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Abstract

We prove that if there exist Hadamard matrices of order A and n divisible by 4 then
there exist two disjoint W(Lhn, Lhn), whose sum is a (1,—1) matrix and a complex
Hadamard matrix of order %hn, furthermore, if there exists an OD(m; sy, 89, - ,s1) for
even m then there exists an OD(1hnm; Lhnsy, Lhns,,- -, thns).

1 Introduction and Basic Definitions

A complez Hadamard matriz (see [4] ), say C, of order ¢ is a matrix with elements
1,-1,4, —i satisfying CC* = cl, where C* is the Hermitian conjugate of C'. From [4], any
complex Hadamard matrix has order 1 or order divisible by 2. Let ' = X + 1Y, where
X,Y consist of 1,~1,0 and X AY = 0 where A is the Hadamard product. Clearly, if C is
an complex Hadamard matrix then XX7T + YY7 = ¢, XY7T = v X7, )

A weighing matriz [2] of order n with weight k, denoted by W = W(n,k),isa(1,~1,0)
matrix satisfying WW7T = kJ,,. W(n,n) is an Hadamard matrix.

Let A; be a (1,~1,0) matrix of order m and AjAJT = 8;I,. An orthogonal design D =
z1Ay+@2As+- - 4214 of order m and type (s, 8, - ,81), written OD(m; 1, 8q, -+, 1), on
the commuting variables 21,25, --,2; is a square matrix with entries 0,4z, +29, -+, +a;
where z; or —z; occurs s; times in each row and column and distinct rows are formally
orthogonal. That is

! :
ppT = (Z siw?)lm
g=1
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Let M be a matrix of order ¢tm. Then M can be expressed as

Mu M12 e AJlt
Myy Mpy - My
A/Itl A/[tz M ]utt

where M;; is of erder m (4,7 = 1,2,---,t). Analogously with Seberry and Yamada [3], we
call this a t? block M-structure when M is an orthogonal matrix.

To emphasize the block structure , we use the notation M), where M) = M but in
the form of t? blocks, each of which has order m.

Let N be a matrix of order tn. Then, write

Niuy Nyg -+ Ny
Nyi Nyy -+ Ny

Ny =
Ny Neg - Ny
where N;; is of order n (4,5 = 1,2,--+,1).
We now define the operation () as the following:

Ly Ly -+ Ly

Ly Ly -+ L
MyONy=| " = ™

Ly L -+ Ly
where M;;, N;; and L;; are of order of m,n and mn, respectively and
Lij = My X Nyj+ Mig X Noj+ -+ + My X Nyj,

4,7 =1,2,--+,t. We call this the strong Kronecker multiplication of two matrices.

2 Preliminaries

Theorem 1 Let A be an OD(itm;py,---,p) with entries 21,-+-,2; and B be an
OD(tn;q,+,qs) with entries yy,- -+ ,ys then

] s
(A(t) O B(t))(A(t) O B(t))T = (Z T’N?)(Z (ij})jtmn~
J=1 J=1

A By is not an orthogonal design but an orthogonal matriz.
(1) ®
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Proof.

Ay A - Ap
Ay Ay - A
A = 21 Az 2t
| A Ag - Au |
and -
Byi Bz -+ By ]
B B <+ By .
By = 21 B 2t
L Bn Bw -+ By |

where A;; and B;; are of orders m and n respectively (i, = 1,2,--,1).

Write
Ciu Cip -+ Cyg

p C. C e O
C=(AyOBu)ApO By = | " 72 = ™
Cl,l Ctz o Cjtt

where Cj; is of order mn.

We first prove Cyz = 0. It is easy to calculate Ci3 =

11
= Z(Au X Byj+ Ajg X Byj + -+ A X Btj)(Ag; X B;I‘J + A:{Q X BzTJ +‘»;~’r—§>t'§‘:§;)< B;";
=1

t
=3 [(AnAL) x (Bi;BL) + (A12AL) x (By;BE) + -+ + (AnAL) x (By; BL))

i=1
$
= (A1 Af; + ApAL + -+ 44 AL) < (5 gy
=1
But
An Al + ApAL + -+ Aual =0,
S0
C13 = 0.
Similarly,
Cij = 0(i # j).

‘We now calculate Cy;.

t
Cii= D (Aa X Bij+ Ain X Baj + -+ + Aiw x By) (Al x B, + AL < BL + -+ 4% x BY)
Je=1 "
t 2l #
=3 [(AuaAl) x (By;BY) + (A Al) X (ByiBE) + - + (AuAL) x (By; BE)]

7=1

8
= (A Al + ApAl + -+ A4Al) x (X 492 .
j=1
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! E
= (Do Pt X (O 459w
F=1 . J=1

- (ij ])(Z q]J])Imn

j=1
Thus
(Agy O By)(Awy O BT = (ZPJ z] (Z 2y e

i=1

Corollary 2 Let A and B be the matrices of orders tm and in respectively, consist of
1,—1,0 satisfying AAT = pl,., and BBT = qI,,;. Then

(A(t) O B(t))(A(t) O B(t))T = pglimn.

Proof. 1In this case, A = OD(tm;p) , B = OD(tn;q) and 1 = 31 = 1.

In the remainder of this paperlet H = (M;;) and N = (N;;) of order h and n respectively
be 16 block M-structures [3]. So

Hy Hy, Hyz Hyg
Hgyy Hzy Hiz Hzy
Hy Hyy Hyz Hy

=

where

Jir

ZH” HE = hIy = Z HyH;

for i = 1,2,3,4 and
4

4
SCHGHG =0= HH],

J=1 J=1
fori#k,i,k=1,2,3,4.

Similarly, let

where
ZN”J\ F=nl, = ZN N,
J=1

for i =1,2,3,4 and
4

4
YoNGNL=0=7" NiNj,
7=1

=1
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for i £ k, 1,k =1,2,3,4.

For ease of writing we define X; = %(H;l + Hip), Y= -%(Hn — Hio), Z; = %(Hgs + Hiy),
W; = -12-'([{1‘3 - Hiy), where i = 1,2,3,4. Then both X; +Y; and Z; £ W; are (1, —1)-matrices
with X; AY; = 0 and Z; AW, =0, A the Hadamard product.

Let
Hyy+ Hyy -y + Hyy Hiz+ Hyy —His+ Hua
1| Hyu+ Hyy —Hou+ Hap Hys+ Hyy —Hys+ Hoy
2| Hsy+ Hsy —Hsy+ Hyy Has+ Haq —Hsa + Hag
Hy+ Hyg —Hp+ Hiyp Hyg+ Hyz —Hyg + Hyy

Then S can be rewritten as

S =

Hy Hyy Hyz Hyy 1 -1 0 O

5= 1| Hyn Hoy Hy Hy 0 1 41 0 0
T 2| Hsy Hsy Hsz Hyy 0 0 1 -1
II41 H42 114'3 1144 0 0 1 41

or

X -1 4y -W
Xy =Yy, Zy W,
Xs Vs Zs —Ws
Xy =Yy Zy -Wy

S =

Obviously, S is a (0,1, —1) matrix.

Write

o Xn W 4y
Y, X W Z

,3 JYB !/Va Z 3 ’
Yo Xy Wy 24

also a (0,1, —1) matrix.
We note § =+ R is a (1,—1) matrix, R A S = 0 and by Corollary 1

SST = RRT = %hlh.

Lemma 3 If there exists an Hadamard malriz of order h divisible by 4, there exists an

OD(h; Lk, Lh). '

Proof. From § and R as above. Now H = S+ R. Note HHT = SST+ RRT+ SRT + RST =
hl, and §57 = RRT = %hfk. Hence SRT + RST = 0. Let 2 and y be commuting variables
then E = 25 + yR is the required orthogonal design.

g7



3 Weighing Matrices

Lemma 4 If there exist Hadamard matrices of order h and n divisible by 4, there exists a
W (Lhn, ghn).

Proof. Let H and N as above be the Hadamard matrices of order h and n respectively. Let

Xr Wz W Nyp Nz Nz Ny
P= 11 X2 Y, Z; W 0
T21 X3 Vs Zz Wi " N3i N3z Naz Nay

Xy Yy Zg Wy Nyt Ny Nyg Ny
Rewrite
Py P Pig Py
P= Py Py Py Py
Py P3y Pz Pay
Py Py Py Py
Consider

1
Py = '2'(X1 X Nip +Y; x Noy + Zy x N3y + Wy X Nyp),

where both X X Nyy + Y1 X Nay and Zy x Naj + W) X Ny are (1,—1) matrices. So Py; has
entries 1,-1,0 and similarly for other P;;. By Lemma 1,

PPT = %hn]%,m.

Then # is a W(3hn, Lhn).

Corollary 5 There exists a W(h,3h) (h > 1) if there exists an Hadamard matriz of order
h.

Proof. If h > 2let n =4 in Theorem 1. For the case h = 2, note W (2,1) is the identity
matrix.

We also note that if

X zy Wy Nuy o Niz Niz Ny
0= 11 Xe V2 22 W 0 Nan Naz Ny Ny
21 Xa3 Y5 Z3 W3 —N3z1 —Nzp —Naz —Nayg

Xg Yy Zy Wy ~Ny —N42 ~Nygz —Nyy

Then Q is also a W{thn, Lhn).

Theorem 6 Suppose h and n divisible by 4, are the orders of Hadamard matrices then
there exist two disjoint W(%hn, élm), whose sum and difference are (1,—1) matrices.
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Rewrite

Qu Gz iz Que
0= Qn Qrn Qu Qu
Q31 Qa2 Qaz Qa
Qun G Qi Qu

We note
Py

i

%(—Xi X Nij+ Y x Noj+ Z; x Naj + W; x Nyj),
and

Qi
Since Py + Qi; = X; X Ny +Y; X Nyj and Pyj — Qij = Z; X N3; + W; x N4; we conclude

that P;; & Qi; are (1, —1) matrices and P ANQi; = 0. Thus P+ @ is a (1,~1) matrix and
PAQ=0. P and Q are both W(4hn, Lhn) by Corollary 1.

i

%(X{ X Nlj +Y; x Ngj - Z; % ngj - W; x N4J').

4 Complex Hadamard Matrices
Lemma 7 PQT = QPT.

Proof. Write

[ Enn Eiz Ews Eyy
POT = Ly Ezy Egz Egy
B3 E3zy Fsz Egy
| Ly Eyp Py Eyy
and ~
Py Ry Fs Py
F: F: F F.

pPT= | T P Pz Fu

@ Fan Fyp Fsg Fay

L Fau Fap Faz Fiy

We first prove Ey; = Fys.
We note
Ey3 =

1 v . .
=7 S Xix Nyj+¥ X Najt Zix Naj+ Wi x N} (XT x NI+ Y x VL 28 « NE - W x NT)

=1
and
Fiy =
1¢ , :
= 7 2 (XX N1j Yy X Naj— Zy X Naj= Wi X N ) XT < NG+ Y x N4 28 x NE+ WT < NT).
1=1
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Obviously, Fy3 = Fy if and only if

4
(X1 X Nyj+ Yy x Nyj)(Z3 x N+ Wi x N 1
j=1
4
=3 "(Z1 x Naj+ Wi x Ny )(XT x NE + v x N (2)
j=1

To show this, note

4

S(Xx Nyj) (28 x N = Z(XIZ ) X (NNE) = X123 x ENUN?,J =0,
=1 j=1 J=1

and similarly for other parts in (1) and (2). Thus Ey3 = Fy3. Similarly, Ej; = Fj;, for other
1% g,

We now prove E;; = F;;. We see
Eii =

4
Z (XiX N1j+Yix Noj+ Zi X Naj+ Wix N Y XT ) N4+ YT < N 2T < N~ W x N

N»—a

and
Py =

]
]
™=

(XiX N1j+Yix Noj—Zi X Naj~ Wix Ny (X X NEA+YT ) NL4+ 2T x NE+WIx N,
1

J
Obviou-lv, Ey; = Fy; if and only if

4
3 (Xix Nyj + Y5 x Noj) (2] x N+ Wl x NL) (3)
=1
4
=3 (Zi x Naj + Wi x Nj)(XT x N5+ ¥T < NJ). {4)
j=1

The proof is the same as in (1) and (2). Hence Fy; = F;. Finally, we conclude PQT = QPT.

Theorem 8 If there exist Hadamard matrices of order h and n divisible by 4 then there
exists a complex Hadamard matriz of order }—lhn.

Proof. By the proof of Theorem 2, P and @ are the two disjoint IV(lhn, ;hn)x e. PAQ =10
and P £ @ is a (1,~1) matrix. Furthermore by Lemma 3, PQT = QPT Thus P+iQ is a
complex Hadamard matrix of order —hn
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5 Orthogonal Designs

Theorem 9 If there exist Hadamard matrices of order h , n divisible by 4 and an
OD(m;sy,82,---,81), where m is even, then there exists an

1 1 1 1
OD(Zhnm; Zhnsl, Z/z-nsg, sy Zhnsz).

Proof. Let
Dy D,
b= [ Dy Dy |7
be the OD(m;sy,59,-++,5) on the commuting variables z,,.--,2;, where Dj is of order
%m. Let

;P oQ Dy D;
v=| 5 Sl h o]

where P and @, constructed above, are from the lladamard matrices of order / and n.

Then by Theorem 3 and Corollary 1,
D'pT = ~hn(>: 5T L -

Since PAQ = 0, if D consists of 0, 24, - - - yzy then IV also consists of 0, +x1,- -+, +2; so
D’ is an
1 1 1 1
OD(Zhnm; Zhns,, :l—hnSQ, RN zhns;).

Corollary 10 If there exist Hadamard matrices of order b and n divisible by 4 then there
exists an OD(2hn, hn, 1 $hn).

Proof. Let

-y 2
in the proof of Theorem 4, where ¢ and y are commuting variables, put m = [ = 2 and
81 =8g=1.

6 Remark

Theorem 1 cannot be replaced by Corollary 1 because the existence of Hadamard matrices
of order h and n does not imply the existence of an Hadamard matrix of order —hn For
example, there exist lladamard matrices of order 4 -3 and 4 - 71 but no Hada.mard matrix
of order 4 - 213 has been found [1], however, by Theorem 1, we have a W(4.213,2.213).
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By the same result, there exists a W(4k,2k) and a complex Hadamard matrix of order 4k,
where k is

781 789 917 1315 1349 1441 1633 1703 2059 2227 2489 2515
2627 2733 3013 3273 3453 3479 3715 4061 4331 4435 4757 4781
4899 4979 4997 5001 5109 5371 5433 5467 5515 5533 5609 5755
5767 5793 5893 6009 6059 6177 6209 6333 6377 6497 6539 6575
6801 6881 6887 6943 7233 7277 7387 7513 7555 7663 7739 7811
7989 8023 8057 8189 8549 8591 8611 8633 8809 8879 8927 9055
9097 9167 9557 9563 9573 9659 9727 9753 9757 9869 9913 9991
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