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Abstract

A graph on 2n vertices can be Skolem-labeled if the vertices can be given
labels from {1,...,n} such that each label i is assigned to exactly two
vertices and these vertices are at distance i. Mendelsohn and Shalaby
have characterized the Skolem-labeled paths, cycles and windmills (of
fixed vane length). In this paper, we obtain necessary conditions for the
Skolem-labeling of generalized k-windmills in which the vanes may be of
different length. We show that these conditions are sufficient in the case
where k = 3 and conjecture that any generalized k-windmill, £ > 3, can
be Skolem-labeled if and only if it satisfies these necessary conditions.

1 Introduction

Skolem-type sequences are integer sequences which contain two occurrences of each
distinct entry, n, located n positions apart. These sequences have well-known connec-
tions with Steiner triple systems and with solutions to Heffter’s difference problem.
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In 1991, Mendelsohn and Shalaby [5] generalized this idea to graphs and noted
that the Skolem-labeling of a graph could be used to design schemes for testing a
communications network for node, link and distance reliability. In essence, a Skolem-
labeled graph is a higher dimensional analogue of a Skolem sequence. Each label,
n, is an integer which is used to label two vertices located at distance n. They also
provided a characterization of the paths and cycles that can be Skolem-labeled. In
[2], Baker, Bonato and Kergin approached the problem from the opposite direction
and considered a two-dimensional analogue of a Skolem sequence. In doing so, they
actually provided necessary and sufficient conditions for the existence of a Skolem-
labeling of a 2 x n ladder graph.

In [6], Mendelsohn and Shalaby extended this work to A-windmills; i.e., trees with
k disjoint paths of equal length emanating from a central vertex. They showed that
k must equal 3 and that the 3-windmills that can be Skolem-labeled are precisely
those that meet a particular parity condition. One obvious generalization is to the
more realistic situation of generalized k-windmills, where the vanes need not be of
the same length. Once this length restriction is removed, there are generalized k-
windmills which can be Skolem-labeled for each value k.

In this paper, we explore the parity and nondegeneracy conditions which are neces-
sary for the Skolem-labeling of generalized k-windmills. We then prove that in the
case of generalized 3-windmills, these conditions are also sufficient.

2 Skolem-type Sequences

2.1 Definitions and Existence Results

Skolem and other related sequences are tools used in the Skolem-labeling of graphs,
so we provide a list of definitions and existence results.

A Skolem-type sequence is a sequence (s;);c; of integers from a set J with the Skolem

property:

for every j € J, there exists a unique ¢ € I such that s; = s;1; = j.

For a Skolem sequence of order n, denoted S,,, J = {1,...,n}and I = {1,...,2n}.
Such a sequence exists if and only if n = 0,1 (mod 4) [10].

For a k-extended Skolem sequence of order n , denoted k-ext S,,, which has an empty
space (called a hook or zero) in position k, J = {1,...,n}and I = {1,...,2n+ 1} \
{k}. Such a sequence exists [1], [7] if and only if either:

kis odd and n = 0,1 (mod 4), or k is even and n = 2,3 (mod 4).

A hooked Skolem sequence, hS,, is just a 2n-extended Skolem sequence.
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The sequence is an m-near Skolem [hooked Skolem] sequence of order n, denoted m-
near S, [m-near hS,] if J = {1,...,n}\ {m}. An m-near Skolem sequence of order
n exists [8] if and only if either:

m is odd and n = 0,1 (mod 4), or m is even and n = 2,3 (mod 4).

For an m-near hooked Skolem sequence, the parity of m above is reversed.

If J={d,...,m+d— 1}, the sequence is a [hooked] Langford sequence of length m
and defect d, L' [hL]]. A Langford sequence of length m and defect d exists [9] if
and only if

1) m > 2d — 1 (the size constraint) and
2) m=0,1 (mod 4) for d odd or m = 0,3 (mod 4) for d even.
A hooked Langford sequence of length m and defect d exists [9] if and only if
1) m(m+1—2d)+2>0and
2) m = 2,3 (mod 4) for d odd or m = 1,2 (mod 4) for d even.

A k-extended Langford sequence, k-ext L', is defined in the obvious way. The fol-
lowing conditions are necessary for the existence of a k-ext L7 [4]:

1)m>2d—3and m(2d—1—m)/24+1<k<m(m—2d+5)/2+1
2) (m, k) =(0,1),(1,d),(2,0),(3,d + 1) (mod (4,2)).

These conditions are sufficient for small defects, d =1,2,3,4, or d < (m + 4)/8 and
for large defects d = (m +1)/2,m/2, (m —1)/2 [3], [4].

2.2 A useful symmetric Langford sequence

Define A%" to be the sequence with:

¢ in positions ¢ and 2i, for i = d,d+1,...,2d — 1, and

2d + i in positions 1 44 and 2d +2i + 1, for i =0,1,...,d — 2.
For example, A3 is the sequence 6 73453 64 7 5.
This sequence has some interesting properties.

1) Each of the entries, d, ..., 3d — 2 occurs once in the first half of the sequence and
once in the second. In fact, a Langford sequence, £}’ , can only have this symmetric
property if m = 2d — 1. To see this, note that an entry j occurs in positions a; in
the first half of the sequence and a; + j in the second half, so

m+d—1
mm+2d—1)/2 = Y j
j=d
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2) The second occurrence of an entry p € {d,d+1,...,2d — 1} can be moved to the
beginning of the sequence to create a (2p+1)-ext Eﬁdil. The reverse of this sequence
is a (4d — 2p — 1)-ext L2471

3) This sequence can be used to create a new sequence with multiple holes in the
middle by adding a fixed k¥ € N to each entry and inserting & holes in the middle.
This sequence is denoted by A%~! + k.

For example, 67345|36475
46734536-75 is a 9-ext L3 , 57-63543764 is a 3-ext L3
AS + 2 is 89567 — — 58697.

Property 3) will be extremely useful in some of the labeling techniques that follow.

3 Skolem-labeled windmills

A k-windmill is a tree consisting of k paths of equal positive length, called vanes,
which meet at a central vertex called the pivot. For clarity, we will often refer to
these windmills as ordinary windmills.

A generalized k-windmill (gk-windmill) is a windmill in which the k& vanes may be of
different positive lengths.

A graph on 2n vertices can be (weakly) Skolem-labeled if each of the vertices can
be assigned a label from the set J = {1,...,n} such that exactly two vertices at
distance j are labeled j, for each j € J. The Skolem-labeling is strong if the removal
of any edge destroys the Skolem-labeling, see the figures below.

Figure 1: A Skolem-labeling that is not strong.
1 1
1 I 1

4 2 3 2 4 3 4 2 3 2 4 3
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Figure 2: A strong Skolem-labeling for the same graph.

3.1 Elementary properties

A gk-windmill, which must contain at least k+1 vertices, can only be Skolem-labeled
if |V] is even. In addition, in order to use the label n, there must be a path of length
at least n. (This is the part of the Degeneracy Condition of [6] that applies to the
gk-windmills.)

For ¢g3- and g4-windmills, this will always be the case as the path along the longest
two vanes is of length at least [2(2n — 1)/4] > n.

An ordinary (i.e., not generalized) k-windmill can only be Skolem-labeled if (2n—1)/k
is an integer and if the length of the longest path 2(2n —1)/k is greater than or equal
to m. So only 3-windmills can be Skolem-labeled.

3.2 Skolem parity
In [6], the authors defined the following Skolem parity condition and showed that it
was necessary for the existence of a Skolem-labeling of any tree.

The Skolem parity of a vertex u of a tree T' = (V| E) is

> d(u,v) (mod 2),

veV

where d(u,v) is the length of the path from u to v.

Lemma 1 [6] If T is a tree on 2n vertices, then the Skolem parity is independent of
the choice of vertex u.

Lemma 2 (Skolem parity condition) [6] If T is a Skolem-labeled tree on 2n ver-
tices, then either

1) the Skolem parity of T is even and n = 0,3 (mod 4) or
2) the Skolem parity of T is odd and n=1,2 (mod 4).

In the case of gk-windmills, the Skolem parity condition reduces to the following
simple condition.
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Theorem 3 If G is a Skolem-labeled gk-windmill with 2n vertices and k vanes, m
of which are of odd length, then either:

1)n=0,1 (mod 4) and m =1 (mod 4) or
2)n=2,3 (mod 4) and m =3 (mod 4).

Proof. Suppose G = (V, E) is a Skolem-labeled gk-windmill with vanes of length
Z1,..., ;. Using the pivot p to calculate the Skolem parity, we obtain

> d(p.v) = Zzz zi+1)/

= I/QZx +> )
= 1/2]> 2} + (2n —1)]
= 12>z —1]+n

Since this is an integer, the number of odd vanes must be odd. Then by Lemma 2,

number of odd vanes =1 (mod 4) <= > 27 —1 =0 (mod 4) <= n = 0,1 (mod 4)

number of odd vanes = 3 (mod 4) <= Y27 —1=2 (mod 4) <= n = 2,3 (mod 4).

Therefore, an ordinary k-windmill, G can only be Skolem-labeled if its & = 3 equal
vanes all have odd length m = (2n —1)/3. Hence n = 2,3 (mod 4) and 2n =1 (mod
3), s0 2n = 4,22 (mod 24) and m = 1,7 (mod 8) as in [6].

3.3 Nondegeneracy condition

In general, the conditions that we have identified above are not sufficient to guarantee
that a gk-windmill can be Skolem-labeled. Although having a path of length at least
n guarantees that the label n can be placed, it does not guarantee that n —1 can also
be placed. The graph given below meets the Skolem parity condition sincen =5 =m
and it contains a path of length n = 5; however, it cannot be Skolem-labeled, so an
additional condition is required.

Theorem 4 (Nondegeneracy condition) If G is a Skolem-labeled gk-windmill
with 2n vertices and vanes of length x1, ..., zy, then

o

Z (xi +1).
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Figure 3: A graph in which 4 cannot be placed.

Proof. Let G = (V,E) be a Skolem-labeled gk-windmill with 2n vertices, vanes
Y1, ..., Yr of length xq, ..., x, respectively, and pivot p. Each vertex v # p can be
denoted by a pair (i,7) where v is on vane y; and j = d(v,p). Let p be denoted by
(0,0).

Since G is Skolem-labeled, each element m € {1,...,n} is associated with 2 vertices
(4,9), (', ") where d((i, j), (¢, 5')) = m. Then

g i A
m_{|j—j’| if i =4,

Summing over all the labels, we obtain

nnt /2= Sm= TG+ )+ S 1= X 6+7)

m=1 i =i’

Since this last sum is just the sum of the distances from each of the vertices to the
pivot, we could calculate this vane-by-vane, so

n k
nn+1)/2< Y (G +7) = Sailes +1)/2.
m=1 i=1
Theorem 5 Any ¢3- or g4-windmill satisfies the nondegeneracy condition.

Proof. Let G be a gk-windmill with 2n vertices and vanes of length x1, ..., zg. Since

k
; (36Hr1/2-2:z:]7

i=1j=1
and
xp—1 xi+1
ZJ+ZJ< Z]+ Z]vlf$k<$t,
j=1 j=1 j=1

SF  wy(w; 4+ 1)/2 attains a minimum when the vertices are as evenly distributed
among the vanes as possible.
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If £ =3, n must be at least 2 and

2n—1 2n—1
szxz 1) > 3( n3 ) n3 +1)>nn+1).

Ifk =4, 2”4’ L is never an integer. If n = 2s, the most even distribution of the vertices
would be s,8,5,s — 1;if n =2s+ 1, it is s + 1, s, s, s. Hence, in each of these cases,

k
> wi(zi +1) = n(n+ 1).
i=1

Remark 1 Once k > 4, however, the nondegeneracy condition is not automatically
satisfied. A g¢gb-windmill with vanes of lengths 2,2,2 2,1 fails the nondegeneracy
condition as does the g6-windmill illustrated above.

Remark 2 Note that n(n + 1) = % | z;(z; + 1) only when no label appears twice
on the same vane. This implies that 1 must be used to label the pivot plus one
adjacent vertex and the two 2’s must straddle the pivot, so the only g3-windmill of
this type is the ordinary 3-windmill with vanes of length 1.

In the remainder of the paper, we show that every g3-windmill that satisfies the
Skolem parity condition can be Skolem-labeled. We also make the following conjec-
ture.

Conjecture 1 Any gk-windmill that satisfies the Skolem parity and nondegeneracy
conditions can be Skolem-labeled.

4 Labeling techniques for g3-windmills

Let G = W(n : z,y,z) be a generalized 3-windmill, on 2n vertices, with vanes X,
containing x vertices, Y containing y and Z containing z vertices, where z > y > 2.
Then

n=x+y+z+1.

For ease in identifying the vertices, we place the graph on a grid and use the following
coordinate system:

X contains vertices (1,2 + 1) to (z,z + 1),

Y contains vertices (x + 2,z + 1) to (x + 1+ y,z+ 1),
Z contains vertices (z + 1,1) to (z + 1, 2)

p, the pivot, is located at (x + 1,2 + 1).
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4.1 Pruning

Let G be a generalized windmill. If we can use the largest labels to label the vertices
at the extreme ends of two vanes, we can reduce the problem to finding a Skolem
labeling for a smaller tree. In essence, we will have pruned the original tree. In this
section, we define a pruning algorithm that works for g3-windmills. We note that
variations of the pruning algorithm work for other gk-windmills.

Let G be a ¢g3-windmill on 2n vertices with x < n. Note that = > % Define
d = n — x and construct A%'!. This sequence has largest entry 3d — 2. Since the
largest label to be used is n, define k = n — 3d + 2, which is greater than zero as
x> % The sequence A2~! + k has length 2(2d — 1) + k =4d —2+n —3d+2 =
2n —x =y + z + 1 and contains entries d + k =n — 2d + 2,...,n which are placed
in the 2d — 1 positions at either end of the sequence. The middle & positions are
empty. If we use this sequence to label the path consisting of Y, the pivot and Z,
then the last 2d — 1 positions of Y and Z will be labeled and we are left with a tree
on 2n—2(2d—1) = 3z —y—z+1 vertices. Note that the pivot is never labeled in this
procedure since 2d—1 = 2n—2z—1 = z4+y+z2+1-2z—1 = y+z—v =2—(z—y) < 2,
so we are left with either a g3-windmill or a path.

Example 1 Let G = W (12:9,8,6). Then d = 3 and k = 5. We use the sequence,
A5 + 5, which is
11128910 — — — — — 8119 12 10,

to assign labels to the 5 vertices at the ends of the Y Z-path. Once we remove these
vertices the resulting graph is W(7:9,3,1).

Theorem 6 Let G be a g3-windmill on 2n vertices, with x < n, and G’ be the tree
produced by pruning G. Then G satisfies the Skolem parity condition if and only if
G’ is either a g3-windmill which satisfies the Skolem parity condition or a path which
can be Skolem-labeled.

Proof. Let G be a ¢g3-windmill on 2n vertices with z < n and G’ the tree produced
by pruning G. Then G’ contains 2n’ = 4x — 2n + 2 vertices arranged on vanes of
length 2’ =z, =y —2d+ 1 and 2/ = z — 2d + 1. Note that 3 and 2z’ have the
opposite parity to y and z. This tree will be a g3-windmill unless z = 2d — 1.

Suppose that G satisfies the Skolem parity condition.

If n=2or 3 (mod 4), then z,y and z are all odd. After pruning, only 2’ is odd and
n' =21 —n+1=1or0 (mod 4), respectively. Then if 2’ > 0, G’ is a g3-windmill
which satisfies the Skolem parity condition. If z/ = 0, then G’ can be labeled by a
Skolem sequence of order n’.

If n =0o0r 1 (mod4) and z is odd, then y and z are even. After pruning, ',y
and 2" are all odd and n’ = 22’ —n+1 = 3 or 2 (mod 4), respectively, so G’ is a
g3-windmill which satisfies the Skolem parity condition.
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If n =0or1 (mod4) and x is even, then one of y and z is even and the other
is odd. After pruning, 2’ will still be even, as will exactly one of 3’ and z’, and
n' =2z —n+1=1or 0 (mod 4), respectively. If 2/ > 0, then G’ is a g3-windmill
which satisfies the Skolem parity condition. If z/ = 0, then G’ can be labeled by a
Skolem sequence of order n’.

Now suppose that G’ is a g3-windmill which satisfies the Skolem parity condition.

If n” =2 or 3 (mod 4), then 2’y and 2’ are all odd, so z is odd and y and z are
even. Then n =2z —n' 4+ 1 =1 or 0 (mod 4), respectively. Hence, G satisfies the
Skolem parity condition. If n’ = 0 or 1 (mod 4) and 2z’ is odd, then 3’ and 2’ are
both even and z,y, z are all odd, so n =2z —n’+1 =3 or 2 (mod 4), respectively.
Hence, G satisfies the Skolem parity condition.

If n’ =0or 1 (mod 4) and 2’ is even, then exactly one of ¢ and 2’ is even and the
other is odd, so x is even and exactly one of y and z is even and the other odd. Then
n=2zr—n"4+1=1or 0 (mod 4), respectively, and G satisfies the Skolem parity
condition.

Finally, suppose that G’ is a path (so z = 2d — 1) which can be Skolem-labeled. So
n’ =0 or 1 (mod 4). Since 2n' = 2’ 4+ ¢’ + 1, exactly one of 2’ and 3 must be odd.
If 2/ is odd, then y = 3’ + z and z are also both odd and n =2x —n'+1 =3 or 2
(mod 4), respectively. If ¢ is odd, then y = ¢/ + 2z is even, x is even, z is odd and
n=2r—n"+1=1or 0 (mod 4). Hence G satisfies the Skolem parity condition.

Remark 3 Since a g3-windmill can only be pruned if n > x, a g3-windmill cannot be
pruned more than once. After the pruning, n’ =2zx—n+1=z—(n—a—-1) <z =2

4.2 Direct labeling techniques

Let G =W(n: x,y,2) be a g3-windmill which satisfies the Skolem parity condition.
Then G has exactly one vane of odd length if n = 0,1(mod 4) and three vanes of
odd length if n = 2,3(mod 4). We provide a number of labeling techniques.

4.2.1 n=0,1 (mod 4), z even

In this group, a [near] Skolem sequence is used to label Z, while a [hooked] Langford
sequence, [plus the omitted labels from the near Skolem sequence], are used on the
XY-path.

a)n =0,1 (mod 4), z = 0,2 (mod 8).

Place a ACE:B;;;W on the XY-path and a S/ on Z.

Since z/2 = 0,1 (mod 4), this Skolem sequence clearly exists, so we need only verify
that the Langford sequence exists. Since n = 0,1 (mod 4), G has exactly one vane, X
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or Y, of odd length. In either case, x > y+1 > 241, which implies v +y+1 > 2242,
so the size constraint is satisfied. If z =0 (mod 8),
(z4+2)/2isodd and (z+y+1)/2=(2n—2)/2=0or 1 (mod 4);
if z =2 (mod 8), then

(z+2)/2isevenand (z+y+1)/2=3 or 0 (mod 4).

b) n = 0,1 (mod 4), z = 2,4 (mod 8), (2n — 8)/3 > =.

Place a hﬁgfﬁf/;w on the XY-path, leaving the vertices (z — 1 4+ y,z + 1) and

(r+1+y,z+ 1) at the end of Y unlabeled. Label these two vertices 2. Place a
2-near S(,19y/2 on Z.

Since (2n —8)/3 > z,
(T4+y—1)/2=02n—2-2)/2> (32+8—2-2)/2=2+3=2[(z+4)/2] - L.
If 2 = 2 (mod 8), then
(z4+4)/2isodd and (z+y—1)/2=(2n—2—2)/2 =2 or 3 (mod 4);
if z=4 (mod 8), then

(z+4)/2isevenand (z+y—1)/2=1 or 2 (mod 4).

¢) n=0,1 (mod 4), z = 0,6 (mod 8), (2n — 8)/3 > =.

Place a EE:IX);;)/ ® on the X Y-path, leaving the last two vertices of Y unlabeled.

Label these vertices 1. Place a 1-near S(.42)/2 on Z.

As in construction b, (z+y—1)/2 > 2+ 3. If 2 =0 (mod 8),
(z4+4)/2isevenand (z+y—1)/2=(2n—2—2)/2=3 or 0 (mod 4);

if z=6 (mod 8),

(z+4)/2isodd and (z+y —1)/2=0or 1 (mod 4).

4.2.2 n=0,1 (mod 4), y even

This is similar to 4.2.1 above except that the [near] Skolem sequence is placed on
Y. Since y is even, either x or z must be odd. Existence of the given sequences is
verified as in 4.2.1.

a)yn=0,1 (mod 4), y =0,2 (mod 8), (2n —2)/3 > y.

Place a Egig;ﬁw on the X Z-path and a Sy» on Y.
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b) n =0,1 (mod 4), y = 2,4 (mod 8), (2n — 8)/3 > y.

Place a hﬁ(zﬁ)éw on the X Z-path leaving the vertices (z + 1,3) and (z + 1,1)

unlabeled. Label them 2. Put a 2-near S(y49)/2 on Y.
¢) n=0,1 (mod 4), y =0,6 (mod 8), (2n —8)/3 > y.

Place a EEIK)/;W on the X Z-path leaving vertices (z+1,2) and (z+1,1) unlabeled.
Label these vertices 1. Put a 1-near Sg,49y/2 on Y.

4.2.3 Long X-vanes

A [hooked] Langford sequence is used to label the long X-vane plus one or two
additional vertices and the remaining vertices are covered by an extended Skolem
sequence.

ayn=2,3 (mod 4), y+2=4,6 (mod 8), x > (4n —1)/3.

Place a L y“f;jf)m“ on X and the pivot and a (z + 1)-ext S(;4,)/2 along the

ZY -path.

Since n — (y+ 2z +2)/2+ 1= (z+1)/2, we have (z 4+ 1)/2 > y + z + 1 whenever
x> (4n—-1)/3. fy+ 2z =4 (mod 8), then

(y+2)/2=2 (mod 4), (y+ z+2)/2 is odd and

n—(y+z2+2)/2+1=0or1 (mod 4).
If y+ 2z =6 (mod 8), then

(y+2)/2=3 (mod 4), (y+ z+2)/2is even and
n—(y+z+2)/2+1=3or0 (mod 4).
b) n = 2,3 (mod 4), y + 2z = 0,2 (mod 8), z > (4n — 1)/3.

Place a hL y+zf;)7+2)/2)+1 on X plus the pivot and vertex (z 4+ 2,z+ 1) of Y and a

(2 + 2)-ext S(.4)/2 along the ZY-path.
If y+ 2 =0 (mod 8), then

(y+2)/2=0 (mod 4), (y+ z+2)/2is odd and

n—(y+z+2)/2+1=2or 3 (mod 4).
If y+ 2 =2 (mod 8), then

(y+2)/2=1 (mod 4), (y+ z+2)/2is even and

n—(y+2+2)/2+1=1or2 (mod 4).



SKOLEM-LABELING 187

4.2.4 Short Z-vanes

In this construction, we label windmills with relatively short Z-vanes by using:
A2 4 (n — 3d + 2), for a suitable choice of d given below, to label [most of] Z
plus a block of vertices near the middle of X with labels n — 2d + 2 to n, inclusive.

a)n = 0,3 (mod 4) and z = 3 (mod 4) or n = 1,2 (mod 4) and z =
1 (mod 4) .
Let d = 2. A2 4 (n — 3d + 2) can be used to label Z and some vertices on X,

see ovals in the diagram. There are two remaining paths denoted by B and C| see
the figure below.

The path labeled B contains

Y .
vertices.

x7(2d71)7(n73d+1):x+d7n=I

If n =0 (mod 4) and z = 3 (mod 4), then = must be even, so z + d — n is even and
z —y =0 (mod 4). This holds in each case.

If (zt—y)/4=0or 1 (mod 4), then S
vertices of B. The path C' contains

v exists and can be used to label the (z—y)/2

T—
4

r+y+1l—2z— <xT> =2n—2z — (%)vertiees
nos(252)

ﬂ+1
4
z under consideration provided that

(55 )1 ona (55
= 2r—-2y+8—-4<4dn—-4z—x+y

—3r-32n—z—2z—-1)+42+4<4n
<= 6z + 72+ 7 < 10n.

which can be labeled using a £ . This sequence exists for all cases of n and

A similar discussion can be used if (xr — y)/4 = 2 or 3 (mod 4). The results are
summarized in the following table.
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(z—y)/4 | B c size constraint
(mod 4)
n—z—( ¥
0,1 Suu ) 10n > 62+ 7247
1 = +1
n—z—( %) -
3 1-near S%H 11 then E%Jrg )1 10n > 6x + 7z +19
n—z—( %) -
2 2ncar oy, | 2-2 hooked into hE'; | ) | 10n > 6o+ 7= +10

b) n = 0,3(mod 4) and z = 1(mod 4) or n = 1,2(mod 4) and z =
3(mod 4) .

Let d = 251, Then A3~ 4 (n—3d+2) can be used to label 2d —1 = z —2 vertices of
Z plus z — 2 vertices near the middle of X. The remaining vertices of Z are labeled
1 (location given below for each case). There are two possibilities:

)lin(xz+1,2)and (z+1,2—1):

Then B contains

—y+2

m—(2d—1)—(n—3d—1):x+d—n+2:$ vertices.

In each case, 4+ d —n+ 2 is even, so x —y + 2 = 0(mod 4).
ii) lin (z+1,1) and (x +1,2) :

Then B contains

1
$—(2d—1)—(n—3d+1):$+d—n:§(x—y—2) vertices

andz —y—2=x—y+2=0(mod 4).

The labelings are summarized in the table below:

(x —y+2)/4 (mod 4) | B C size constraint

0,3 use i) Lnear Seeyiz Li@(:;iﬁ)“ 10n > 62 + 72 + 17

1 use ii) 1-near S%M di@(:%ﬁ)” 10n > 6x + 7z + 13

2 use ii) E;iz++271* 2—2 hooked into | 10n > 6x + 7z + 17
hﬁ@(:;ﬂﬁl 22<r—y

In order to use the last construction, 5 < %W —1, 80 22 < x—y (which forces n to
be quite large). However, the only smaller case occurs when =42
We adapt the construction in a) to cover W(n : z,x — 6, z).

=2,s0x—y =6.

Let d = % and use A% 4 (n — 3d +2) to label the vertices of Z plus some vertices
of X. We have used labels n — 2d + 2 to n inclusive. Then B contains
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1
x7(2d71)7(n73d+1):x+dfn=§(xfy)=3vertices.

If d # 4, label (1,2 +1), (n —2d+2, z+1) with the next largest label, n —2d +1, put
Usin (2,z+1) and (3,24 1) and use a (n — 2z —2)-ext £5*~? to label the remaining
vertices. Otherwise, put n—2d+11in (3,2+1) and (n—2d+4,2z+1), I'sin (1,2+1)
and (2,2 + 1) and use a (n — 2z)-ext £5*"2 for the remaining vertices. The only
constraint here is that 3<n—z—2orz<n-5. If n > 8, thenn—>5 > L"T’lj > 2.
Sincey21,7§x<%and6§n. If n =7, then z < L"T’lj and z = 1(mod 4)
imply that z =1 <2 =7 — 5, which satisfies the constraint.

4.2.5 Long Z-vanes, n = 2,3(mod 4)

Here we are interested in relatively large values of z, where x > n. If n = 2,3(mod 4),
then z,y and z are all odd.

In this group, X, the pivot and part of Z are labeled by a [hooked] Langford sequence
of defect d. The label d — 1 is used to deal with the problem that y and z are odd.
The remaining vertices are labeled using smaller sequences.

We illustrate this first with an example. Consider W (19 : 21,9, 7). Use any £ (for
example, A%3) to label X, the pivot and the 4 vertices of Z closest to the pivot.

Use 6 to label vertices (22,3) and (23,8), leaving an even number of unlabeled vertices
on both ¥ and Z.

14 15 16 ... 16 10 17 11 6 - - - - - - - -
18
12
19
13
6

Use S; and £3 to label the remaining vertices of Z and Y, respectively.

More generally, suppose that £7™7¢ for some d, is used to label X, the pivot and
the vertices (z 4+ 1,2),...,(z + 1,z — d+4) of Z; the vertices (z 4+ 1,z — d + 3) and
(x +2,241) are labeled d — 1. Then

n+2-2d=x+1+d-3

S0
d=r+y+z2z+3—x+2
_y+z+5

d
3
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Hence, y + z = 1(mod 3); however, both y and z are odd, so y + z = 4(mod 6)
and d must be odd. This forces n — 1+ d = 0, 1(mod 4). Since n = 2,3(mod 4),
d = 3(mod 4) and so y + z = 4(mod 12).

For the Ud‘“*d to exist, n + 1 —d > 2d — 1 which implies that x > n + 2. To use
the sequence in this way, we must also ensure Z is long enough to accommodate
the required vertices, so z > d — 2 = 3‘/+§—71 which implies z > 3‘/;—1 There are
r+z+1-2n+1—-d)—1=2d—y—3=3-y(mod 8) unlabeled vertices on Z
andy—1lonY.

If y = 1,3(mod 8), then d — y—j = 1,0(mod 4), so Sdf% can be used to finish

labeling Z and Efﬂ

4 can be used for Y whenever
2

—1
2 —y-3+1<?

or equivalently 11 < y + 4(y — z).

Similarly, if y = 5 or 7(mod 8), then d — X2 + 1 = 0 or 2(mod 4), respectively so

use a l-near SCF#H or a 2-near Sm#ﬂa respectively. The unused entry (1 or

y=3 y—3

2) is used to label 2 vertices at one end of Y along with Edj%ﬁ or hL

2
+3
respectively. Here the constraint is

9d—y—3+3< =3

ory+4(y —z) > 29.

We summarize this labeling.

a)y+z=4(mod 12),z >n+2andy > z > yT_l

Take d = @ use
Lot for X the pivot and (z +1,2),..., (x + 1,2 — d + 4);
d—1for (x+1,z—d+3)and (z+ 2,2+ 1); plus

y (mod 8) | end of Z Y y+4y—2z) >
1,3 Sy v o 1
5 1-near SGF%H 11£fﬂ+2 29
7 2-near SGF%H 2 — 2 hooked into hﬁf#ﬁ 29

A similar discussion can be used for y + z = 2,0 (mod 12).

b)y+z=2(mod12),z>n+landy >2> ¥

Take d = L;H; use
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hﬁg“fd for X, the pivot and (x 4+ 1,2),...,(z + 1,2d —y — 2);
d—1for (x+2,2+1) and (z +1,2d — y — 1), which is the hook of AL}~

plus
y (mod 8) | end of Z Y y+4y—=z) >
7T
1,7 Sm# deHH 7
Yy—s
3 1-near SGF%H 11£0l2 ui3 o 25
5 2-near SGF%H 2 — 2 hooked into hE = Cuay 25

c)y+z=0(mod 12),z >n+6andy >z > ¥
Takedzw;use

Lo for X the pivot and (z +1,2d —y —1),..., (z + 1, 2) plus

Y d—1 end of Z Y y+
(mod 8) dy—=z) >
5,7 (x+1,z—d+4), | 4-ext Sy_ugs hﬁd y+3+1 27
(x+3,z+1) (hook is filled by d—1)
1,3 (x+1,z—d+3), | b-ext Sy_ups EZ%H 27
(x+2,241)
y+’3

The appropriate 4- or 5-extended sequence must exist, so d — > 2 which implies
z > y” This dlbo guarantees that Z is long enough to dccommoddte the sequences.
However z 7é ; otherwise 3y + 1 =2y +y+ 1 =2y + 22 = 2(y + z) = 0(mod 24);
a contradlctlon So the construction holds for all z > %.

Note that if y +z = 0 (mod 12), then = # n,n+ 3, n +4; otherwise, n = 3, 2,3 (mod
4), respectively and y + 2 = 2n — 1 — 2 = 2 (mod 4), a contradiction. The cases
x=n+1,n+ 2 are covered in 4.2.7, so the only outstanding case is v = n + 5.

Now suppose that z = n+ 5. Then n = 2 (mod 4) and y + z = n — 6, so this case

applies if n = 6 (mod 12). Since z < %22 = %8 and 258 is even, z < %52, Therefore,

1
10n —6x — 7z > 5(20717 12n — 60 — 7n + 56)

= %(n —4).

Since %(n —4) > 19 whenever n > 42, 4.2.4 can be used for all n > 42. For
each remaining case, W(n : n+5n —6 — 2,2), 16 < n < 42 (since x < 4"3’1),

n = 6(mod 12), z is odd and z < "T’g This means that n = 30 and 2 < 11 or n = 18

and z < 5. In the first case, 10n — 6z — 7z > 24 if z < 9 and 10n — 6x — 7z > 21
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is z < 3, 80 4.2.4 can be applied. This leaves W (30 : 35,13,11) and W (18 : 23,7, 5),
see Appendix 1.

4.2.6 More Long Z-vanes, n = 2,3 (mod 4)

Once again, consider n = 2,3 (mod 4), so z,y and z are odd. This labeling is similar
to 4.2.5, but one label is moved from a vertex of Z to a vertex of Y to accommodate
the label d — 1.

Consider, first, W (19 : 19,9,9). Use any £33 (for example, A33) to label X, the pivot
and the 6 vertices of Z closest to the pivot.

14 15 16 ... 15 9 16 10 - - - - - - - - -
17
11
18
12
19
13

Since 7 is the smallest label in £13) no label can occur twice on the 6 vertices of Z
that we have labeled, so any of these labels could be moved to the corresponding
vertex on Y. Move the label 17 from vertex (20,9) to vertex (21,10), label vertices
(20,9) and (20,3) with 6 and use S;, and £3 to label the remaining vertices of Z and
Y, respectively.

14 15 16 ... 15 9 16 10 17 - - - - - - - -
6
11
18
12
19
13
6
1
1

More generally as in 4.2.5, the value d is key to this labeling. First, use the 2(n +
1 — d) entries of EZ“*d to label the x + 1 + d — 1 vertices of X, the pivot and
(x+1,2),...,(x+ 1,z —d+2) of Z. Note that only d — 1 positions of Z are used,
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so no entry of £117% can occur twice on Z. Shift the label on vertex (z + 1, 2) to

(z + 2,24 1) and label vertices (z + 1,z —d+ 1) and (z + 1,z) with d — 1. Since
Mm+2-2d=z+1+d—-1 (%)

we have
y+z+3

d=x4+y+2+3—2 and d= 3
Hence, y + z = 0 (mod 3); however both y and z are odd, so y + z = 0(mod 6)
and d must be odd. This forces n+ 1 —d = 0, 1(mod 4). Since n = 2,3(mod 4),
d = 3(mod 4) and so y + z = 6(mod 12). The constraints here are:

y+z,soz>g.

n+l—d>2d—1,s0x>nby (x)and z >d—1= :

There are t+2+1—2(n+1—d) —1 = 2d — y — 3 unlabeled vertices on z and y — 1
on Y which we label with appropriate sequences.

We summarize these labelings.

a)y+z=6 (mod12),x >nandy >z2>}%

Take d = ”%H use
Lo for X the pivot and (z +1,2),..., (x + 1,2 — d + 2);
the label from (z + 1, 2) for (z 4+ 2,2z + 1);
d—1for (x+1,2) and (z+ 1,z —d+ 1); plus

y (mod 8) | end of Z Y y+4(y —z) >
b9 Si-(2) L (2 3

5 1-near Sdi(%)+1 115(7(1/;3%2 21

7 2-near Sdi(%)+1 2 — 2 hooked into hﬁd?(#)+2 21

To use this construction, z—d+1>1,s0 z > % and d — (%) >0. Ify =7 (mod
8),d— (%“*) + 1 would have to be greater than or equal to 2, so z > #; however,

if y=7 (mod 8), z # y—;:‘, %5, %7 since y + z = 6 (mod 12).

Finally, suppose z = yTH Then y + z = % # 6(mod 12) for y = 1,3,5 or 7 (mod
8). So this case does not apply.
A similar discussion for y + z = 8,10 (mod 12) gives the following labelings.

b)y+2z=8 (mod12),x >n+landy >z > ¥
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Take d = %; use

L4 for X the pivot and (z +1,2),..., (x + 1,2 — d + 3);

the label from (z + 1, z) for (z + 2,z + 1);

d—1for (x+1,2) and (z+ 1,z —d+ 1); plus

y (mod 8) | end of Z Y y+4(y —z) >
1,7 WS, s Yo 7
3 1-near SCF#H 115;1?%+2 25
2-near hSdf%Jrl 2 — 2 hooked into hﬁ;?%+2 25if z > #
see below f<z< %19

To use this construction for y = 1 or 7 (mod 8), z —d+ 1> 4, s0 z > %13 and
d — %3 > 2. However, since y + z = 8 (mod 12), and y = 1 or 7 (mod 8) there are
no odd values of z, ¥ < z < %B

To use the construction for y = 3 (mod 8), z—d+1> 2,50 z > %77 however, there
are no other values of z, 4 < z < %7

Finally to use this for y =5 (mod 8), z+d—1 > 6, so z > # and dfyT”Jrl > 4.
There is one additional possible value for z, z = yT“ In this case, set d = % =
z 4+ 1. EZH*d can be used to label X, the pivot and all of Z except the vertex
(z +1,1). Since d > z, the label in (z + 1, z) can be moved to (z + 2,z + 1). Use
z—1tolabel (x+1,1) and (z+1,2) and z for (x +3,z+1) and (z+ 2+ 3,2+ 1).
This is always possible since z + 3 < y + 1 = 2z for all z > 3. The rest of Y can be
labeled using a z-ext S, 5 since 2(z —2) =y — 3 and z = 3 (mod 4).
c)y+z2=10 (modl2),m2n—1andy2z29¥
Take d = @ use

L= for X the pivot and (z +1,2),...,(x + 1,2 —d + 1);

the label from (z + 1,z — 1) for (z + 3,2+ 1);

d—1for (x+1,z—1) and (z+ 1,2z — d); plus

y (mod 8) | end of Z Y y+4y—z) >
3,5 Sy uso e s, 0

7 1-near Sdf%ﬂ hﬁ;i_gw, 11 17

1 2-near Sdf%ﬂ 2 — 2 hooked into Ef#H 17
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To use this construction, z —d > 1, so z > yT% and d — % >0. If y=5 (mod 8),
d— yTH +1>2,s0z2> % Since y + z = 10 (mod 12), there is only one case for
2, %ﬂ > z > %, which is not covered by the above construction: z = %5 and y =5
(mod 8). In this case, d = 2= — 7 — 1, 50 instead of the third line of the table
we use hSy_s.

4.2.7 Special constructions for n = 2 or 3 (mod 4)

a) Let z = n. Then n = 3 (mod 4). The following labelings can be used.

z = (mod 8) | n in positions Z-vane | XY path constraints
1,3 (2,2 +1), (x+1,2) £ | 2ext ) o1

5 B,z 4 1), (x+1,2—1) | hLyZ slhd;}(zf’) 2> 7

7 @z41),(x+1,2) | L7 hﬁgg(Z;S)Sl 2> 7

The only remaining cases are: z = 1,3,5,9.

W(n:n,n—2,1): put n in the sole vertex of Z and the second vertex (2,2) X; fill
the XY-path with a hS,,_;.

W(n:n,n—4,3) : put nin (2,4) and (z + 1,3); fill Z with S; and the XY-path
with ALS 2.

W(n:n,n—6,5): put nin (3,6) and (x + 1,4); fill Z with hL3 (i.e., 232 0 3) and
the XY -path with S; and Eff*‘l. Note that 5 = 2z < "T’l, son > 11 and 5274 exists.

W(n :n,n —10,9): put n in positions (2,10) and (z + 1,3), S; on Z and hLZ ™ on
the XY-path. Note that 9 =2 < ”T’l, son > 19 and h£§'75 exists.

b) Let x =n + 1. Then n =2 (mod 4). The following labelings can be used.

z (mod 8) | n in positions Z-vane | XY path constraints
1,7 Bzt (@12 |7 slc;(zf) 2> 7

3 Bo+1),(x+1,2) | Lo 812-2h£7%5(z;3) 2>11

5 Wetl)(@tlz—1) | ne,” slhd;fis) 2> 7

The only remaining cases are: z = 1,3, 5.

W(n:n+1,n—3,1): put n in the sole vertex of Z and in (3, z + 1); fill with a 3-ext
Sn1-

W(n:n+1,n—>5,3): put n in positions (3,z + 1) of X and (z + 1,2) of Z; &; in
the remaining positions of Z and use a 3-ext £372 to fill the XY-path.
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W(n:n+1,n—7,5): put n in positions (4,z+ 1) of X and (z+ 1,z — 1) of Z; hS;
on Z and 4-ext L£5* on the XY-path.

c) Let z = n+2. Then n = 3(mod 4) and the labelings are given in the table below.

z (mod 8) | n in positions Z-vane | X —Y path constraints
13 4,24+ 1),(x+1,2) L7 | deext Sgﬁzﬂ(m) > 11
5 Boz+1),(x+1,2—1) | AT | 5eext S4£z+9(2+9) 2> 19
7 4,z+1),(x+1,2) L7 | dext ST | 2> 15

The only remaining cases are: z = 1,3,5,7,9,13. We provide labelings for these
cases below.

W(n :n+2,n—4,1): Put n in positions (4,2) of X and (x + 1,1) of Z; fill the
XY-path with a 4-ext S,,_1.

W(n:n+2,n—6,3): Note that n —6 > 3 and n = 3(mod 4), son > 11. Put 2 in
positions (z,4) of X and (z + 1,3) of Z; S; in the remaining positions of Z; fill the
rest of the XY-path with an (n + 2)-ext £; 2.

W(n :n+2,n—28,5): Here n > 15. Put A} + (n — 7) along Z and in positions
(6,6),...,(11,6) of X; 2 — 2 1 1 in positions (1,6),...(5,6) of X; n — 5 in (2,6)
and (n — 3,6) of X. The remaining vertices of the XY-path are labeled using an
(n — 13)-ext L5,

W(n:n+2,n—10,7): Here n > 19. For n > 23, put A} + (n — 10) on Z and in
positions (7,8),...,(13,8) of X; £3 in (1,8),...,(6,8) of X; & in (14,8), (15,8) of
X and fill the rest of the XY-path with £2~'". W(19:21,9,7) can be labeled using
4.2.4 because 6(21) + 7(7) + 7 = 182 < 190.

W(n:n+2,n—12,9): Here n > 23. Put § in (z + 1,1),(z + 1,2) of Z; Al +
(n —10) in the remaining positions of Z and positions (7, 10),. .., (13,10) of X; £3
n (1,10),...,(6,10) of X and fill the rest of the XY-path with £2~*.

W(n:n+2,n—16,13): Son > 31. Put S; in (z+1,1), (z+1,2) of Z; At'+(n—16) in
the rest of Z and positions (9, 14), ..., (19,14) of X; a 1-near S in (1,14),...,(8,14)
of X and fill the rest of the XY-path with £§'¢.

5 Skolem labeling ¢3-windmills

Theorem 7 Every g3-windmill that satisfies the Skolem parity condition can be
Skolem-labeled.

Proof: Let G = W(n : z,y,2) be a g3-windmill which satisfies the Skolem parity
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condition. First, we note that if x < n, the graph can be pruned, so we need only
consider graphs with x >n. Theny+z4+1=2n—2<2n—n=mn,s0 z < "T’l

Case 1. n =0,1 (mod 4).

i) Suppose first that z is even. If n > 13, then z < "T’l < 2"3’8, so construction 4.2.1
can be used. If n < 13, then z < 6, so z is either 2 or 4. For z = 2, 4.2.1 can be used
for all n. If z =4, then n > 9; so 4.2.1 can be used for all n > 10. This leaves only

W(9:9,4,4) to label:

9 75 31 135 79 2 46 8
2

0 O =~

il) Now suppose that z is odd. Since n = 0,1(mod 4),  and y must be even.
Construction 4.2.2 can always be used if y < (2n — 8)/3, so we need only consider
y > 25

5n—8

In general, 4.2.4 can be used whenever 6247z < 10n—19. Since v > n, z+y > %=,

soz=2n—1—-z—y< "T% Therefore,

6r+7z = 6(x+2z2)+z
= 6@2n—1—y)+2
25n + 35
s

This is less than 10n — 19 whenever 19 < n, so 4.2.4 can be used in all these cases.
In addition, 4.2.4 can also be used for some smaller values of n.

Consider n = 17. Then 8.7 < y and 17 < z; however, both = and y are even so
10 <y and 18 < x. Therefore, z =2n—1—x —y < 5. Then

6r+7z = 62n—1—y—2)+7z
= 12n—-6—-6y+ =2

143

10n — 19.

IN A

So 4.2.4 can be used in all the remaining cases with n = 17. A similar discussion
applies when n = 16 or 13.

The only remaining windmills are:
W(12:12,6,5), W (12:12,8,3), W(12:12,10,1), W (12:14, 6, 3), W (12:14, 8, 1);
W(9:10,4,3),W(9:10,6,1), W(9:12,4,1);
W(8:8,4,3),IW(8:8,6,1),W(5:6,2,1),W(4:4,2,1).
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All of these, with 3 exceptions, can be labeled using the specific techniques of 4.2.4.
For W(4:4,2,1), use

For W(9:12,4,1), put a 5-extended Skolem sequence of order 8 along X, the pivot
and Y and use 9 to label the remaining 2 vertices. For W (12 : 14,6,3), put a 14-
extended Langford sequence with d = 3 and m = 10 along X, the pivot and Y, then
use a hooked Skolem sequence of order 2 to label the remaining vertices.

Case 2. Let n =2,3 (mod 4). Then z,y and z are all odd. If x > (4n —1)/3, 4.2.3
can be used and if x =n,n+ 1 or n 4+ 2, 4.2.7 can be used, so it suffices to consider
n+2<z<(4n-—1)/3.

i) First, consider those remaining windmills with relatively short Z-vanes: z < %.
Let x =n+k. Then3§k§"772 andy+z=n—1—k.

Ifzgyg—g,then?)zgnfllfkand

10n — 6z — 72— 19 (5n — 11k — 29)/3

>
> (4n —65)/9

which is nonnegative if n > 17, so 4.2.4 can be used to label these windmills.
Similarly, if z = %17 then

10n — 6x — 7z — 19 > (4n — 107)/9,
S0 4.2.4 can be used if n > 27. Note that since z = y—;l, n—1l—-k=y+z2=32+1,
SO "%H € Z* and the only remaining windmills with 17 < n < 27 are W(26 :

29,15,7),W (23 : 29,11,5) and W(22 : 27,11,5), all of which can be labeled using
4.2.4.

Now suppose that n < 15 and z < %, then the only windmills are: W(15 :
19,7,3),W(15:19,9,1), W (14 : 17,7,3) and W (14 : 17,9,1). The last three can be
labeled using 4.2.4. For W (15 : 19,7, 3), use hSs to label Z and vertex (z +2,z+ 1)
of Y (note that the hook would fall on the pivot) and 7-ext £1* for the remaining

vertices.

ii) Now consider the remaining windmills. Then n 43 <z < (4n —1)/3 and z > 2.
Each of these can be labeled using 4.2.5 or 4.2.6 unless y + 4(y — z) is too small. In
general, 4.2.5 and 4.2.6 can always be used whenever y + 4(y — z) > 29; however,
the constant is actually smaller in many cases. First we identify the remaining cases
and then we provide labelings for them.

Since z > 1,y >y — z. Then y+4(y — z) — 29 > 5(y — z) — 29 which would be
greater than 0 whenever y — 2z > 6. Note that y — 2z is even since both y, z are odd,
so we need only consider y — z = 0,2, 4.
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Suppose y —z=4. Then § <z =y —4,508 <y. If y > 13, then y +4(y — 2) >
13 + 16 = 29, so they can all be labeled by 4.2.5 or 4.2.6. If y = 11 = 3 (mod 8),
then y +4(y — z) = 11+ 16 = 27, so 4.2.5 or 4.2.6 can be used. If y =9 =1 (mod
8), then y+4(y —2) =9+ 16=25,but y+2=9+5= 14 =2 (mod 12), so 4.2.5
b) can be used.

Now suppose y—z = 2. Then 4 < z=y—2,s04 <y. If y > 21, then 214+4(2) = 29,
50 4.2.5 or 4.2.6 can be used. 4.2.5 and 4.2.6 can also be used in the following cases:

if y =19, then y + 2 =36 = 0 (mod 12) and y + 4(y — z) = 27;
if y=17, then y +2=32=8 (mod 12) and y +4(y — 2) =25 > T7;
if y=9, then y+ 2z =16 =4 (mod 12) and y +4(y — z) = 17 > 11.

The remaining values of y are: 15,13,11,7,5. Since 2y —2=y+z=2n—1—x and
n+3 <z < (4n —1)/3, we have

2ln—-1)/3<2y—2<n—-4dor2y+2<n<3y-—2
Sincex=2n—1—-y—z=2n—1—2y+2=2n— 2y + 1, the only (n,x) pairs left
to label are:
for y = 15, (34, 39), (35,41), (38,47), (39,49), (42, 55);
for y = 13, (30, 35), (31, 37), (34, 43), (35,45);
for y = 11, (26, 31), (27, 33), (30, 39)
for y =7, (18,23).

4.2.4 can be used for W (38 : 47,15,13), W(26 : 31,11,9) and W (18 : 23,7,5). For
the others, see the Appendix.

Finally, suppose that y = z which implies that y + z = 2y = 2,6 or 10 (mod 12) so
only 3 of the cases in 4.2.5 and 4.2.6 are applicable. If y > 25, then y+4(y —z) > 25,
s0 4.2.5 or 4.2.6 can be used. If y = 23,21,17,11,9,7,5 or 3, the appropriate labeling
from 4.2.5 or 4.2.6 can also be used. The only remaining cases are: y = z =
19,15,13, 1.

Since 2y =y+z=2n—1—zand n+3 <z < (4n — 1)/3, we have
2u+4<n<3y+1.
Therefore, since n = 2,3 (mod 4), z =2n—2y—landn+3 <z < 4"(%, the only
(n,x) pairs left to label are:
for y = 19, (42, 45), (43, 47), (46, 53), (47, 55), (50, 61), (51, 63), (54, 69), (55, 71);
for y = 15, (34, 37), (35, 39), (38, 45), (39, 47), (42, 53), (43, 55);
for y = 13,(30,33), (31,35), (34,41), (35, 43), (38,49), (39, 51).
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4.2.4 can be used for W (42 : 45,19,19), W (47 : 55,19,19) and W (30 : 33,13,13).
For the rest, see the Appendix.

Remark 4 The most difficult part of this proof was keeping track of which ¢3-
windmills had been labeled by the various constructions. While we were creating the
constructions, we made use of a computer program which determined how many of
the windmills of a particular size were labeled by the techniques to-date. The final
version of this is available at: http://www.math.mun.ca/~manzer/.

6 Strong Skolem labelings

Unfortunately, not all of the labelings used above are strong. The use of sequences as
building blocks clarifies the constructions; however, it often results in the introduction
of non-essential edges. The problem is somewhat ameliorated when pruning is used
or when a near sequence forms part of the labeling. Pruning makes all the edges
of the Y- and Z-vanes essential. If a near sequence is used, the omitted labels are
inserted elsewhere and help to tie the windmill together.

Conjecture 2 Fvery g3-windmill that meets the Skolem parity condition can be
strongly Skolem labeled.

Conjecture 3 FEvery gk-windmill that meets the Skolem parity and nondegeneracy
conditions can be strongly Skolem-labeled.

In [5] and [6], Mendelsohn and Shalaby also introduce the notion of [strong] hooked
Skolem-labelings in which they permit some vertices, the hooks, to be labeled 0.
These hooks may be in any position. Such a labeling with as few hooks as possible
is called a minimum hooked Skolem-labeling. They then show that any path, cycle
[5] or k-windmill, k& > 3, that satisfies their degeneracy condition [6] has a [strong]
Skolem or minimum hooked Skolem-labeling with the exception of the 3-windmills
with vanes of length 2 or vanes of length 3 and the 4-windmills with vanes of length
1or 2.

While the problem of minimum hooked labelings for g3-windmills is left for future
work, we do expect similar results to hold. Here we will consider weak hooked
labelings. As we have shown that every g3-windmill which meets the Skolem parity
condition can be [weakly] Skolem-labeled, weak hooked Skolem-labelings will only be
of interest in g3-windmills which do not meet the Skolem parity condition or which
have an odd number of vertices. We mention the following partial result, but suspect
that there is a minimum hooked Skolem labeling with at most 2 hooks in all cases.

Theorem 8 Any g3-windmill, W, on v vertices, which cannot be Skolem-labeled has
a weak hooked Skolem-labeling with at most 3 hooks.
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Proof. Suppose first that W has v = 2n vertices. If n = 0 (mod 4) with 3 odd-length
vanes or if n = 2 (mod 4) with one odd-length vane, label the last two vertices on
the longest vane 0. If n =1 (mod 4), then W has 3 odd-length vanes. Label the last
vertex on each of the two longest vanes 0. If n = 3 (mod 4), W has one odd-length
vane. Label the last vertex on each of the even-length vanes 0. In each case, except
when n = 2, the remaining vertices form a ¢g3-windmill which can be Skolem-labeled.
If n = 2, the remaining 2 vertices can be labeled 1.

Now suppose that W has an odd number of vertices, say v = 2n + 1. Then W has
0 or 2 odd-length vanes. If n = 0,1 (mod 4) with no odd-length vanes or if n = 2,3
(mod 4) with 2 odd-length vanes, then label the last vertex on any even-length vane
0. If n=0,1 (mod 4) with 2 odd-length vanes, label the last vertex on the longest
odd-length vane 0. Finally, suppose that W has no odd-length vanes. If n = 3
(mod 4), label the last vertex on each vane 0. If n = 2 (mod 4), label the 3 last
vertices on the longest vane 0; note that this implies that the longest vane contains
at least 3 (actually 4 since vane lengths are even) vertices, so the case of a windmill
with 3 vanes of length 2 is not covered. The remaining vertices in all cases form a
g3-windmill which can be Skolem-labeled except when W has 2 vanes of length 1
and n = 0,1 (mod 4). In that case, the remaining 2n vertices form a path which can
be Skolem-labeled.

The 3-windmill with vanes of length 2 does not have a one-hook strong Skolem-
lableling [6]; however, it does have a weak labeling with one hook. Label the two
vertices of a single vane 1 and the remaining 5 vertices with a 1-near hooked Skolem
sequence of order 3.

Tying this altogether, we conclude with a final conjecture.

Conjecture 4 All g3-windmills can either be strongly Skolem-labeled or have a min-
imum hooked Skolem-labeling with at most 2 hooks with the exception of the 3-
windmills with vanes of length 2 or vanes of length 3.

7 Appendix

7.1 For the following windmills, take d = 1 and use A3~ + (n —3d +2) to label Z
and the corresponding vertices of X. Then there is a path, B, of z —n + d unlabeled
vertices, (1,z+1),..., (x—n+d, z+1), at the end of X and a path, C, of y+n—3d+2
unlabeled vertices, (t —n+3d—1,z+1),...,(x+y+ 1,2+ 1), along X and Y.

The largest unused label is n —2d+1 = n— z, which is used to label vertices (a,z+1)
and (a+n—z,z+1) in B and C respectively where a is given in the table below.
The remaining vertices are also labeled as below.
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parameters n—zin (-,z+1)| B c
(27: 33,11,9) |3 3-ext S5 | LI
(30: 35,13,11) | 5 5-ext S | hLH
(31: 35,13,13) | 7 Tooxt Sy | L2
(34: 43,13,11) | 4 Text S, | LD
(34: 37,15,15) | 9 Oext Sy | hLP
(35: 41,15,13) | 6 G-ext Sg | hLY
(38: 45,15,15) | 8 8ext S; | LP
(39: 49,15,13) | 5 Boxt S | LY
(46: 53,19,10) | 11 Tlext Ss | hLE

7.2 We can modify this method slightly by placing the two labels n —z and n— 2z —1
before labeling the rest of B and C.

parameters n—z n—z—1|B C
(39: 47,15,15) | (8,z+1) | (10,2+1) [1135637-5-642724 | LI
(43: 47,19,19) | (10,2+1) | (12,241) [311325264-5-46 L15

7.3 For the windmills listed below, put

i)(n—j)in (2+2j,z+1)and (n+2+j,z+1),for j=0,...,2 —n—1;

i) (n—j)in (2+2j,2+ 1) and (z+ 1L, z—n+z—j),forj=a—n,..., |52
iii) a doubled S| nt2 in vertices (1 42j,z 4+ 1), for j =0,..., [3];

iv) n— [ "#'] in vertices (24 2["5'], 24+ 1) and (n+ 1+ |51 ], 2+ 1).

The remaining vertices of Y and Z are labeled as in the table below (listed from the
position closest to the pivot out).

parameters rest of Y rest of Z

(30: 39,11,9) | 791113-531135 791113

(31: 37,13,11) | 1113971135-3795 1113

(34: 39,15,13) | 1315119731135-79115 13 15

(35: 45,13,11) | 911131575-113573 9111315

(50: 61,19,19) | 1513171921235119735-313157911 1719212311
(51: 63,19,19) | 1513171921235119735-313157911 1719212311

7.4 For the following windmills, modify the above construction by using the indicated
label for vertex (24 2|”;'], 24 1) on X and the corresponding vertex on Y.

parameters +2[%2 ]2+ | Y rest of Z
(34 :41,13,13) }
(35 : 43,13,13)
(35: 39,15,15) 13 15171197113135379115 | 15617

15 117139517153 753119 131711




7.5 The labelings for the following windmills are similar to those above except the
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long run of labels starts with the first vertex of X rather than the second. Use

i)(n—j)in (1+2j,z+1)and (n+ 14 4,2+ 1), for j =0,1,.
ii) the double of the extended sequence (for brevity we use k — S, for a k-ext S,,)

given in the table for the even positions on X;

iii) the label given in column iii of the table for vertex (1+2|25*],z 4 1) on X and

the hole in the extended sequence of ii.

S it

3111335911

parameters even iii | Z Y

(38: 49,13,13) | 9-Sg 19 711131517357311520 205111315175

(39: 51,13,13) | 9-Sg 1719117131532019371111 591315195 20

(42: 53,15,15) | 10-S19 | 21 | 1113151719973 11311 225131517195
2279

(43: 55,15,15) | 12-S19 | 19 | 1113179321 7311112297 (225131517215

(54: 69,19,19) | 13-S13 | 27 | 1315171921 232511951 7151719 21 23
13135328911 257

(55: 71,19,19) | 15-S13 | 25 | 13111517 192123 928 275 7151719 21 23

27728

7.6 A variation of the last labeling can be used for W(42:55,15,13):
i) (42 —j) in (1 + 27,14) and (43 + j,14), for j =0,...,13;

ii) (42 — j) in (1 +24,14) and (55,26 — j), for j = 14,...,19;

iii) a doubled 10-ext Sjg in vertices (2 + 27, 14), for j =0, ..., 20;
iv) 21 in vertices (20, 14) and (41, 14).

Y and Z are filled (from the pivot out), respectively with 9 711 131517193793

111122and 22513151719 5.
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