)m/2)Y/2(¥(Cy) + 3) + 1.

The best upper bounds that we knew before for Py x K,, and C; x K,, are
the bounds in Theorem 2.5. Comparing them with ours, we find that our bounds

improve them asymptotically over % - ¥(Q) for £ > 50.
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